用户名: 密码: 验证码:
双轴向交织纬编针织复合材料加工制造及其拉伸性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本课题是对自主研发的一种新型的经纱与纬纱呈交织状态的双轴向纬编织物及其增强复合材料的拉伸性能进行研究。由于该织物中既有针织物的线圈结构,又有机织物的交织结构,又称之为机织针织复合结构(Co-woven-knitted Fabric,简称CWK织物)。该织物将机织和针织两种结构结合起来,同时融合两种结构的性能和特点。与常见的双轴向针织物相比,最大的不同是CWK织物中的经纱与纬纱有交织。
     鉴于CWK织物性能与结构参数之间的密切联系,首先对CWK织物的结构进行了深入的研究,确定其编织工艺,并设计了其相应的编织装置和给纱装置;随后在普通针织横机上进行改造,并编织出CWK织物,实现了该新型结构织物的编织,验证了其编织的可行性,同时对CWK织物的上机编织工艺加以分析和讨论,内容包括编织机件的配置及配合、各种纱线的张力调节、经纱位置的控制及前后机头的同步控制等等,并进行了实际上机编织操作,逐步进行编织工艺和编织机件的完善和优化。
     在编织工艺优化之后,选用了玻璃纤维粗纱作经纱和纬纱,高强涤纶丝作针织纱,进行了CWK织物的编织,并确定了适用于高性能纤维CWK织物的编织工艺。首次编织出该种织物后,对其拉伸性能进行的试验,初步了解其力学性能,结果发现其经向和纬向的力学性能差异较大,这将影响该类织物的应用范围。在此基础上,重新选择经纱、纬纱和针织纱,适当调整了纬纱的衬入密度,重新编织出CWK织物。改进后的CWK织物的经向和纬向的拉伸性能进行试验之后,发现两个方向的力学性能的差异得到极大的改善。该类织物的力学行为同时具有机织结构和针织结构的性能,可以看作是两种结构的复合。同时,该类织物的轴向力学性能可以通过调整经纱、纬纱的线密度和衬入密度来改变,以达到应用上的需要。此外,在同一台样机上用同样的纱线,编织出纬编双轴向多层织物(MBWK),将其拉伸性能与CWK织物的性能进行对比研究。结果显示两者的轴向拉伸性能有很大的相似性,在拉伸过程中,先由其中的经纱和纬纱,在较低的伸长下,承担较高的负荷直至破坏,然后再由针织结构,在较高的伸长下,承担较低的负荷,直至针织结构破坏。另外,CWK织物中由于经纱和纬纱的屈曲,对经纱和纬纱拉伸强力的发挥有一定的影响,但CWK织物中经纱和纬纱的交织使得针织纱的“预牵伸”作用更为突出,进而针织纱对经纱和纬纱的捆绑作用更好,经纱层与纬纱层之间更为紧密。
     以CWK织物作为增强材料制成复合材料,在对其拉伸性能试验和分析后,发现CWK织物增强复合材料的轴向拉伸性能表现出比较好的线性,其拉伸强度主要该方向的经纱或纬纱强力及其衬入密度决定;CWK织物增强复合材料的轴向拉伸力学性能的差异,可以通过其预制件的纬纱和经纱衬入密度的合理设计来减小;CWK织物增强复合材料经纬向拉伸曲线都存在拐点,这是由于经纬纱交织导致纱线弯曲的结果,经纱的弯曲程度高于纬纱;与普通纬编针织物增强复合材料相比,CWK织物增强复合材料具有较高的初始模量和断裂强度;CWK织物增强复合材料,在横向拉伸时,通常是沿着纵行方向发生断裂,在纵向拉伸时,通常是沿着横列方向发生断裂;在45°斜向拉伸时,断口沿纬纱方向。45°斜向的拉伸强度和模量最低,但拉伸能量吸收最高。同时对MBWK织物增强复合材料的拉伸性能进行了对比研究,研究表明由于经纱和纬纱的交织,降低了CWK织物的中经纱和纬纱强力的发挥,但在两种织物均制成复合材料之后,MBWK增强复合材料中的经纱和纬纱的屈曲比MBWK织物中的经纱和纬纱的屈曲有明显增大,因而MBWK织物增强复合材料的轴向性能与CWK织物增强复合材料的轴向性能基本相同。
     CWK织物由针织纱、经纱和纬纱三部分组成。在一定的假设条件下,选取了CWK织物结构单胞及体积代表元RVE,利用几何分析的方法,建立了CWK织物三维几何模型。通过分段计算可得到经纱、纬纱和针织纱的长度,理论预测与实际试验值吻合良好,证实了所建模型的有效性和实用性。成型后的纤维体积分数通过织物结构参数和实测纱线长度进行计算,所得实验值与模型计算理论值有很好的一致性,进一步说明所建模型的有效性和实用性。讨论了在给定的织物紧度下,随着针织纱与衬纱线密度之比的变化,总纤维体积分数的变化趋势。在给定的较大的织物紧度下,随着针织纱与衬纱线密度之比的增大,总纤维体积分数先是逐渐下降到一个最小值,然后再增大。在针织纱与衬纱线密度之比由小变大时,针织纱的纤维百分含量随之增大,而衬纱的纤维百分数随之减小;在给定的较小的织物紧度下,随着针织纱与衬纱线密度之比的增大,总纤维体积分数也是由小逐渐增大。这提供了一个给定针织纱或衬纱的纤维百分含量的CWK织物,如何去选择针织纱或衬纱的线密度的依据。
     成型后的双轴向交织纬编织物增强复合材料的三维模型与织物的几何模型基本一致。利用所建立的CWK织物三维结构模型,根据经、纬纱纤维束及针织纱在RVE中的几何形态、各纱束每一微元段在RVE总体坐标的位置,确定了各系统纱线的取向度;将固化后的经、纬纱纤维束及针织纱看作为纤维单向复合材料,采用体积平均的分析方法,进行细观力学分析,对经纱、纬纱、针织纱和基体的局部刚/柔度矩阵进行分析,计算出各自在局部坐标下的柔度和刚度;利用混合率法则和等应力及等应变边界条件的最佳系数组合对四个子元的刚/柔度进行组合,从理论上得到材料的总体刚/柔度矩阵和工程弹性常数。并用MATLAB语言编程,实现了CWK织物增强复合材料弹性常数理论预测模型的计算,分析表明采用这种分析方法所得到的弹性常数理论预测值与试验结果吻合良好。
     通过对CWK织物及其增强复合材料的力学性能的试验和理论分析与预测,对这种织物及其增强复合材料的力学性能有了较全面的理解,为以后更深入地研究和设计这种织物及其复合材料的结构和性能奠定了良好的基础,同时本文的分析方法对其他类似材料的分析具有一定的借鉴作用。
The tensile properties were studied for a self-developed novel type of biaxial weft knitted fabric, in which warp and weft yarns introduced the knitting structure are in a state of interweaving, and its reinforced composites in this paper. The fabric was named also co-woven-knitted (CWK) fabric because it includes both the knitting structure and the woven structure. The CWK fabric has comprehensive performances of both woven fabric and knitted fabric, because of combining knitted structure and woven structure into one. Compared with the traditional biaxial knitted fabric, the biggest difference is that the warp and weft yarns are weaving in the CWK fabric.
     In view of the close relationship between the CWK fabric performance and its structural parameters, depth research on the structure of the CWK fabric to determine the weaving process and design its weaving and feeding equipments on the flat knitting machine. According to the weaving process of the CWK fabric, a co-woven-knitted machine was reformed from a manual V-bed flat knitting machine to producing the CWK fabric, on which the CWK fabric was produced with polyester yarns. This demonstrated the validity of the weaving method and the feasibility of the CWK fabric. While the weaving, the process of the CWK fabric was analyzed and discussed, including the configuration and positions and motion cooperate of weaving parts, the establishment for the yarn guide devices, layout for the yarn guide path, all kinds of yarn tension, the precise control for warp position and adjustment of synchronization control for the heads. During the course of the actually machine operation, gradually improving and optimizing of weaving and knitting process and mechanical parts were carried.
     Based on the weaving process above, the CWK fabric was fabricated with high tenacity polyester yarn for knitting yarn, the same glass filaments for warp and weft. After many weaving experiment, the best knitting process was determined for high performance fiber CWK fabric. Tensile tests were conducted in the CWK fabric coursewise and walewise direction. It was found that the mechanical properties were quite different between the warp and weft direction. This will affect the application of the CWK fabric. The CWK fabric was fabricated again with re-selecting the warp, weft and knitting yarn, increasing linear density of warp, reducing linear density of the knitting yarn and decreasing the number inserted into fabric. After tensile properties were tested, it was found the mechanical properties are greatly improved in both directions. Mechanical behavior of the CWK fabrics is in between woven structure and knitted structure. Meanwhile, the axial mechanical properties of these fabrics can be adjusted by changing the density of warp and weft yarn to meet the application needs.
     In addition, the multi-layer biaxial weft knitted fabric (MBWK fabric) was produced using the same yarn, in the same depth of stitch cams for knitting yarn on the same flat knitting machine. The tensile tests were carried on the fabric for comparative study of the tensile properties with the CWK fabric. The results showed that axial tensile properties have great similarities between two kinds of biaxial weft knitted fabrics. During the course of drawing, the two fabrics have the same performance as that first by drawing on the direction of the warp or weft, in low elongation, bear high load, until the warp or wefts damage, then to the knitted fabric, at higher elongation, undertake low load, until the knitting structural damage. Comparative studies also found that, compared with the MBWK fabric, the buckling of warp and weft yarns in the CWK fabric played certain effect on the tensile strength of the CWK fabric. But the pre-coating draft function that the interweaving of the warp and weft yarns carried on the knitting yarn in CWK fabric is more outstanding. Thus, bind effect that the knitting yarn to the warp and weft yarns is better, the contacts between the warp layer and wefts layer is closer. This shows the performance of resisting delamination of the CWK fabric is better than that of the MBWK fabric.
     The tensile tests were carried on the composite material, which were made using the CWK fabric as reinforcement. The tensile properties of the composites showed good linearity performance. The tensile strength is mainly depends on the yarn density and the tensile strength of weft and warp yarns in the tensile direction. Differences between in the axial tensile mechanical properties can be decreased through the selecting and designing of the linear density and inserted density of the weft and warp yarns. Due to the bending of the weft and warp yarns, there has an inflection point in the tensile curves of the CWK fabric reinforced composites. And degree of the bending of warp yarn is higher than the weft yarn. Compared to ordinary knitted fabric reinforced composites, the CWK fabric reinforced composites have higher initial modulus and fracture strength. In the transverse stretching, fracture is generally along the wale direction. In the longitudinal tension, usually along the course direction was broken. In the 45°diagonal tension, broken is in course direction, and have minimum tensile strength and modulus, the highest tensile energy. Meanwhile, tensile tests were carried on the MBWK fabric reinforced composites for comparative study. The result showed that the axial performance of CWK fabric reinforced composites is basically the same as that of it. This is because that, in the course of the manufacture for composites, buckling of the weft and warp yarns in the MBWK fabric is increased, while buckling of the weft and warp yarns in the CWK fabric is reduced.
     Under certain assumptions, unit cell and representative volume element (RVE) were selected for the CWK fabric reinforced composites, established three-dimensional geometric model of the CWK fabric by the geometric analysis method, obtained length of warp, weft and knitting yarns according the geometric model. Theoretical predictions of the yarn length agree well with the measured test values, confirming the effective and practical of the model. The fiber volume fraction is calculated through the fabric structure parameters and the measured yarn length after forming. The experimental data and theoretical model are in good agreement, which further shows that effective and practical of the model. The total fiber volume fraction trends was discussed, under a given fabric tightness, with changing in the ratio of the knitting yarn to the inserted yarn density. This provides a basis of how to choose yarn linear density for a given fiber percentage content of CWK fabric reinforced composites.
     The 3D model of the composite is basically same as the CWK fabric after molding. Thus, According to the 3D model of the CWK fabric, the geometric shape and position of the inserted yarns and knitting yarns in the RVE can be determined. So the orientation of various yarn were determined. After molding three kinds of yarns and metrin can be seen as unidirectional fiber composite. Using the average volume analytical and the micromechanics analysis methods, obtained the local rigid/flexibility matrix of the warp, weft yarn, knitting yarn and the matrix. Then the overall material stiffness/flexibility matrix and the elastic constants were analysis using the mixed rate law, the equivalent stress and strain boundary conditions and the best factor combination. In order to realize the calculating of theoretical elastic constants for the CWK fabric reinforced composites, MATLAB language computing program is compiled. The results shows that theoretical predictions of elastic constants in good agreement with the experimental results.
     There has a more overall understanding to the mechanical properties of the CWK fabric and its reinforced composites through experimental tests and theoretical analysis and prediction. This provided a good foundation for more in-depth study and design of the CWK fabric and its composites in structure and properties. At the same time, the analysis method can be used as a reference for the analysis of other similar materials.
引文
[1]陶肖明.纺织结构复合材料[M].北京:科学出版社,2001.
    [2]Mallick P K. Fiber-Reinforced Composites. New York:Marcel Dekker Inc., 1988.
    [3]王善元,张汝光.纤维增强复合材料[M[.北京:中国纺织出版社,1999.
    [4]邓炳耀,晏雄.纺织结构复合材料的设计与应用.纺织导报.2005(9):34-39.
    [5]Wu W L, Hamada H, Maekawa Z. Computer simulation of the deformation of weft-knitted fabric for composite materials. J. Text. Inst.1994,85(2):198-214.
    [6]陶肖明,冼杏娟,高冠勋.纺织结构复合材料.北京:科学出版社,2001.
    [7]白榕.产业用纺织品-未来的市场:发展针织工业的机遇.产业用纺织品.1998(1):1-7.
    [8]Ko. F. K.et al. Development of Multi-bar Weft insertion Warp Knit Fabric for Industrial Applications. ASME Paper NO.90.1980(10).
    [9]High-Teeh Fibrous Materials:Composites, Biomedical Materials, Protective Clothing and Geotextiles. Ameriean Chemieal Soeiety.1991:81-89.
    [10]Raymond J, Palmer et al. Development of stitching Reinforcement for Transport Wing Panels. First NASA Advanced Composites Technology Conferenee.1991(20):621-646.
    [11]Dexter H.B. An overview of the NASA Textile Composites Program. Sixth Conference on Advanced Engineering Fibers and Textile Structure for ComPosites.1992:1-31.
    [12]焦亚男,李嘉禄,董浮允.针织复合材料的力学性能.纤维复合材料.1999.3.
    [13]Dewait L P, Reichard P R. Just how good are knitted fabrics. J Reinf. Plast. and Comp..1994,13(10):908-917.
    [14]W. L. Wu, H. Hamada and Z. Maekawa. ComPuter simulation of the deformation of weft-knitted fabrie for composite materials. J. Text. Inst.1994, 85(2):198-214.
    [15]邱冠雄等.多轴向经缩复合材料研究.纺织学报.1997(4):4-66.
    [16]胡红,龙海如.利用电脑横机生产三维成型产业用针织物.中国纺织大学学报,1997,23(2):50-55.
    [17]HuHong Araujo M D de, Fanguero R.3D Technical Fabrics. Knitting International,1996, (9):55-57.
    [18]HuHong, Araujo M D de, Fanguero R. Flat Knitting Machines for the Production of 3D Shaped Fabrics for Technical Apllications. Melliand Textile Berichte English,1996,(12):13-14.
    [19]H. Cebulla,O. Diestel, P. Offermann. FULLY FASHIONED BIAXIAL WEFT KNITTED FABRICS. AUTEX Research Journal,2002,1(2):8-13.
    [20]张艳明.纬编双轴向多层衬纱织物的成型性研究[D],天津:天津工业大学博士论文,2005,6.
    [21]Dewait L P, Reiehard P R. Just how good are knitted fabries. J Reinf. Plast. and Comp..1994,13(10):908-917.
    [22]王玉柱,邱冠雄,施鸿才.经编织物进入复合材料墓布领域.产业用纺织品.1996,10(1):8-19.
    [23]焦亚男,李嘉禄,董浮允.针织复合材料的力学性能.纤维复合材料.1999,3.
    [24]龙海如.玻璃纤维横机针织物编织工艺探讨.针织工业.2001(6):37-38.
    [25]K. H. Leong. The potential of knitting fabrics for engineering composites-a review. Composite Part A.2000:197-220.
    [26]Wang Y J, Li J, Do P B. Properties of composite laminates reinforced with E-glass multiaxial non-crimp fabrics. Journal of Composite Materials,1995, 29(17):2317-2333.
    [27]Van Vuure A W, Ko F K, Beevers C. Net-shape knitting for complex composite preforms. Textile Research Journal,2003,73(1):1-10.
    [28]Du G W, Ko F K. Analysis of multiaxial warp-knit preforms for composite reinforcement. Composite Science and Technology,1996,56(3):253-260.
    [29]Ko F K, Hu J L, Jiang Y M. Bending properties of mutiaxial warp knitted fabrics. Textile Asia,1998,29(2):45-48.
    [30]Hu J L, Jiang Y M. Modeling uniaxial tensile properties of multiaxial warp knitted fabrics. Textile Research Journal,1998,68(11):828-834.
    [31]Jiang Y M, Hu J L. Characterizing and modeling bending properties of multiaxial warp knitted fabrics. Textile Research Journal,1999,69(9):691-697.
    [32]Hu J L, Jiang Y M. Modeling formability of multiaxial warp knitted fabrics on a hemisphere. Composite Part A,2002,33(5):725-734.
    [33]Goadau U, Diestel O, Offermann P. Biaxially reinforced multilayer weft knitted fabrics-a new textile structure for composite reinforcement.30th International SAMPE Technical Conference, San Antonio:Texas, Oct.20-24,1998,40-47.
    [34]Cebulla H, Diestel O, Offennann P. Fully fashioned biaxial weft knitted fabrics. AUTEX Research Journal,2002,3,2,8-13.
    [35]K. H. Leong, at al. The potential of knitting for engineering Composites-a review. Composites:Part A 31(2000) 197-220.
    [36]张艳明.纬编双轴向多层衬纱织物的成型性研究.天津工业大学博士学位论文,2005:2-3.
    [37]邱冠雄,刘梁森等.双轴向多层衬纱织物.中国专利:ZL00267570.6.
    [38]胡红,周荣星,王文祖等.双轴向增强纬编间隔针织结构及其编织方法.中国发明专利:200410018041.X,2008-07-30.
    [39]胡红,周荣星,王文祖等.双轴向增强纬编间隔针织结构专用横机纱线喂入装置.中国专利:2004200222381.5,2005-07-13.
    [40]胡红,周荣星,王文祖等.双轴向增强纬编间隔针织结构专用横机纱线喂入装置.中国专利:200420022381.5,2005-07-13.
    [41]RINGXING ZHOU, HONG HU, NANLIANG CHEN, at,el. An Improved MWK Structure for Composite Reinforcement. Textile Res. J,2005,75(4): 342-345.
    [42]汪福坤.双轴向增强纬编间隔针织物的性能特点.针织工业,2006,(4):9-11.
    [43]汪福坤.纬编双轴向间隔织物编织工艺研究.东华大学硕士学位论文,2005.3.
    [44]胡红.一种针织结构及其编织方法和专用装置.中国专利:200410067299.9,2005-05-11.
    [45]胡红.多轴向增强纬编针织结构专用横机纱线喂入装置.中国专利:200420107452.1,2006-01-04.
    [46]Leaf G V A et al. The Geometry of a plain knitted loop. J. Text. Inst..1955(45): 587-605.
    [47]Verpoest I, Gommers B, et al. The potential of knitted fabrics as a reinforcement for composites. Proc ICCM-11 1997(1):108-33.
    [48]Y. Luo, I. Verpost. Biaxial tension and ultimate deformation of knitted fabric reinforcements. Composites:Part A 33 (2002) 197-203.
    [49]Huang. Z. M et al. A Unified Micromechanical Model for Estimating Elastic, Elasto-plastic and Strength Behavior of Knitted Fabric Reinforced Composites. J. of Reinforced Plastic Composites,50,2(2001):365-385.
    [50]Ruan X.P. et al. Experimental and Theoretical Studies of the Elastic Behavior of Knitted-fabric Composites. Composites Science and Technology,56, (1996): 1391-1403.
    [51]Gommer B, et al. Modeling the Elastic Properties of Knitted-fabric- reinforced Composites. Composites Science and Technology,56(1996):685-694.
    [52]Zhuo N J. The geometry of weft-inserted warp-knitted Part Ⅰ models of the structures. Journal of Textile Institute,1991,82,3,361-371.
    [53]Zhuo N J. The geometry of weft-inserted warp-knitted Part II:experimental validation of the theoretical models. Journal of Textile Institute,1991,82,3, 373-387.
    [54]Du G. W. et al. Analysis of Multi-axial Warp-knit Preforms for Composite Reinforcement. Composites Science and Technology,56(1996):253-260.
    [55]陈南梁,敖伟.经编针织双轴向立体骨架织物线圈几何模型研究.东华大学学报(自然科学版),2002,28,5,22-25,59.
    [56]张艳明,邱冠雄,姜亚明.纬编双轴向多层衬纱织物的几何结构.针织工业,2005,4,11-14.
    [57]张卓.纬编双轴向多层衬纱织物增强复合材料面内力学性能研究.天津工业大学博士论文,2003,29-39.
    [58]Rudd C D, Owen M J, Middleton V. Mechanical properties of weft knit glass fiber/polyester laminates. Comp. Sci. and Tech..1990(39):261-270.
    [59]Malliek P K. Fiber-Reinforced Composites. New York:Marcel Dekker Inc.1988.
    [60]Wu W L, Hamada H, Maekawa Z. Computer simulation of the deformation of weft-knitted fabric for composite materials. J. Text. Inst..1994,85(2):198-214.
    [61]Wu W L, Hamada M, Kotaki M, et al. Design of knitted fabric reinforced composites. J. Reinforced Plast. and Comp..1995,14(8):786-798.
    [62]Ramakrishna S & Hull D. Tensile behavior of knitted carbon-fiber-fabric/epoxy laminates-Part Ⅰ:experimental. Comp. Sci. and Tech.,1994,50:237-247.
    [63]Ramakrishna S & Hull D. Tensile behavior of knitted carbon-fiber/epoxy laminates-Part Ⅱ:prediction of tensile properties. Comp. Sci. and Tech.. 1994,50:249-258.
    [64]Ruan & Chou T W. Experimental and the theoretical studies of the elastic behavior of knitted-fabric composites. Comp. Sci. and Tech.,1996,56: 1391-1403.
    [65]Ruan X & Chou T W Failure behavior of knitted fabric composites. J. of Comp Mater.1998,32(3):198-223.
    [66]Ramakrishna S, Huang Z M, Teoh S H, et al. Application of the model of Leaf and Glaskin to estimating the 3D elastic properties of knitted-fabric reinforced composites. J. Text. Inst., Part Ⅰ,2000,91(1):132-150.
    [67]Huang Z M. Ramakrishna S & Tay A A 0. Modeling the stress/strain behaviors of knitted fabric reinforce elastomer composite. Comp. Sci. and Tech.,2000, 60:671-691.
    [68]Huang Z M. Characterization of a knitted fabric reinforced elastomer composite. J. Reinf. Plast. and Comp.,1999,18(2):118-137.
    [69]Huang Z M, Ramakrishna S & Tay A A 0. A micromechanical approach to the tensile strength of a knitted fabric composite. J. of Comp. Mater.,1999,31(19): 1758-1791.
    [70]Georg Haasemann, Karin Thielsch, and Volker Ulbricht. Macro mechanical characteristics deduced from tests on glass/epoxy composites with optical methods. PAMM Proc. Appl. Math. Mech.2004,(4):396-397.
    [71]Georg Haasemann, Volker Ulbricht, and Jorg Brummund. Modelling the mechanical properties of biaxial weft-knitted fabric reinforced composites. PAMM Proc. Appl. Math. Mech.2004, (4):193-194.
    [72]张剑寒.纬编双轴向多层衬纱织物的成型性研究及其计算机模拟.天津工业大学博士学位论文,2002.
    [73]王兴业,唐羽章.复合材料力学性能.长沙:国防科技大学出版社,1988.
    [74]Masters. J. E et al. Mechanical Properties of Triaxially Braided Composites: Experiment and Analytical Results. J. of Composites Technology and Research, 1993,15 (2):112-122.
    [75]Hong Hu, Mingxing Zhang, Raul Fangueiro and Mario de Araujo, Mechanical Properties of Composite Materials Made of 3D Stitched Woven-Knitted Preforms, Journal of Composite Materials,2010,44(14):1753-1767. July 2010
    [76]Jiwei Zhang, Hong Hu, Baozhong Sun and Bohong Gu, Dynamic Responses of 3-D Multi-structured Knitted Composite T-beam under Transverse Impact, Journal of Composite Materials,2010,44(2):157-180.
    [77]Baozhong Sun, Hong Hu and Bohong Gu. Compressive behavior of multi-axial multi-layer warp knitted (MMWK) fabric composite at various strain rates. Composite Structures 2007 (78) 84-90.
    [78]Yixi Luo, Hong Hu. Mechanical properties of PVC coated bi-axial warp knitted fabric with and without initial cracks under multi-axial tensile loads. Composite Structures 2009 (89):536-542.
    [79]Baozhong Sun, Dongmei Hu, Bohong Gu. Transverse impact damage and energy absorption of 3-D multi-structured knitted composite. Composites, Part B 2009 (40):572-583.
    [80]Limin Jin, Hong Hu, Baozhong Sun, et al. A simplified microstructure model of bi-axial warp-knitted composite for ballistic impact simulation. Composites: Part B 2010 (41):337-353.
    [81]Jian Rong, Baozhong Sun, Hong Hu, and Bohong Gu. Tensile Impact Behavior of Multiaxial Multilayer Warp Knitted (MMWK) Fabric Reinforced Composites, Journal of Reinforced Plastics and Composites,2006,25(12): 1305-1315.
    [82]乔东,胡红.双轴向增强纬编间隔织物复合材料的加工制造及力学性能.东华大学学报(自然科学版),2008,34(6):681-686.
    [83]Yuanwan Liu, Yihua Lv, Baozhong Sun, Hong Hu and Bohong Gu, Dynamic Response of 3D Biaxial Spacer Weft-knitted Composite under Transverse Impact, Journal of Reinforced Plastics and Composites,2006,25(15): 1629-1641.
    [84]Wenjian Liu, Baozhong Sun, Hong Hu, Bohong Gu. Compressive Behavior of Biaxial Spacer Weft Knitted Fabric Reinforced Composite at Various Strain Rates. Polymer Composites,2007,10(1002):224-232.
    [85]Zhang MX, Sun BZ, Hu H and Gu BH. Dynamic Behavior of 3D Biaxial Spacer Weft-Knitted Composite T-beam under Transverse Impact, Mechanics of Advanced Materials and Structures,2009,16(5):356-370.
    [86]Hong Hu, Baozhong Sun, Hanjian Sun and Bohong Gu, A Comparative Study of the Impact Response of 3D Textile Composites and Aluminum Plates, Journal of Composite Materials,2010,44 (5):593-619.
    [87]Sun BZ, Hu H, Gu BH. Responses of 3D Biaxial Spacer Weft-knitted Composite Circular Plate under Impact Loading (Part Ⅰ:Unit-cell and elasto-plastic constitutive model). Journal of the Textile Institute,2010,101(1): 28-34
    [88]Li JJ, Sun BZ, Hu H, Gu BH. Responses of 3D Biaxial Spacer Weft-knitted Composite Circular Plate under Impact Loading (Part Ⅱ:Impact tests and FEM calculation). Journal of the Textile Institute,2010,101(1):35-45.
    [89]袁新林,徐艳华.复合材料中的纬编结构.纺织导报,2006.9:46-50.
    [90]S. Savci, J.I. Curiskis, M.T. Pailthorpe, A study of the deformation of weft-knit preforms for advanced composite structures Part 2:The resultant composite. Composites Science and Technology 60 (2000) 1943-1951.
    [91]T C Lim, S Ramakrishna and H M Shang, Effect of textile geometry on axisymmetric stretch forming of knitted fabric composites. IMechE:2000,214 Part B:333-337.
    [92]姜亚明等,多层双轴向纬编织物及其性能研究,纺织学报,2003,(3):35-37.
    [93]Chang H L. A study of co-weaving-rib-warped fabrics. Master Thesis, Institute of Textile Engineering, Feng China University; 2000:4-19.
    [94]胡红,陈南梁等.新型双轴向纬编针织物及其编织方法和专用横机纱线喂入装置.中国专利:02155182.0,2003-05-28.
    [95]胡红,陈南梁等.新型双轴向横机纱线喂入装置.中国专利:ZL02288413.0.
    [96]袁新林.新型双轴向纬编针织物编织方法及其性能研究.西安工程大学硕士学位论文,2007.4.
    [97]胡红,袁新林,徐艳华等.多层衬纬机织针织复合结构及其编织方法和专用装置.中国专利,申请号:200810039656.9,2008-11-19.
    [98]徐艳华,袁新林,胡红.一种机织针织复合结构及其专用横机纱线喂入装置.中国专利:ZL200920039593.7,2010-02-03.
    [99]徐艳华,袁新林,胡红.多层均匀衬纬机织针织复合结构及其专用横机纱线喂入装置.中国专利:ZL200920044115.5,2010-05-05.
    [1]龙海如,玻璃纤维横机针织编织工艺探讨[J],针织工业,2001(6):37-39.
    [2]K.W.Lau, T.Dias, Knittability of High-modulus Yams[J], Text Inst 1994(2).
    [3]S.Savci, J. I. Curiskis, M.T.Pailthorpe. Knittability of Glass Fiber Weft-Knitted Preforms for Composites [J], Textile Research Journal,2001, (1):15.
    [4]刘良森等,新型双向多层衬纱织物的织造[J],天津工业大学学报,2001(5):21.
    [5]Hong Hu and Mei Zhu, A study of the degree of breakage of glass filament yarns during the weft knitting process [J], AUTEX Research Journal,2005 (9)
    [6]胡红,龙海如,利用电脑横机生产三维成形产业用针织物[J],中国纺织大学学报,1997(2):50-55.
    [7]宋广礼等,玻璃纤维纬编间隔织物的编织预结构研究[J],纺织学报,2002(4):14-16.
    [8]H. Hong, M. D. de Araujo, R. Fangueiro, and O. Ciobanu. Theoretical Analysis of Load-Extension Properties of Plain Weft Knits Made from High Performance Yarns for Composite Reinforcement [J]. Textile Res,2002 (11):991-996.
    [9]王善元,张汝光等.纤维增强复合材料.中国纺织大学出版社,1998:4-5.
    [1]Kelkar A D, Tate J S, Chaphalkar P. Performance evaluation of VARTM manufactured textile composites for the aerospace and defense applications. Materials Science and Engineering:B,2006,132(1-2):126-12.
    [2]Johnson R J, Pitchumani R. Flow control using localized induction heating in a VARTM process. Composites Science and Technology,2007,67(3-4):669-684.
    [3]Bender D, Schuster J, Heider D. Flow rate control during vacuum-assisted resin transfer molding (VARTM) processing. Composites Science and Technology, 2006,66(13):2265-2271.
    [4]Johnson R J, Pitchumani R. Simulation of active flow control based on localized preform heating in a VARTM process. Composites Part A:Applied Science and Manufacturing,2006,37(10):1815-1830.
    [5]王芳,张国利.VARTM用EP体系流变特性及固化工艺的研究.工程塑料应用,2006,34(8):31-33.
    [6]王芳.VARTM用环氧树脂固化工艺的研究.高科技纤维与应用,2006,31(1):41-43.
    [7]汪福坤.双轴向纬编间隔针织增强结构编织工艺及其力学性能的研究.东华大学硕士学位论文,2006:25-36.
    [8]齐燕燕,刘亚青,张彦飞.新型树脂传递模塑技术.化工新型材料,2006,(3):36-38.
    [9]孙慧玉,三维编织复合材料RTM工艺和力学性能[J],材料工程,1998(5):35.
    [10]赵渠森,赵攀峰,真空辅助成型工艺研究[J],纤维复合材料,2002(3):42-46.
    [11]Dexter H. B. Performance of Resin Transfer Molded Multiaxial Warp Knit Composites. Third NASA Advanced Composites Technology Conference, 1993(1):231-261.
    [12]Moon Koo Kang, Jae Joon Jung, Woo I1 Lee. Analysis of resin transfer moulding process with controlled multiple gates resin injection[J], Composites, Part A 2000 (31):407-422.
    [13]戴青春,胡红.纬编针织增强复合材料的拉伸性能[J].纺织学报,2008,29(1):58-61.
    [1]Gunag-Wu Du, Frnak Ko. Analysis of multiaxial warp knit performs for composite reinforcement. Composites Science and Technology,1996,56:253-260.
    [2]张艳明.纬编双轴向多层衬纱织物的成型性研究[D],天津:天津工业大学博士论文,2005,6.
    [3]Zheng-Ming Huang. Fatigue life prediction of a woven fabric composite subjected to biaxial cyclic loads, Composites:Part A 2002,33:253-266.
    [4]F.T. Peirce. Geometry of cloth structure. J. Text. Inst.,1937,28:45-96.
    [5]T.V. Sagar, P. Potluri, J.W.S. Hearle, Textile Composites Group. Mesoscale modelling of interlaced fibre assemblies using energy method. Computational Materials Science,2003,28:49-62.
    [6]D. Scida, Z. Aboura, M.L. Benzeggah and E. Bocherens. Prediction of the elastic behaviour of hybrid and non-hybrid woven composites. Composites Science and Technology,1997,57:1727-1740.
    [7]Woong Ryeol Yu, Mike Zampaloni, Farhang Pourboghrat, Kwansoo Chung, Tae Jin Kang. Sheet hydroforming of woven FRT composites:non-orthogonal constitutive equation considering shear stiffness and undulation of woven structure. Composite Structures,2003,61:353-362.
    [8]Pu Xue, Jian Cao, Julie Chen. Integrated micro/macro-mechanical model of woven fabric composites under large deformation, Composite Structures,2005,70: 69-80.
    [9]Mauricio V. Donadon, Brian G. Falzon, Lorenzo Iannucci, John M. Hodgkinson. A 3-D micromechanical model for predicting the elastic behaviour of woven laminates. Composites Science and Technology,2007,67:2467-2477.
    [10]A. Shahkarami, R. Vaziri. A continuum shell finite element model for impact simulation of woven fabrics. International Journal of Impact Engineering,2007, 34:104-119.
    [11]F. T. Peirce. Geometrical principles applicable to the design of functional fabrics, Textile Res. J.,1947,3:123-147.
    [12]Goran Demboski, Gordana Bogoeva-gaceva. Properties of weft knitted composites affected by preform stretching, Applied Composite Materials 2001,8: 371-384.
    [13]姚穆,周锦芳,黄淑珍等.纺织材料学(第二版).北京:纺织工业出版社,1990:492-495.
    [1]航空航天工业部科学技术研究员.复合材料设计手册[M].北京:航空工业出版社,1990.
    [2]吴德龙,沈怀荣等.纺织结构复合材料的力学性能[M].长沙:国防科技大学出版社,1998.
    [3]沃丁柱.复合材料大全[M].化学工业出版社,2000.
    [4]Stephen W. Tsai.复合材料设计.航空工业部第六零一研究所编译,1998.
    [5]Huang Z M. Modeling mechanical properties of knitted fabric composites Part-Ⅱ: theoretical description. Science and Engineering of Composites Materials,2002, 10,3,189-211.
    [6]Huang Z M, S. Ramakrishna. Micromechanical modeling approaches for the stiffness and strength of knitted fabric composites:a review and comparative study. Composites:Part A 2000,31,479-501.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700