用户名: 密码: 验证码:
基于统计学和解耦算法的丙酮—丁醇蒸馏系统优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
发酵法丙酮-乙醇-丁醇溶剂生产是丙酮和生物丁醇(丙丁)的主要生产方式之一,其过程中的蒸馏系统工艺复杂,能耗高,改造和优化困难,所以一直沿用老的四塔流程或五塔流程。
     本文对发酵法丙酮-丁醇生产的四塔流程蒸馏系统进行了深入研究。针对该系统工艺复杂、参数多、流股之间耦合严重、计算难收敛的特点,利用解耦算法对其进行解耦,将整个蒸馏系统划分为醪塔子系统、丁塔子系统和乙丙子系统三部分,建立了算法的数学模型。通过分析发酵醪液中主要成分及其相互间作用特性,利用PRO/Ⅱ流程模拟软件,对该系统进行了模拟计算,并以某工厂实际生产数据为计算基础,对计算模型进行了修正。
     在此基础上,通过详细分析模拟计算结果,提出了该蒸馏系统中存在的不足。以节能减排为最终目标,提出了新工艺。新工艺主要包括侧采工艺、热泵回收工艺、塔顶回流工艺、热量综合利用工艺及丁醇分离器的重新设计等。以醪塔为研究对象,对所建立的新工艺进行了实验研究。实验数据和模拟数据吻合良好,证明了新工艺的可行性。
     为了对所提出的新工艺进行全面优化,引入统计学方法——响应面优化法(RSM),以塔顶含水量或塔釜残余溶剂含量最小为响应值,对蒸馏系统中的醪塔、1#丁醇塔和丙酮塔的多个操作参数进行了综合优化,建立了影响因素与优化目标之间的数学模型,得到了最优的参数组合。对所得到的最优参数组合,重新利用PRO/Ⅱ流程模拟软件进行模拟计算,得到综合优化后的最优值。结果表明,所建立的数学模型是正确的,综合优化后的计算结果较单参数优化后的结果更优。
     为了考察RSM优化结果的可靠性,以1#丁醇塔和丙酮塔为研究对象,对综合优化结果进行了实验研究。实验结果与RSM优化结果一致,验证了RSM用于精馏塔多参数综合优化的可靠性。
     将优化后的新工艺在某工厂的节能项目改造中进行了实际应用,生产运行数据与优化计算数据吻合良好,节能减排效果明显。与原工艺相比,节能达到40%,降低排放达到75%以上,证明了新工艺的先进性和可靠性。该论文的研究对复杂蒸馏系统的综合优化提供了理论支持。
Acetone and bio-butanol were mainly produced by acetone-butanol-ethanol (ABE) fermentation process, which uses bacterial fermentation to produce acetone,1-butanol and ethanol from starch. The traditional four-column or five-column distillation process is still in use because the distillation system in the fermentation process is very complex and difficult to modify and optimize, with high energy consumption.
     In this thesis, the four-column distillation system was studied for the fermentation production of acetone-butanol. Considering the system's complexity, multi-parameters, severe coupling between streams, and non convergence during calculation, the whole distillation system was divided into three subsystems using the decoupling algorithm: prefractionator subsystem, butanol subsystem and ethanol acetone subsystem. And a mathematical model was built based on the subsystems. By using PRO/II process simulation software, the distillation system was simulated by analyzing the main components in the fermentation broth as well as their interactions, and then the mathematical model was modified based on the actual production data collected in a real factory.
     Through a detailed analysis of the simulation results, the distillation system deficiencies were found and a new process was proposed with the ultimate goal of energy saving and emission reduction. The new distillation process mainly included the side withdrawal technology, heat pump recovery process, reflow process, and comprehensive utilization of heat as well as a re-design of the butanol separator. Experimental data were collected in the prefractionator. Experimental data and simulated data agreed well, which proved the feasibility of the new process.
     One statistical method, response surface methodology (RSM), was introduced in order to optimize the new process completely. By minimizing the water content in the top or the solvent content in the bottom, many parameters were optimized together in the distillation system including prefractionator, 1#butanol column, and acetone column; mathematical models were built to correlate the factors and the objectives and then the optimized groups of parameters were obtained. Based on the obtained optimal parameters, PRO/Ⅱprocess simulation software was reused to obtain the integrated optimal value. The results showed that the mathematical models were correct and the integrated optimized results were more accurate than the results from single-parameter optimization.
     In order to investigate the reliability of RSM optimization results, experimental data were obtained from the 1#butanol and acetone columns. The results agreed well with the integrated optimal values, which verified that RSM was reliable when used for multi-parameter optimization for the distillation system.
     The optimized new process has been applied in a project of energy-saving and consumption-reducing technological transformation. Run data and the calculated data agreed well. Compared to the traditional process, the effect of energy saving and consumption-reducing can reach 40% and 75% individually. That proved the advanced nature of this new technology and its reliability. The studies in this thesis provided a theoretical support on integrated optimization of the complex distillation system.
引文
1.纪占武,郑文范.关于发展生物能源化解能源危机的思考[J].东北大学学报(社会科学版),2009(06):490-495.
    2.仇焕广,黄季焜.全球生物能源发展及对农产品价格的影响[J].世界环境,2008(04):19-21.
    3.丁丽芹,何力,郝平.国外生物燃料的发展及现状[J].节能,2003(06):45-46.
    4. Orchard, B., J. Denis, J. Cousins. Developments in biofuel processing technologies[J]. World Pumps,2007(487): 24-28.
    5.童灿灿,杨立荣,吴坚平,et al.丙酮-丁醇发酵分离耦合技术的研究进展[J].化工进展,2008(11):1782-1788.
    6.刘光启,马连湘,刘杰.化学化工物性数据手册[M].北京:化学工业出版社,2002.
    7.吴伟光,仇焕广,黄季焜.全球生物乙醇发展现状、可能影响与我国的对策分析[J].中国软科学,2009(03):23-29+38.
    8.罗承先.世界生物乙醇产业发展现状[J].中国石化,2007(12):43-45.
    9. Inyang, H.I. Priming ethanol production infrastructure for Increased energy market share in developing countries[J]. Energy and Environment,2007.18(3-4):361-362.
    10. Hira, A., L.G. de Oliveira. No substitute for oil? How Brazil developed its ethanol industry[J]. Energy Policy, 2009.37(6):2450-2456.
    11. Noon, R., AGRI-FUEL POTENTIALS OF BUTANOL/ACETONE PRODUCTION:AN ALTERNATIVE TO ETHANOL FOR A GASOLINE SUBSTITUTE, in Gateway Energy Conference.1980, Univ of Mo:Rolla, MI, USA. p.46-50.
    12. Tian, Y, L. Zhao, H. Meng, et al. Estimation of un-used land potential for biofuels development in China[J]. Applied Energy,2009.86(SUPPL.1):S77-S85.
    13.刘娅,刘宏娟,张建安,et al.新型生物燃料——丁醇的研究进展[J].现代化工,2008(06):28-31+33.
    14. Ulmanen, J.H., G.P.J. Verbong, R.P.J.M. Raven. Biofuel developments in Sweden and the Netherlands. Protection and socio-technical change in a long-term perspective [J]. Renewable and Sustainable Energy Reviews,2009.13(6-7):1406-1417.
    15.刘玉娣.生物丁醇开发进展[J].石油化工技术与经济,2009(02):21.
    16.许文有.用氟化钾分离乙醇—丙酮—丁醇—水体系的研究[J].石油化工,1996(01):
    17.林有胜,王旭明,王竞,et al.生物燃料丁醇的研究与前景[J].现代化工,2008(04):84-87+95.
    18.何景昌,张正波,裘娟萍.生物丁醇合成途径中关键酶及其基因的研究进展[J].食品与发酵工业,2009(021:116-120.
    19.梁环环.丙酮丁醇梭菌发酵菊芋产丁醇的研究[D].大连理工大学,2009.
    20.沈兆兵,杜风光,史吉平,et al.丙酮丁醇生产技术进展[J].广州化工,2007(05):8-9+19.
    21.杨立荣,岑沛霖,朱自强.丙酮/丁醇间歇萃取发酵[J].浙江大学学报(自然科学版),1992(04):
    22.杨立荣,朱自强,岑沛霖.丙酮/丁醇萃取发酵及动力学研究[J].高校化学工程学报,1992(04):346-351.
    23.陈声,陆祖祺.发酵法丙酮和丁醇生产技术[M].背景:化学工业出版社,1991.
    24. Griffith, W.L., A.L. Compere, J.M. Googin, et al. ENERGY ASPECTS OF NEUTRAL SOLVENTS BIOSYNTHESIS AND USE[C]. in:Miami Beach, FL, USA:Hemisphere Publ Corp,1983.377-384.
    25. Bahl, H., G Gottschalk. IMPROVEMENT OF THE CONTINUOUS ACETONE-BUTANOL-FERMENTATION BY CLOSTRIDIUM ACETOBUTYLICUM[C]. in:Munich, W Ger:Verlag Chemie,1984.81.
    26.张騊鹏.丙丁蒸馏工艺过程研究[D].天津:河北工业大学,2008.
    27. Chang, J., D.Y.C. Leung, C.Z. Wu, et al. A review on the energy production, consumption, and prospect of renewable energy in China[J]. Renewable and Sustainable Energy Reviews,2003.7(5):453-468.
    28.钱伯章.燃料乙醇的发展现状和趋势[J].节能与环保,2006(06):16-19.
    29. Qureshi, N., T.C. Ezeji. Butanol,'a superior biofuel' production from agricultural residues (renewable biomass): Recent progress in technology [J]. Biofuels, Bioproducts and Biorefining,2008.2(4):319-330.
    30. Wen, F., N.U. Nair, H. Zhao. Protein engineering in designing tailored enzymes and microorganisms for biofuels production[J]. Current Opinion in Biotechnology,2009.20(4):412-419.
    31. Sherwood, J. New DOE centers for biofuels genomics research[J]. Industrial Bioprocessing,2006.28(9):4.
    32. Marlatt, J.A., R. Datta. ACETONE-BUTANOL FERMENTATION PROCESS DEVELOPMENT AND ECONOMIC EVALUATION[C]. in:Seattle, WA, USA:AIChE,1985.34fp-34fp.
    33. Buchanan R.E, Gibbons N.E.伯杰细菌鉴定手册[M].中国科学院微生物研究所《伯杰细菌鉴定手册》翻译组译出版:科学出版社,1984.
    34. Qureshi, N., B.C. Saha, R.E. Hector, et al. Butanol production from wheat straw by simultaneous saccharification and fermentation using Clostridium beijerinckii:Part I-Batch fermentation[J]. Biomass and Bioenergy,2008.32(2):168-175.
    35. Varga, E., Z. Kadar, K.C. Schuster, et al. Possible substrates for acetone-butanol and ethanol fermentation based on organic by-products [J]. Hungarian Journal of Industrial Chemistry,2002.30(1):19-25.
    36. Tashiro, Y., K. Takeda, G Kobayashi, et al. High butanol production by Clostridium saccharoperbutylacetonicum N1-4 in fed-batch culture with pH-stat continuous butyric acid and glucose feeding method[J]. Journal of Bioscience and Bioengineering,2004.98(4):263-268.
    37. Tashiro, Y., K. Takeda, G. Kobayashi, et al. High production of acetone-butanol-ethanol with high cell density culture by cell-recycling and bleeding[J]. Journal of Biotechnology,2005.120(2):197-206.
    38. Qureshi, N., B.C. Saha, M.A. Cotta. Butanol production from wheat straw by simultaneous saccharification and fermentation using Clostridium beijerinckii:Part Ⅱ-Fed-batch fermentation[J]. Biomass and Bioenergy,2008. 32(2):176-183.
    39. Qureshi, N., B.C. Saha, M.A. Cotta. Butanol production from wheat straw hydrolysate using Clostridium beijerinckii [J]. Bioprocess and Biosystems Engineering,2007.30(6):419-427.
    40. Ni, Y, Z. Sun. Recent progress on industrial fermentative production of acetone-butanol-ethanol by Clostridium acetobutylicum in China[J]. Applied Microbiology and Biotechnology,2009.83(3):415-423.
    41. Kobayashi, G., K. Eto, Y Tashiro, et al. Utilization of excess sludge by acetone-butanol-ethanol fermentation employing Clostridium saccharoperbutylacetonicum Nl-4 (ATCC 13564)[J]. Journal of Bioscience and Bioengineering,2005.99(5):517-519.
    42. Gheshlaghi, R., J.M. Scharer, M. Moo-Young, et al. Metabolic pathways of clostridia for producing butanol[J]. Biotechnology Advances,2009.27(6):764-781.
    43. Liang, H., L. Chen, F. Bai. Optimized culture medium and fermentation conditions for acetone-butanol-ethanol (ABE) production by Clostridicum acetobutylicum ATCC824[J]. Journal of Biotechnology,2008. 136(Supplement 1):S340-S340.
    44.钱伯章.Diesel Brewing公司将从生物质和粪肥制取纤维素生物丁醇[J].精细石油化工进展,2009(04):35.
    45.李乃强,石孔泉,邱勇隽.一种生产生物丁醇的方法[P].中国,发明专利,CN101333545.2008
    46.王正品,李立强,谢萍.一种生产制备生物燃料丁醇的方法[P].中国,发明专利,CN101434968.2009
    47.王燕飞.以木薯为原料制取燃油生物丁醇的方法[P].中国,发明专利,CN101165188.2008
    48.阎立峰,朱清时.以生物质为原材料的化学化工[J].化工学报,2004(12):1938-1943.
    49. Gutierrez, N.A., I.S. Maddox, K.C. Schuster, et al. Strain comparison and medium preparation for the acetone-butanol-ethanol (ABE) fermentation process using a substrate of potato[J]. Bioresource Technology, 1998.66(3):263-265.
    50. Yang, Y, M.R. Ladisch, C.M. Ladisch. Alcohol adsorption on soflwood lignin from aqueous solutions[J]. Biotechnology and Bioengineering,1990.35(3):268-278.
    51. Yang, X., G.T. Tsao. Enhanced acetone-butanol fermentation using repeated fed-batch operation coupled with cell recycle by membrane and simultaneous removal of inhibitory products by adsorption[J]. Biotechnology and Bioengineering,1995.47(4):444-450.
    52. Qureshi, N., M.M. Meagher, R.W. Hutkins. Recovery of butanol from model solutions and fermentation broth using a silicalite/silicone membrane[J]. Journal of Membrane Science,1999.158(1-2):115-125.
    53. Ezeji, T.C., N. Qureshi, H.P. Blaschek. Bioproduction of butanol from biomass:from genes to bioreactors[J]. Current Opinion in Biotechnology,2007.18(3):220-227.
    54. Ezeji, T.C., N. Qureshi, H.P. Blaschek. Continuous butanol fermentation and feed starch retrogradation:Butanol fermentation sustainability using Clostridium beijerinckii BA101[J]. Journal of Biotechnology,2005.115(2): 179-187.
    55. Ezeji, T.C., P.M. Karcher, N. Qureshi, et al. Improving performance of a gas stripping-based recovery system to remove butanol from Clostridium beijerinckii fermentation[J]. Bioprocess and Biosystems Engineering,2005. 27(3):207-214.
    56. Ezeji, T., N. Qureshi, H.P. Blaschek. Butanol production from agricultural residues:Impact of degradation products on Clostridium beijerinckii growth and butanol fermentation[J]. Biotechnology and Bioengineering, 2007.97(6):1460-1469.
    57. Ezeji, T., N. Qureshi, H.P. Blaschek. Production of acetone-butanol-ethanol (ABE) in a continuous flow bioreactor using degermed corn and Clostridium beijerinckii[J]. Process Biochemistry,2007.42(1):34-39.
    58. Ishizaki, A., S. Michiwaki, E. Crabbe, et al. Extractive acetone-butanol-ethanol fermentation using methylated crude palm oil as extractant in batch culture of Clostridium saccharoperbutylacetonicum N1-4 (ATCC 13564)[J]. Journal of Bioscience and Bioengineering,1999.87(3):352-356.
    59. Qureshi, N., H.P. Blaschek. Production of acetone butanol ethanol (ABE) by a hyper-producing mutant strain of clostridium beijerinckii BA101 and recovery by pervaporation[J]. Biotechnology Progress,1999.15(4): 594-602.
    60. Qureshi, N., M.M. Meagher, J. Huang, et al. Acetone butanol ethanol (ABE) recovery by pervaporation using silicalite-silicone composite membrane from fed-batch reactor of Clostridium acetobutylicum[J]. Journal of Membrane Science,2001.187(1-2):93-102.
    61. Huang, J., M.M. Meagher. Pervaporative recovery of n-butanol from aqueous solutions and ABE fermentation broth using thin-film silicalite-filled silicone composite membranes[J]. Journal of Membrane Science,2001. 192(1-2):231-242.
    62. Liu, F., L. Liu, X. Feng. Separation of acetone-butanol-ethanol (ABE) from dilute aqueous solutions by pervaporation[J]. Separation and Purification Technology,2005.42(3):273-282.
    63.程能林.溶剂手册[M].北京:化学工业出版社,2002.
    64.蒋维钧.化工原理[M].北京:清华大学出版社,2003.
    65. Strathmann, H. Membrane separation processes:Current relevance and future opportunities[J]. AIChE Journal, 2001.47(5):1077-1087.
    66. Koros, W.J. Looking backward and forward[J]. Journal of Membrane Science,2002.200(1-2):1-2.
    67. Kim, J.H., W.J. Koros, D.R. Paul. Physical aging of thin 6FDA-based polyimide membranes containing carboxyl acid groups. Part Ⅰ. Transport properties [J]. Polymer,2006.47(9):3094-3103.
    68. Damle, S., W.J. Koros. "Sorp-vection":An unusual membrane-based separation[J]. AIChE Journal,2005.51(5): 1396-1404.
    69.于品华,常志东,金声超,et al.液-液萃取及新型液-液-液三相萃取机理研究进展[J].化工进展,2009(09):1507-1512.
    70.管国峰,赵汝溥.化工原理[M].北京:化学工业出版社,2003.
    71.姚玉英.化工原理[M].天津:天津科学技术出版社,1992.
    72.刘家祺.传质分离过程[M].北京:高等教育出版社,2005.
    73.陈敏恒.化工原理[M].北京:化学工业出版社,2006.
    74. Gong, X., Y. Lu, Z. Qian, et al. Preparation of uniform microcapsules containing 1-octanol for caprolactam extraction[J]. Industrial and Engineering Chemistry Research,2009.48(9):4507-4513.
    75. Liu, J., M. Wang, M. Wu, et al. Simulation study of the process for producing butanol from corn fermentation[C]. in:Salt Lake City, UT, United states:American Institute of Chemical Engineers,2007.
    76. Fahrenkamp-Uppenbrink, J., P. Szuromi, J. Yeston, et al. Theoretical Possibilities[J]. SCIENCE,2008. 321(5890):783.
    77. Rupar, P.A., V.N. Staroverov, K.M. Baines. A Cryptand-Encapsulated Germanium(II) Dication[J]. Science,2008. 322(28):1360-1363.
    78. Rebeiz, M., J.E. Pool, V.A. Kassner, et al. Stepwise Modification of a Modular Enhancer Underlies Adaptation in a Drosophila Population [J]. Science,2009.326(18):1663-1667
    79. Hong, J.-W, D.A. Hendrix, M.S. Levine. Shadow Enhancers as a Source of Evolutionary Novelty [J]. Science, 2008.321(5):468-469.
    80. Roberts, R.M., G.W. Smith, F.W Bazer, et al. Farm Animal Research in Crisis [J]. Science,2009.324(24): 468-469
    81. Lu, P., Z. Werb. Patterning Mechanisms of Branched Organs [J]. Science,2008.322(5):1506-1509
    82. Maier, T., M. Leibundgut, N. Ban. The Crystal Structure of a Mammalian Fatty Acid Synthase [J]. Science,2008. 321(5):1315-1322
    83. Chan, Y.F., M.E. Marks, F.C. Jones, et al. Adaptive Evolution of Pelvic Reduction in Sticklebacks by Recurrent Deletion of a Pitxl Enhancer [J]. Science,2010.327(15):302-305.
    84. Ishii, K., Y. Ogiyama, Y. Chikashige, et al. Heterochromatin Integrity Affects Chromosome Reorganization After Centromere Dysfunction [J]. Science,2008.321(22):1088-1091
    85. Truhlar, D.G. Molecular Modeling of Complex Chemical Systems[J]. Journal of the American Chemical Society 2008.130(50):16824-16827.
    86.周安,罗光熹.HYSIM软件模拟天然气加工工艺流程的研究(Ⅰ):—系统中无循环物流[J].天然气工业,1992.12(002):71-74.
    87.周安,罗光熹.HYSIM软件模拟天然气加工工艺流程的研究(Ⅱ):—含循环物流系统[J].天然气工业,1992.12(003):83-86.
    88.周平,柴天佑,陈通文.工业过程运行的解耦内模控制方法[J].自动化学报,2009(10):1362-1368.
    89.徐有宁,李敬,宋文立.解耦燃煤工艺气化室流动模拟[J].沈阳工程学院学报(自然科学版),2005(01):22-25.
    90.刘兆飞,任庆昌,张巍.基于模糊解耦算法的电石炉控制系统设计[J].工业加热,2006(06):32-33+46.
    91.李正坤,张钟华,韩冰,et al.解耦技术在精密控温中的应用[J].现代测量与实验室管理,2006(03):3-6.
    92.张光新,周泽魁.烧碱蒸发过程的解耦控制[J].仪器仪表学报,2004(S2):677-678+687.
    93.田亚峻,陈运法.一种由烃类气体制备合成气的工艺[P].中国,发明专利,2008
    94.王继韶,李颖.常用实验设计与优化方法及其在发酵实验中的应用[J].实验室科学,2007(01):60-62.
    95.薛毅.最优化原理与方法[M].北京:北京工业大学出版社,1989.
    96.孙德敏.工程最优化方法及应用[M[合肥:中国科技大学出版社,1991.
    97.王子若,陈永昌.优化计算方法[M[.北京:机械工业出版社,1989.
    98.任洪湘.优选法在夫兰克—赫兹实验中的应用[J].西南师范学院学报(自然科学版),1984(02):78-81.
    99.黎传.优选法在不锈钢切削加工中的应用[J].桂航学术研究,1998(03):16-19.
    100.吴沧浦.随机对象的优选法[J].应用数学学报,1979(03):197-205.
    101. Damartzis, T., P. Seferlis. Optimal design of staged three-phase reactive distillation columns using nonequilibrium and orthogonal collocation models[J]. Industrial and Engineering Chemistry Research,2010. 49(7):3275-3285.
    102. Adams, S.S., N. Karst, M.K. Murugan. The final case of the decoding delay problem for maximum rate complex orthogonal designs[J]. IEEE Transactions on Information Theory,2009.56(1):103-112.
    103. Sirianunpiboon, S., Y. Wu, A.R. Calderbank, et al. Fast optimal decoding of multiplexed orthogonal designs by conditional optimization[J]. IEEE Transactions on Information Theory,2009.56(3):1106-1113.
    104. Samardzija, M., J. Hirokawa, M. Ando. Design of narrow wall windows in a waveguide to feed partially-dielectric- filled oversized-rectangular waveguide based on 2-dimensional analyses of two orthogonal directions[C]. in:P.O. Box 247, Nihonbashi, Tokyo,103-8691, Japan:Maruzen Co., Ltd.,2010.871-878.
    105.倪恒,刘佑荣,龙治国.正交设计在滑坡敏感性分析中的应用[J].岩石力学与工程学报,2002(07):989-992.
    106.彭学军,李庆阁,许金钩,陈国珍.正交设计—流动注射荧光光谱分析法研究:过氧化物酶测定体系选择和反应机理[J].厦门大学学报(自然科学版),1995(03):
    107.安登魁,段.A.相.A.盛.A.吴.A.正交设计—单纯形组合优化方法及其在复方降压片分析中的应用[J].药学学报,1987(10):761-768.
    108.廖森,陈超球.均匀设计在化学化工优化计算中的应用[J].广西师院学报(自然科学版),1996(04):
    109.张建军,张应山,茆诗松.均匀设计的等价原则及其构作[J].河南师范大学学报(自然科学版),2004(02):9-14.
    110. Liang, Y.-z., K.-t. Fang, Q.-s. Xu. Uniform design and its applications in chemistry and chemical engineering [J]. Chemometrics and Intelligent Laboratory Systems,2001.58(1):43-57.
    111.闫平凡,张长水.人工神经网络与模拟进化计算[M].2.北京:清华大学出版社,2005.
    112. Blasco, J.A., N. Fueyo, J.C. Larroya, et al. A single-step time-integrator of a methane-air chemical system using artificial neural networks[J]. Computers & Chemical Engineering,1999.23(9):1127-1133.
    113. Basu, B., M.P. Singh, G.S. Kapur, et al. Prediction of biodegradability of mineral base oils from chemical composition using artificial neural networks[J]. Tribology International,1998.31(4):159-168.
    114. Jorjani, E., S. Chehreh Chelgani, S. Mesroghli. Application of artificial neural networks to predict chemical desulfurization of Tabas coal[J]. Fuel,2008.87(12):2727-2734.
    115. Shao, P., S.T. Jiang, Y.J. Ying. Optimization of Molecular Distillation for Recovery of Tocopherol from Rapeseed Oil Deodorizer Distillate Using Response Surface and Artificial Neural Network Models[J]. Food and Bioproducts Processing,2007.85(2):85-92.
    116. Liau, L.C.-K., T.C.-K. Yang, M.-T. Tsai. Expert system of a crude oil distillation unit for process optimization using neural networks[J]. Expert Systems with Applications,2004.26(2):247-255.
    117. Zamprogna, E., M. Barolo, D.E. Seborg. Composition Estimations in a Middle-Vessel Batch Distillation Column Using Artificial Neural Networks[J]. Chemical Engineering Research and Design,2001.79(6): 689-696.
    118. Box G. E.P., W.K. B. On the experimental attainment of optimum condition[J]. J. Roy. Stat. Soc. B.,,1951(13): 1-20.
    119. Yu, L., T. Lei, X. Ren, et al. Response surface optimization of 1-(+)-lactic acid production using corn steep liquor as an alternative nitrogen source by Lactobacillus rhamnosus CGMCC 1466[J]. Biochemical Engineering Journal,2008.39(3):496-502.
    120. Sarabia, L.A., M.C. Ortiz, D.B. Stephen, et al., Response Surface Methodology, in Comprehensive Chemometrics.2009, Elsevier:Oxford.p.345-390.
    121. Khattar, J.I.S., Shailza. Optimization of Cd2+ removal by the cyanobacterium Synechocystis pevalekii using the response surface methodology [J]. Process Biochemistry,2009.44(1):118-121.
    122. Goswami, D., R. Sen, J.K. Basu, et al. Maximization of bioconversion of castor oil into ricinoleic acid by response surface methodology [J]. Bioresource Technology,2009.100(18):4067-4073.
    123. Mune Mune, M.A., S.R. Minka, I.L. Mbome. Response surface methodology for optimisation of protein concentratepreparation from cowpea [Vigna unguiculata (L.) Walp][J]. Food Chemistry,2008.110(3):735-741.
    124. Iyer, P., R.S. Singhal. Production of glutaminase (E.C.3.2.1.5) from Zygosaccharomyces rouxii:Statistical optimization using response surface methodology [J]. Bioresource Technology,2008.99(10):4300-4307.
    125.朱劲松,肖汝诚.结构可靠度分析的人工智能响应面法及程序[J].哈尔滨工业大学学报,2009(04):
    126.张宗科,唐文勇,张圣坤.在ANSYS中开发用响应面法求解结构可靠度的专用程序[J].船舶力学,2007(01):
    127. Chang, H., J.-S. Liau, C.-D. Ho, et al. Simulation of membrane distillation modules for desalination by developing user's model on Aspen Plus platform[J]. Desalination,2009.249(1):380-387.
    128. Khayet, M., C. Cojocaru, C. Garcia-Payo. Application of response surface methodology and experimental design in direct contact membrane distillation[J]. Industrial and Engineering Chemistry Research,2007.46(17): 5673-5685.
    129. Fregolente, L.V., C.B. Batistella, R.M. Filho, et al. Response surface methodology applied to optimization of distilled monoglycerides production[J]. JAOCS, Journal of the American Oil Chemists' Society,2005.82(9): 673-678.
    130. Chen, F., T. Cai, G. Zhao, et al. Optimizing conditions for the purification of crude octacosanol extract from rice bran wax by molecular distillation analyzed using response surface methodology [J]. Journal of Food Engineering,2005.70(1):47-53.
    131. Shao, P., J. He, P. Sun, et al. Process optimisation for the production of biodiesel from rapeseed soapstock by a novel method of short path distillation[J]. Biosystems Engineering,2009.102(3):285-290.
    132. Ito, V.M., C.B. Batistella, M.R.W. Maciel. A new methodology to eliminate FFA from SODD:Molecular distillation process[C]. in:Prague, Czech republic:Czech Society of Chemical Engineering,2006. Hexion Specialty Chemicals; Mitsubishi Chemical Corporation; CS Cabot; Zentiva; BorsodChem MCHZ.
    133. Yuan, X., J. Liu, G. Zeng, et al. Optimization of conversion of waste rapeseed oil with high FFA to biodiesel using response surface methodology[J]. Renewable Energy,2008.33(7):1678-1684.
    134. Rezzoug, S.A. Optimization of steam extraction of oil from maritime pine needles[J]. Journal of Wood Chemistry and Technology,2009.29(2):87-100.
    135. Wang, J., W Wan. Optimization of fermentative hydrogen production process by response surface methodology [J]. International Journal of Hydrogen Energy,2008.33(23):6976-6984.
    136. Yang, Z.-H., J. Huang, G-M. Zeng, et al. Optimization of flocculation conditions for kaolin suspension using the composite flocculant of MBFGA1 and PAC by response surface methodology [J]. Bioresource Technology, 2009.100(18):4233-4239.
    137. Tang, X.-J., G.-Q. He, Q.-H. Chen, et al. Medium optimization for the production of thermal stable [beta]-glucanase by Bacillus subtilis ZJF-1A5 using response surface methodology [J]. Bioresource Technology, 2004.93(2):175-181.
    138. Liew, S.L., A.B. Ariff, A.R. Raha, et al. Optimization of medium composition for the production of a probiotic microorganism, Lactobacillus rhamnosus, using response surface methodology [J]. International Journal of Food Microbiology,2005.102(2):137-142.
    139. Liu, C.-H., W.-B. Lu, J.-S. Chang. Optimizing lipase production of Burkholderia sp. by response surface methodology [J]. Process Biochemistry,2006.41(9):1940-1944.
    140. Liptakova, D., L. Valik, A. Laukova, et al. Characterisation of Lactobacillus rhamnosus VT1 and its effect on the growth of Candida maltosa YP1 [J]. Czech Journal of Food Sciences,2007.25(5):272-282.
    141. Liu, C.B., B. Hu, S.L. Chen, et al. Utilization of condensed distillers solubles as nutrient supplement for production of nisin and lactic acid from whey [J]. Applied Biochemistry and Biotechnology,2007.137:875-884.
    142. RH., M. Response Surface Methodology-Current Status and Future Direction[J]. J Quality Technol,1999(31): 30-44.
    143. Sampaio, F.C., D. De Faveri, H.C. Mantovani, et al. Use of response surface methodology for optimization of xylitol production by the new yeast strain Debaryomyces hansenii UFV-170[J]. Journal of Food Engineering, 2006.76(3):376-386.
    144. Myers RH, M. DC. Response Surface Methodology:Process and Product Optimization Using Designed Experiments[J].1995. New York:John Wiley & Sons.
    145. Chang, J.-S., Y.-B. Huang, S.-S. Hou, et al. Formulation optimization of meloxicam sodium gel using response surface methodology [J]. International Journal of Pharmaceutics,2007.338(1-2):48-54.
    146. Myers RH, Khuri AI, C. WH. Response surface methodology:1966-1988[J]. Technometrics,1989(31): 137-157.
    147.黄晴.八国峰会谈什么[N].人民日报海外版,2008-07-07
    148.方楠.八国峰会高调谈能源[N].中国电力报,2006-08-01
    149.胡锦涛.推进全面合作实现持续发展[N].人民日报,2007-09-07
    150.陈忠全,赵新良.节能减排过程的博弈分析[J].中国地质大学学报(社会科学版),2009(01):54-58.
    151.蒋以任.节能减排与可持续发展[J].动力工程学报,2010(01):1-4.
    152.牛桂敏.加大结构调整力度促进节能减排[J].经济界,2009(02):48-51.
    153.刘绍东.“节能减排”政策的执行研究[D].上海交通大学,2008.
    154.张刚刚,金凡.透过节能减排政策和制度看中国节能减排[J].武汉理工大学学报,2010(04):16-19.
    155.程意峰,李世杰,黄金鹏,et al.利用甜高粱秸秆汁发酵生产丁醇、丙酮[J].农业工程学报,2008(10):177-180.
    156.秦娅,刘德新,姜斌,et al.节能技术专栏[J]. CHEMICAL INDUSTRY AND ENGINEERING PROGRESS,2007.26(1):90.
    157.武昊宇,项曙光,韩方煜.多效精馏优化设计的研究进展[J].计算机与应用化学,2005.22(007):491-494.
    158.王葳,高维平.多效精馏流程的优化设计计算[J].计算机与应用化学,1996.13(004):282-288.
    159.朱平,梁燕波.热泵精馏的节能工艺流程分析[J].节能技术,2000.18(002):7-8.
    160.李春利,孙玉春,王志英,et al.新型立体传质塔板CTST的研究与开发进展[J].河北工业大学学报,2004.33(002):155-162.
    161.李群生.高效导向筛板在醋酸甲酯精馏塔技术改造中的研究与应用[J].化工进展,1997(005):27-29.
    162.邵之江,张余岳.面向方程联立求解的精馏塔模拟与优化一体化算法[J].化工学报,1997.48(001):46-51.
    163.王浩平,项曙光.间歇精馏过程模拟优化研究进展[J].计算机仿真,2004.21(02):4-6.
    164.陈钟秀,顾飞燕.化工热力学[M].化学工业出版社,1993.
    165.胡颉,佘守宪.范德瓦耳斯气液状态方程纵横谈[J].大学物理,2005.24(010):15-20.
    166.高崇伊,朱琴.雷德利克-邝方程[J].大学物理,2006.25(005):26-27.
    167. Robinson, D., D. Peng, S. Chung. The development of the Peng-Robinson equation and its application to phase equilibrium in a system containing methanol[J]. Fluid Phase Equilibria,1985.24(1-2):25-41.
    168. Stryjek, R., J. Vera. PRSV:An improved Peng-Robinson equation of state for pure compounds and mixtures[J]. The Canadian Journal of Chemical Engineering,2009.64(2):323-333.
    169. Soave, G An effective modification of the Benedict-Webb-Rubin equation of state[J]. Fluid Phase Equilibria, 1999.164(2):157-172.
    170.陈光明,尹执中.用改进的PT方程计算低温流体混合物的汽液平衡[J].低温物理学报,1996.18(005):381-387.
    171. Sim, W., T. Daubert. Prediction of vapor-liquid equilibria of undefined mixtures[J]. Industrial & Engineering Chemistry Process Design and Development,1980.19(3):386-393.
    172.刘国杰,黑恩成.van der Waals状态方程与溶液理论[J].大学化学,2007:
    173.王宜辰.Margules方程应用中的一个问题[J].烟台师范学院学报:自然科学版,1992.8(001):112-114.
    174. Renon, H., J. Prausnitz. Local compositions in thermodynamic excess functions for liquid mixtures[J]. AIChE Journal,1968.14(1):135-144.
    175.江振西.含盐部分混溶体系汽液平衡的关联[J].河南师范大学学报(自然科学版),1981:
    176. TSUBOKA, T., T. KATAYAMA. Modified Wilson equation for vapor-liquid and liquid-liquid equilibria[J]. Journal of Chemical Engineering of Japan,1975.8(3):181-187.
    177. Bruin, S., J. Prausnitz. One-parameter equation for excess Gibbs energy of strongly nonideal liquid mixtures[J]. Industrial & Engineering Chemistry Process Design and Development,1971.10(4):562-572.
    178. Langmuir, D. Uranium solution-mineral equilibria at low temperatures with applications to sedimentary ore deposits[J]. Geochimica et Cosmochimica Acta,1978.42(6):547-569.
    179. Tochigi, K., D. Tiegs, J. Gmehling, et al. Determination of new ASOG parameters [J]. Journal of Chemical Engineering of Japan,1990.23(4):453-463.
    180. Fredenslund, A., J. Gmehling, P. Rasmussen. Vapor-liquid equilibria using UNIFAC:a group contribution method[M]. Elsevier Science Ltd,1977.
    181.黄丽丽,肖亮,韦志辉,et al.空间移不变系统图像超分辨复原的快速解耦算法[J].自动化学报,2010(02):229-236.
    182.沈滢,郝荣泰.感应电机矢量控制解耦算法的研究[J].北方交通大学学报,2003(02):54-56+61.
    183.赵维兴,刘明波,陈灿旭.大规模电力系统离散无功优化问题的解耦算法[J].华南理工大学学报(自然科学版),2009(02):127-133+157.
    184.陈贶,申群太.一种智能操作票系统中解耦算法的研究[J].计算机测量与控制,2009(06):1195-1198+1208.
    185.姜萍,李遵基,梁伟平,et al.一种基于神经元的解耦控制算法[J].华北电力大学学报,2000(02):47-51.
    186.陈健翼,崔天祥,黄鸿斌,et al.浓度控制中的一种解耦算法[J].自动化技术与应用,2001(04):19-21.
    187. Chen, C. Linear system theory and design[M]. Saunders College Publishing Philadelphia, PA, USA,1984.
    188.史奇冰,郑逢春,李春喜,et al.用NRTL方程计算含离子液体体系的汽液平衡[J].化工学报,2005.56(005):751-756.
    189.刘永新,费德君.用NRTL方程预测部分互溶体系的汽液平衡[J].化学工业与工程,2002.19(003):238-240.
    190.王福宽,王洪海.一种可拆洗高速旋转喷头[P].中国,实用新型,ZL200920096164.2009
    191.王福宽,王洪海.一种旋转喷淋装置[P].中国,实用新型,ZL200920096016.2009
    192.GB21904-2008[S],2008,化学合成类制药工业水污染物排放标准.环境保护部国家质量监督检验检疫总局2008.
    193.王洪海,李春利,王荣良,et al.发酵法溶剂生产中醪塔的节能减排模拟[J].现代化工,2009(06):63-65.
    194.赵栋,龚涛,梁湖沂,et al.星点设计-效应面优化法优化注射用Cheliensisin A冻干乳剂[J].华西药学杂志,2007.22(003):275-279.
    195. Achanta AS, Kowalski JG, Rhodes CT. Artificial neural networks:Implications for pharmaceutical sciences[J]. Drug Dev Ind Pharm.,1995.21:119-155.
    196.梁艳迁,赵震,吴彦骏,et al.基于响应面的多工位锻造工艺优化[J].上海交通大学学报,2009(05):713-716+721.
    197.李相,刘云,杨江科.基于响应面设计脂肪酶Novo435催化合成甘油二酯的工艺优化[J].生物加工过 程,2009.7(005):13-18.
    198.程新,魏赛金,李汉广,et al.采用响应面设计法优化光合细菌培养基[J].江西科学,2006(06):
    199.江元翔,高淑红,陈长华.响应面设计法优化腺苷发酵培养基[J].华东理工大学学报,2005(03):
    200. Wang, C.-H., Q.-L. Chen, B. Hua, et al. Process simulation and enlarged capacity analysis of main fractionation column in delayed coking unit[J]. Huanan Ligong Daxue Xuebao/Journal of South China University of Technology (Natural Science),2006.34(12):110-114.
    201. Wang, B., T. Ezeji, Z. Shi, et al. Production of acetone-butanol-ethanol (ABE) with distiller's dried grains with solubles[C]. in:Providence, RI, United states:American Society of Agricultural and Biological Engineers,2008. 582-592.
    202. Qureshi N, S.B.C., Cotta M A. Butanol Production from Wheat Straw by Simultaneous Saccharification and Fermentation using Clostridium Beijerinckii:Part Ⅱ-Fed-batch Fermentation[J]. Biomass & Bioenergy,2008. 32(2):176-183.
    203. Liu Fangfang, L.L., Feng Xianshe. Separation of Acetone-Butanol-Ethanol (ABE) from Dilute Aqueous Solutions by Pervaporation[J]. Sep Purif Technol,2005.42(3):273-282.
    204. Al-Muslim, H., I. Dincer, S.M. Zubair. Exergy analysis of single- and two-stage crude oil distillation units[J]. Journal of Energy Resources Technology, Transactions of the ASME,2003.125(3):199-207.
    205.北京燕化石油化工股份有限公司化工二厂.GB/T 6026-1998[S],1998,工业丙酮北京:国家质量技术监督局,1998.
    206.吉林化学工业股份有限公司.GB/T 6027-1998[S],1998,工业正丁醇.北京:国家质量技术监督局,1998.
    207.哈尔滨酒精一厂.GB/T 394.1-2008[S],2008,工业酒精.北京:国家技术监督局,2008.
    208. Julka, V., M.F. Doherty. Geometric behavior and minimum flows for nonideal multicomponent distillation [J]. Chemical Engineering Science,1990.45(7):1801-1822
    209. Rafiqul, G., B.-P.Erik. Simple New Algorithm for Distillation Column Design[J]. AIChE Journal,2000.46(6): 1271-1274.
    210.荣本光.多组分复杂精馏流程的简捷设计法[J].化学工程,1998.26(1):18-24.
    211. Billingsley, D. On the numerical solution of problems in multicomponent distillation at the steady state Ⅱ[J]. AIChE Journal,2008.16(3):441-445.
    212. Billingsley, D. On the equations of holland in the solution of problems in multicomponent distillation[J]. IBM Journal of Research and Development,1970.14(1):33-40.
    213. Goldstein, R., R. Stanfield. Flexible method for the solution of distillation design problems using the Newton-Raphson technique[J]. Industrial & Engineering Chemistry Process Design and Development,1970. 9(1):78-84.
    214. Shewchuk, C. EXTENSION OF THE QUASI-LINEAR METHOD FOR NON-IDEAL DISTILLATION CALCULATIONS[J]. Chemical Engineering Research and Design,1977.55(a):130-136.
    215. Tavana, M., D. Hanson. The Exact Calculation of Minimum Flows in Distillation Columns [J]. Industrial & Engineering Chemistry Process Design and Development,1979.18(1):154-156.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700