用户名: 密码: 验证码:
多粘类芽孢杆菌和海洋芽孢杆菌可湿性粉剂的研制及其加工工艺的优化与放大
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
可湿性粉剂是我国微生物农药剂型的主要种类,但有关微生物农药可湿性粉剂配方及其加工工艺优化与放大方面的研究鲜有报道。具有我国自主知识产权的可以防治多种植物土传病害的多粘类芽孢杆菌细粒剂,是国内外唯一以类芽孢杆菌属菌株为生防菌的微生物农药,但由于使用不方便而难以大面积推广;此外,海洋微生物农药的研制尚未见报道,而以海洋芽孢杆菌为有效成分的微生物农药却具有广阔的应用前景,因此,针对这两种微生物农药,亟待开展可湿性粉剂研制与产业化方面的研究。
     本文以多粘类芽孢杆菌HY96-2和海洋芽孢杆菌B-9987为研究对象,在可湿性粉剂配方、粉碎、喷雾干燥以及多粘类芽孢杆菌抗菌物质的分离纯化等方面开展了较为系统的研究,建立了多粘类芽孢杆菌可湿性粉剂工业化生产工艺和海洋芽孢杆菌可湿性粉剂中试生产工艺。研究结果不仅为国内外首创的多粘类芽孢杆菌可湿性粉剂及海洋芽孢杆菌可湿性粉剂的产业化提供了技术依托,同时也可为其它微生物农药可湿性粉剂的创制与产业化提供参考。
     悬浮率是可湿性粉剂最重要的性质之一,但悬浮率较低曾是多粘类芽孢杆菌可湿性粉剂产业化的瓶颈。研究结果表明,气流粉碎和添加表面活性A可以协同提高多粘类芽孢杆菌可湿性粉剂M-1000-P1(载体M-1000和工厂多粘类芽孢杆菌HY96-2发酵液P1混合干燥后所得制剂)的悬浮率。另一方面,气流粉碎过程中M-1000-P1活菌含量没有受到明显影响,而表面活性剂A与多粘类芽孢杆菌HY96-2之间的生物相容性明显好于表面活性剂EFW(?)、D425(?)、十二烷基苯磺酸钠和茶皂素。以5%的比例添加表面活性剂A可使M-1000-P1气流粉碎制剂的悬浮率从58.3%提高到81.1%。
     在进风口温度为210-230℃、出风口温度为80~90℃的范围内,多粘类芽孢杆菌可湿性粉剂在小型干燥塔(最大水蒸发量5kg/h)、中型干燥塔(最大水蒸发量50kg/h)和大型干燥塔(最大水蒸发量800kg/h)上具有相同的干燥规律:制剂活菌存活率均大于75%,含水量均小于5%,表明小型或中型喷雾干燥塔中多粘类芽孢杆菌可湿性粉剂干燥工艺成功放大到工业生产规模。此外,在相同的粉碎条件(气流压力0.8MPa,粉碎腔温度为常温)下,多粘类芽孢杆菌可湿性粉剂的气流粉碎过程可成功地从小试规模(5kg/h)放大到工业规模(50kg/h)。在上述干燥和粉碎研究结果基础上,建立了多粘类芽孢杆菌可湿性粉剂工业化生产工艺,产品的活菌含量(2.1×109CFU/g)、水含量(3%)、润湿时间(95秒)、悬浮率(76.1%)和细度(100%通过325目筛)等指标均达到农药可湿性粉剂的质量要求,并且该产品对番茄青枯病、西瓜枯萎病、黄瓜细菌性角斑病和西瓜炭疽病的田间防效分别为91.66%、83.75%、81.14%和77.01%,表明它是一种广谱性植病生防微生物农药。
     进一步研究结果表明,多粘类芽孢杆菌HY96-2多糖粗提物可以明显提高高岭土、M和N这3种载体的悬浮率,且对多粘类芽孢杆菌芽孢具有热保护和紫外保护功能。据此,本文提出利用多粘类芽孢杆菌多糖提高其可湿性粉剂悬浮率,并将多糖作为制剂热保护和紫外保护助剂的策略。利用多糖助悬浮作用和新发现的助剂S改善制剂润湿性的作用,对多粘类芽孢杆菌可湿性粉剂配方重新进行了筛选,并首次将混料实验设计运用于微生物农药可湿性粉剂的配方优化,进而建立了多粘类芽孢杆菌可湿性粉剂新的配方和加工工艺,所加工出的可湿性粉剂的润湿时间(99秒)和悬浮率(71.7%)均达到农药可湿性粉剂要求。新工艺省去粉碎操作单元,可大幅降低生产成本。
     杀镰孢菌素(fusaricidin)是多粘类芽孢杆菌菌株产生的一种抗真菌脂肽类物质。本文首次从商业化菌株——多粘类芽孢杆菌HY96-2代谢产物中分离得到杀镰孢菌素A(fusaricidin A),并发现其对盆栽中的黄瓜灰霉病具有较好防治效果:浓度为250μg/ml和62.5μg/ml的杀镰孢菌素A对黄瓜灰霉病的防治效果分别为95.0%和63.3%,明显好于对照药剂嘧霉胺。上述研究结果为将多粘类芽孢杆菌制剂中代谢产物抑菌活性或抗生素含量作为一项新的质量控制指标奠定了基础。
     海洋芽孢杆菌可湿性粉剂配方研究结果表明,载体N有利于该制剂悬浮率的提高,而高岭土则会延长其润湿时间;有机硅与海洋芽孢杆菌B-9987之间的生物相容性较好并可以提高海洋芽孢杆菌可湿性粉剂(以N为载体)的悬浮率。干燥研究结果表明,小型喷雾干燥塔生产工艺可成功地放大至中型喷雾干燥塔;当中型干燥塔进风口温度为230℃,出风口温度在80~90℃时,海洋芽孢杆菌可湿性粉剂的活菌存活率高于70%,含水量低于5%。在上述研究结果基础上,建立了海洋芽孢杆菌B-9987可湿性粉剂中试生产工艺,产品的活菌含量(1.5×1010CFU/g)、水含量(3.5%)、润湿时间(56秒)、悬浮率(84.4%)和细度(100%通过325目筛)等指标均达到农药可湿性粉剂质量要求,并且该产品对番茄青枯病和甜瓜炭疽病的防效分别为74.42%和63.31%,表明其在植物病害防治方面具有广阔的应用前景。
Wettable powder is the main type of microbial pesticide formulations in China. However, fewer studies were reported about the formulation, process optimization and scale up in microbial pesticide. Paenibacillus polymyxa fine granular (PPFG) formulation, with independent intellectual property rights in China, is the first microbial pesticide developed by Paenibacillus strain. PPFG can control many soilborne diseases; however, the large-scale application of PPFG is limited because of its inconveniences. In addition, although there is little study about microbial pesticide with marine microorganisms as biocontrol agents, Bacillus marinus B-9987 has broad application prospects as microbial pesticide. So studies about the preparation and industrial production of P. polymyxa and B. marinus microbial pesticide should be carried out urgently.
     With P. polymyxa and B. marinus as study objectives, formulation, milling, spray-drying of microbial pesticide wettable powder were investigated systematically in this paper, and antifungal substance of P. polymyxa was also investigated. Industrial production processes of P. polymyxa wettable powder and pilot production processes of B. marinus wettable powder were established together. The results in the paper not only provided technical support for the industrialization of P. polymyxa and B. marinus wettable powder, but also provided reference for other microbial pesticide.
     Suspensibility is an important property of wettable powder and poor suspensibility of P. polymyxa wettable powder had hindered its industrial production in larger scale. It was showed that jet milling and surfactant A could synergistically improve the suspensibility of P. polymyxa wettable powder M-1000-P1 (prepared by spray-drying the mixture of carrier M-1000 and P. polymyxa HY96-2 broth from factory). On the other hand, no obvious adverse effect of jet milling on P. polymyxa population in powder was observed. Besides, surfactant A has better biocompatibility than those of EFW(?), D-425(?), sodium dodecyl benzene sulfonate or tea saponin. When jet milling powder was added with surfactant A at 5%(w:w), its suspensibility was improved from 58.3% to 81.1%.
     When P. polymyxa wettable powder was spray-dried at small (maximum water evaporation of 5kg/h), medium (maximum water evaporation of 50kg/h) or large dryer (maximum water evaporation of 800kg/h) with inlet temperature 210~230℃and outlet temperature 80~90℃, bacteria survival rate above 75% and moisture content below 5% were obtained. It implies that the spray-drying process of P. polymyxa at small and medium dryer can be scaled up to production scale. On the other hand, jet milling process at laboratory scale (5kg/h) was successfully scaled up to production scale (50kg/h) under the same condition (air pressure was 0.8Mpa and grinding chamber was at room temperature). Thus, the preparation process of P. polymyxa wettable powder in production scale was established. The product has good quality properties with bacteria population of 2.1×109CFU/g, moisture content of 3%, wetting time of 95 seconds, suspensibility of 76.1% and fineness that all particles could pass through a 325-mush sieve. All the properties meet the requirements of pesticide wettable powder in China. P. polymyxa wettable powder had good control efficacies on tomato bacteria wilt (91.66%), watermelon fusarium wilt (83.75%), angular leaf spot of cucumber (81.14%) and watermelon anthracnose (77.01%), respectively, which indicates that P. polymyxa wettable powder is a microbial pesticide with broad control spectrum to plant diseases.
     Furthermore, P. polymyxa polysaccharide extract (PPPE) has obvious suspensibility improving effect on carrier kaolin clay, M-1000 and N-1000. In addition, PPPE has protective effect for P. polymyxa spores from heat and ultraviolet (UV). Based on the above results, a strategy, improving the suspensibility of P. polymyxa wettable powder and heat or ultraviolet stability of P. polymyxa spore by PPPE, was developed. Using the suspensibility improving effect of PPPE and wettability improving effect of adjuvant S, the components of P. polymyxa wettable powder were rescreened and further optimized with mixed experiment design. Then, a new formulation and preparation process were developed which had low producing cost because milling was no longer needed. The new product has eligible wettability (99 seconds of wetting time) and suspensibility (71.7%).
     Fusaricidin is a kind of lipopeptide produced by many P. polymyxa strains. Fusaricidin A was firstly obtained from a commercial strain—P. polymyxa HY96-2. Fusaricidin A has good control effect on gray mold of cucumber:250μg/ml and 62.5μg/ml of fusaricidin A had control effect of 95.0% and 63.3%, which were better than those of pyrimethanil (one chemical pesticide as control). The results of fusaricidin A indicate that the inhibition activity or antibiotic content of P. polymyxa formulation could be considered as a new product quality control indicator.
     B. marinus B-9987 formulation with carrier of N-1000 had better suspensibility and B-9987 formulation with carrier of kaolin clay had worse wettability. Organosilicon had better biocompatibility with B. marinus B-9987 and could improve the suspensibility of B. marinus B-9987 powder formulation (N as carrier). The spray-drying process at laboratory scale could be scaled up to pilot scale. When B. marinus wettable powder was spray-dried at medium dryer with inlet temperature at 230℃and outlet temperature 80~90℃, bacteria survival rate above 70% and moisture content below 5% were obtained. Then, pilot production process of B-9987 wettable powder was established and the product had a eligible quality performance with bacteria population of 1.5×1010CFU/g, moisture content of 3.5%, wetting time of 56 seconds, suspensibility of 84.4% and fineness that all particles could pass through a 325-mush sieve. The field incidence control efficacies of B. marinus powder on tomato bacterial wilt and melon anthracnose were 74.42% and 63.31%, respectively, which suggests that B. marinus wettable powder has broad application prospect in plant disease control.
引文
[1]农药登记资料规定.中华人民共和国农业部.农药管理政策实用手册,中国农业大学出版社,2007年,125-200
    [2]王以燕,袁善奎,李富根.微生物农药登记管理.农药.2009,18:79-95
    [3]Zhu Y Z, Qiang S. Isolation, pathogenicity and safety of Curvularia eragrostidis isolate QZ-2000 as a bioherbicide agent for large crabgrass (Digitaria sanguinalis). Biocontrol Science and Technology.2004,14:769-782
    [4]Boyette C D, Hoagland R E, Abbas H K. Evaluation of the bioherbicide Myrothecium verrucaria for weed control in tomato (Lycopersicon esculentum). Biocontrol Science and Technology.2007,17:171-178
    [5]Babu R M, Sajeena A, Seetharaman K. Bioassay of the potentiality of Alternaria alternata (Fr.) keissler as a bioherbicide to control waterhyacinth and other aquatic weeds. Crop Protection.2003,22:1005-1013
    [6]Ash G J. The science, art and business of successful bioherbicides. Biological Control. 2010,52:230-240
    [7]杨丽荣,全鑫,刘玉霞,等.农用微生物杀菌剂研究进展.河南农业科学,2009(9):131-134
    [8]周燚,王忠康,喻子牛.主编.微生物农药研发与应用.2006,化学工业出版社,北京,75-125
    [9]Burges, Jones. (Eds.) Formulation of Microbial Biopesticides.1998(a), Kluwer Academic Publishers,188-200
    [10]王灿华,祝新德,许煜泉.假单胞菌株M18分泌羧基吩嗪抑制黄瓜枯萎病害.上海交通大学学报.2000,34:1574-1578
    [11]Fravel D R. Commercialization and implementation of biocontrol. Annual Review of Phytopathology.2005,43:337-359
    [12]Emmert E A, Handelsman J. Biocontrol of plant disease:a (Gram-) positive perspective. FEMS Microbiology Letters.1999,171:1-9
    [13]罗远婵.多粘类芽孢杆菌HY96-2及其系列微生物农药的药效研究和海洋芽孢杆菌B-9987室内药效及初步生防机制研究.华东理工大学,2008年,博士后研究工作报告
    [14]Burges, Jones. (Eds.) Formulation of Microbial Biopesticides.1998(b), Kluwer Academic Publishers,1-3
    [15]Couch T L, Ignoffo C M. Formulation of insect pathogens, in:Microbial control of pests and plant diseases 1970-1980 (ed. H. D. Burge). Academic Press, London,1981, 621-634
    [16]中国农药信息网有效成分查询[2010-12-08]. http://www.chinapesticide.gov.cn/
    [17]Srinivasan K, Mathivanan N. Biological control of sunflower necrosis virus disease with powder and liquid formulations of plant growth promoting microbial consortia under field conditions. Biological Control.2009,51:395-402
    [18]Sallam N, Abd Elrazik A A, Hassan M, et al. Powder formulations of Bacillus subtilis, Trichoderma spp and Coniothyrium minitans for biocontrol of Onion White Rot. Archives of Phytopathology and Plant Protection.2009,42:142-147
    [19]Nayaka S C, Shankar A C U, Reddy M S, et al. Control of Fusarium verticillioides, cause of ear rot of maize, by Pseudomonas fluorescens. Pest Management Science. 2009,65:769-775
    [20]Ardakani S S, Heydari A, Khorasani N, et al. Development of new bioformulations of Pseudomonas fluorescens and evaluation of these products against damping-off of conton seedlings. Journal of Plant Pathology.2010,92:83-88
    [21]Rajappan K, Vidhyasekaran P, Sethuraman K, et al. Development of powder and capsule formulations of Pseudomonas fluorescens strain Pf-1 for control of banana wilt. Journal of Plant Diseases and Protection.2002,109:80-87
    [22]周学永.苏云金芽胞杆菌喷雾干燥工艺和杀虫蛋白纳米材料吸附剂型的研究.2004,华中农业大学博士学位论文,武汉
    [23]Bashan Y. Aliginate beads as synthetic inoculant carriers for slow release of bacteria that affect plant growth. Applied and Environmental Microbiology.1986,51: 1089-1098
    [24]胡小加,江木兰,张银波.固定化植物促生菌的存活性研究.中国油料作物学报.2004,26:54-56
    [25]高德霖.微胶囊技术在农药剂型中的应用.现代化工.2000,20:10-14
    [26]Teera-Arunsiri A, Suphantharika M, Ketunuti U. Preparation of spray-dried wettable powder formulations of Bacillus thuringiensis-based biopesticides. Journal of Economic Entomology.2003,96:292-299
    [27]Jayaraj J, Radhakrishnan N V, Kannan R, et al. Development of new formulations of Bacillus subtilis for management of tomato damping-off caused by Pythium aphanidermatum. Biocontrol Science and Technology.2005,15:55-65
    [28]Jayaraj J, Parthasarathi T, Radhakrishnan N V. Characterization of a Pseudomonas fluorescens strain from tomato rhizosphere and its use for integrated management of tomato damping-off. Biocontrol.2007,52:683-702
    [29]王勇,王万立,刘春艳,等.生防绿色木霉菌可湿性粉剂的研究.第四届全国绿色环保农药新技术、新产品交流会暨第三届生物农药研讨会.2006:252-255
    [30]弓爱君,孙翠霞,邱丽娜.主编.Bt生物农药.2006,化学工业出版社,北京,111-133
    [31]中华人民共和国化工行业标准,HG 3617—1999,苏云金杆菌可湿性粉剂
    [32]徐妍,孙宝利,战瑞,等.浅谈农药可湿性粉剂的质量提升.现代农药,2009,8(1):7-11
    [33]朱昌雄,丁振华,蒋细良.微生物农药剂型研究发展趋势.现代化工.2003,23:4-8
    [34]Bora T, Ozaktan H, Gore E, et al. Biological control of Fusarium oxysporum f. sp melonis by wettable powder formulations of the two strains of Pseudomonas putida. Journal of Phytopathology.2004,152:471-475
    [35]Das K, Mukherjee A K. Assessment of mosquito larvicidal potency of cyclic lipopeptides produced by Bacillus subtilis strains. Acta Tropica.2006,97:168-173
    [36]Li S, Jochum C C, Yu F, et al. An antibiotic complex from Lysobacter enzymogenes strain C3:Antimicrobial activity and role in plant disease control. Phytopathology. 2008,98:695-701
    [37]Kim Y S, Kim H M, Chang C, et al. Biological evaluation of neopeptins isolated from a Streptomyces strain. Pest Management Science.2007,63:1208-1214
    [38]李青,吴继星,谢天健,等.苏云金芽孢杆菌GC-91发酵上清液的增效作用.中国生物防治.1997,13(4):166-168
    [39]杨华,纪明山,李广旭,等.防治苹果轮纹病的微生物农药.中国:200910012048.3
    [40]王敏,杨秀荣,骆健美,等.防治土传病害的枯草芽孢杆菌制剂及其制备方法.2008,中国:200810153180.1
    [41]Haggag W M. Colonization of exopolysaccharide-producing Paenibacillus polymyxa on peanut roots for enhancing resistance against crown rot disease. African Journal of Biotechnology.2007,6:1568-1577
    [42]杨代斌,黄皅良,袁会珠,等.农药悬乳体系流变学特性研究.农药学学报.2002,4:75-78
    [43]沈娟.农药悬浮剂流变学特性及贮存物理稳定性研究.2008,北京,中国农业科学院硕士学位论文,39-47
    [44]凌世海.主编.固体制剂.2002,化学工业出版社,北京,352-404
    [45]Lee J P, Lee S W, Kim C S, et al. Evaluation of formulations of Bacillus licheniformis for the biological control of tomato gray mold caused by Botrytis cinerea. Biological Control.2006,37:329-337
    [46]辛玉成.一种枯草芽孢杆菌菌株、制法、制剂及应用.1998,中国:98124889.6
    [47]张敏,彭化贤,邓新平,等.5亿活孢子/克木霉菌可湿性粉剂的研制.西南农业学报.2008,21(3):675-679
    [48]Chiou A L, Wu W S. Formulation of Bacillus amyloliquefaciens B190 for control of lily grey mould (Botrytis elliptica). Journal of Phytopathology.2003,151:13-18
    [49]姬广海,张世光,魏兰芳,等.一种防治植物细菌病害的生物制剂及其应用.2005,中国:200510011078.4
    [50]Guijarro B, Melgarejo P, Torres R, et al. Effects of different biological formulations of Penicillium frequentans on brown rot of peaches. Biological Control.2007,42:86-96
    [51]马平,李社增,陈新华,等.防治棉花黄萎病的菌株及其菌剂的制备方法.2003,中国:200310109619.8
    [52]邵维忠.主编.农药助剂.2002,化学工业出版社,北京,1-4
    [53]Woertz J R, Kinney K A. Influence of sodium dodecyl sulfate and tween 20 on fungal growth and toluene degradation in a vapor-phase bioreactor. Journal of Environmental Engineering-Asce.2004,130:292-299
    [54]Wyss G S, Charudattan R, Rosskopf E N, et al. Effects of selected pesticides and adjuvants on germination and vegetative growth of Phomopsis amaranthicola, a biocontrol agent for Amaranthus spp. Weed Research.2004,44:469-482
    [55]Jin X, Weaver M A, Hoagland R E, et al. Biocontrol activity by Myrothecium verrucaria improved by surfactant activity. Phytopathology.2009,99:58-59
    [56]Morris O N. Effect of some chemical insecticides on the germination and replication of commercial Bacillus thuringiensis. Journal of invertebrate pathology.1975, 26:199-204
    [57]顾中言,唐为爱,陈志谊,等.表面活性剂对生物农药纹曲宁抑菌活性和防病效果的影响.江苏农业学报.2005,21(3):162-166
    [58]Abadias M, Teixid N, Usall J, et al. Survival of the postharvest biocontrol yeast Candida sake CPA-1 after dehydration by spray-drying. Biocontrol Science and Technology.2005,15:835-846
    [59]Prabakaran G, Hoti S L. Optimization of spray-drying conditions for the large-scale preparation of Bacillus thuringiensis var. israelensis after downstream processing. Biotechnology and Bioengineering.2008,100:103-107
    [60]To B C S, Etzel M R. Survival of Brevibacterium linens (ATCC 9174) after spray drying, freeze drying or freezing. Journal of Food Science.1997,62:167-169
    [61]Lal S, Tabacchioni S. Ecology and biotechnological potential of Paenibacillus polymyxa:a minireview. Indian Journal of Microbiology.2009:1-9
    [62]Identification of microorganisms currently listed on the TSCA (Toxic Substances Control Act) chemical substance inventory. [2010-07-18]. http://www.epa.gov/biotech_rule/pubs/pdf/listing.pdf
    [63]Organisms that do not require a plant protection permit to import. [2010-07-18]. http://www.inspection.gc.ca/english/plaveg/oper/orglste.shtml
    [64]Figueiredo M V B, Martinez C R, Burity H A, et al. Plant growth-promoting rhizobacteria for improving nodulation and nitrogen fixation in the common bean (Phaseolus vulgaris L.). World Journal of Microbiology and Biotechnology.2008,24: 1187-1193
    [65]Singh H P, Singh T A. The interaction of rockphosphate, Bradyrhizobium, vesicular-arbuscular mycorrhizae and phosphate-solubilizing microbes on soybean grown in a sub-Himalayan mollisol. Mycorrhiza.1993,4:37-43
    [66]Shishido M, Massicotte H B, Chanway C P. Effect of plant growth promoting Bacillus strains on pine and spruce seedling growth and mycorrhizal infection. Annals of Botany.1996,77:433-441
    [67]Helbig J. Biological control of Botrytis cinerea Pers. ex Fr. in strawberry by Paenibacillus polymyxa (isolate 18191). Journal of Phytopathology (Berlin).2001,149: 265-273
    [68]Haggag W M, Timmusk S. Colonization of peanut roots by biofilm-forming Paenibacillus polymyxa initiates biocontrol against crown rot disease. Journal of Applied Microbiology.2008,104:961-969
    [69]Kim S G, Khan Z, Jeon Y H, et al. Inhibitory effect of Paenibacillus polymyxa GBR-462 on Phytophthora capsici causing phytophthora blight in Chili Pepper. Journal of Phytopathology.2009,157:329-337
    [70]Zhang S S, Raza W, Yang X M, et al. Control of Fusarium wilt disease of cucumber plants with the application of a bioorganic fertilizer. Biology and Fertility of Soils. 2008,44:1073-1080
    [71]Khan Z, Kim S G, Jeon Y H, et al. A plant growth promoting rhizobacterium, Paenibacillus polymyxa strain GBR-1, suppresses root-knot nematode. Bioresource Technology.2008,99:3016-3023
    [72]Ryu C M, Kim J, Choi O, et al. Improvement of biological control capacity of Paenibacillus polymyxa E681 by seed pelleting on sesame. Biological Control.2006, 39:282-289
    [73]李元广,王伟,沈国敏,等.防治植物细菌性青枯病的微生物制剂和方法及其用途.2002,中国:02151019.9
    [74]魏鸿刚,李淑兰.防治作物青枯病和枯萎病的微生物农药——0.1亿cfu/g多粘类芽孢杆菌细粒剂.世界农药,2008,1:52-53
    [75]罗小华,肖明徽,胡德广,等.生物农药——康地蕾得防治青枯病初报.江西植保,2006,29(1):38-40
    [76]李畅方,罗时华,何强.康地蕾得防治番茄青枯病药效试验.广东农业科学.2003:38-39
    [77]刘高松,孙鹏,任鸿雁,等.康地蕾得防治烟草青枯病田间药效试验.现代农业科技,2009,20:165-173
    [78]赵新海,钟丽娟.康地蕾得对黄瓜枯萎病的室内毒力测定及田间防效试验.农药.2008,47:696-698
    [79]赵新海,锋丽娟,徐冲,等.安徽农业科学.2008,36(22):9613-9614
    [80]李蜀.多粘类芽孢杆菌细粒剂的稳定性研究及可湿性粉剂的创制.2006,华东理工大学硕士学位论文,上海,40-42
    [81]Kintaka K, Ono H, Tsubotani S. Thiotropocin, a new sulfur-containing 7-membered-ring antibiotic produced by a Pseudomonas sp. Journal of Antibiotics. 1984,37(11):294-300
    [82]Albaugh D, Albert G. Cell wall active antifungal compounds produced by the marine fungus Hypoxylon oceanicum LL-15G256. Ⅲ. Biological properties of 15G256 λ Journal of Antibiotics.1998,51(3):317-322
    [83]Fudou R, Iizuka T, Yamanaka S. Haliangicin, a novel antifungal metabolite produced by a marine myxobacterium. Part 1. Fermentation and biological characteristics. Journal of Antibiotics.2001,54(2):149-152
    [84]胡江春,李伟,刘丽,等.一株海洋枯草芽孢杆菌及其分离和防治黄瓜枯萎病制剂.2008,中国:200810011342.8.
    [85]Carisse O, Bernier J, Benhamou N. Selection of biological agents from composts for control of damping-off of cucumber caused by Pythium ultimum. Canadian Journal of Plant Pathology.2003,25:258-267
    [86]田黎,林文翰,李元广等.大环内酯类化合物及其制备和应用.2007.中国:200710042797.1
    [87]高伟.海洋芽孢杆菌B-9987生物防治机制研究.2009,青岛科技大学硕士学位论文,青岛,1-15
    [88]罗远婵,田黎,李元广.海洋细菌B-9987的鉴定及其对植物病原菌的抑菌试验.农药.2008,47:691-693
    [89]Liu R F, Zhang D J, Li Y G, et al. A New Antifungal Cyclic Lipopeptide from Bacillus marinus B-9987. Helvetica Chimica Acta,2010,93(12):2419-2425
    [90]Zhang D J, Liu R F, Li Y G, et al. Two New Antifungal Cyclic Lipopeptides from Bacillus marinus B-9987. Chemical and Pharamaceutical Bulletin,2010,58(12): 1630-1634
    [91]赵新海,锋丽娟,徐冲.康地蕾得对百合镰刀菌枯萎病的室内毒力测定及防治试验.安徽农业科学.2008,36:9613-9614
    [92]罗小华,肖明徽,胡德广.生物农药-康地蕾得防治青枯病初报.江西植保.2006,29:38-40
    [93]FAO/WHO Joint Meeting on Pesticide Specifications (JMPS).'Aims, Applicability and Requirements of Clauses', in:Manual on Development and Use of FAO and WHO Specifications for Pesticides,2002,27-46
    [94]凌世海.主编.固体制剂.2002,化学工业出版社,北京,112-121
    [95]顾中言,唐为爱,陈志谊.表面活性剂对生物农药纹曲宁抑菌活性和防病效果的影响.江苏农业学报.2005,21:162-166
    [96]韦松,纪明山.活菌制剂加工中化学助剂对菌稳定性的影响.农药.2008,47:176-178
    [97]张拥华,李磊,彭志刚.粘帚霉可湿性粉剂助剂的初步研究.农药.2007,46:94-96
    [98]GB/T 5451-85.农药可湿性粉剂润湿性测定方法.1998
    [99]GB/T 14825-93.农药可湿性粉剂悬浮率测定方法.1996
    [100]GB/T 1600-2001.农药水分测定方法.2001
    [101]Burges, Jones. (Eds.) Formulation of Microbial Biopesticides.1998(c), Kluwer Academic Publishers,88-89
    [102]Melin P, Hakansson S, Schnurer J. Optimisation and comparison of liquid and dry formulations of the biocontrol yeast Pichia anomala J121. Applied Microbiology and Biotechnology.2007,73:1008-1016
    [103]Kim S S, Bhowmik S R. Survival of lactic acid bacteria during spray drying of plain yogurt. Journal of Food Science.1990,55:1008-1010
    [104]Zhou X, Dong J, Gao J, et al. Activity-loss characteristics of spores of Bacillus thuringiensis during spray drying. Food and Bioproducts Processing.2008,86:37-42
    [105]Acosta M P, Valdman E, Leite S G F, et al. Biosorption of copper by Paenibacillus polymyxa cells and their exopolysaccharide. World Journal of Microbiology & Biotechnology.2005,21:1157-1163
    [106]Deo N, Natarajan K A. Interaction of Bacillus Polymyxa with some oxide minerals with reference to mineral beneficiation and environmental control. Minerals Engineering.1997,10:1339-1354
    [107]宫小燕,奕兆冲.微生物絮凝剂絮凝机理研究.微生物生态学研究进展—第五届微生物生态学术研讨会论文集.2003:116-120
    [108]Yegorenkova I V, Tregubova K V, Matora L Y, et al. Composition and immunochemical characteristics of exopolysaccharides from the rhizobacterium Paenibacillus polymyxa 1465. Microbiology.2008,77:553-558
    [109]Cox R B, Steer D C. Microbial heteropolysaccharide.1982, United States patent: 4,464,410
    [110]程洪斌,陈伟,顾真荣.营养添加剂对枯草芽孢杆菌G3str在土壤中繁殖及其抑菌物质分泌能力的影响.中国生物防治.2006,22:142-145
    [111]国家环境保护总局.土壤环境监测技术规范(HJ/T66-2004).2005,北京:中国环境科学出版社
    [112]Hadapad A B, Hire R S, Vijayalakshmi N, et al. UV protectants for the biopesticide based on Bacillus sphaericus Neide and their role in protecting the binary toxins from UV radiation. Journal of Invertebrate Pathology.2009,100:147-152
    [113]Tzeng D D and Huang W D. Method for preparing a composition containing Bacillus subtilis WG6-14 and related use.2009, US patent,7,632,493
    [114]Hernandez A, Weekers F, Mena J, et al. Culture and spray-drying of Tsukamurella paurometabola C-924:stability of formulated powders. Biotechnology Letters.2007, 29:1723-1728
    [115]Desmond C, Ross R P, O'Callaghan E, et al. Improved survival of Lactobacillus paracasei NFBC 338 in spray-dried powders containing gum acacia. Journal of Applied Microbiology.2002,93:1003-1011
    [116]Burges H D, Jones K A. Formulation of bacteria, viruses and protozoa to control insect. in:Formulation of Microbial Biopesticides. H. D. Burges (Ed.),1998(d), Kluwer Academic Publishers, Dordrecht, The Netherlands,34-87
    [117]Manasherob R, Ben D E, Wang X Q. Protection from UV-B damage of mosquito Iarvicidal toxins from Bacillus thuringiensis subsp. israelensis expressed in anabaena PCC7120. Current Microbiology.2002,45:217-220
    [118]Hadapad A B, Vijayalakshmi N, Hire R S, et al. Effect of ultraviolet radiation on spore viability and mosquitocidal activity of an indigenous ISPC-8_Bacillus sphaericus Neide strain. Acta Tropica.2008,107:113-116
    [119]马逢时编.六西格玛管理统计指南——MINITAB使用指导.2007,北京:中国人民大学出版社,518-531
    [120]严伟.铜版纸高固含涂料配方和印刷性能的研究.陕西科技大学硕士学位论文,2009,西安,18-54
    [121]欧阳旭,王跃生,章军.各种实验设计方法在元胡止痛分散片处方优化中的应用研究.中国实验方剂学杂志,2009,15(10):43-47
    [122]Beatty P H, Jensen S E. Paenibacillus polymyxa produces fusaricidin-type antifungal antibiotics active against Leptosphaeria maculans, the causative agent of blackleg disease of canola. Canadia Journal of Microbiology.2002,48:159-169
    [123]Bais H P, Fall R, Vivanco J M. Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production. Plant Physiol.2004,134:1-13
    [124]Leclere V, Bechet M, Adam A. Mycosubtilin overproduction by Bacillus subtilis BBG100 enhances the organism's antagonistic and biocontrol activities. Appl Environ Microbiol.2005,71:4577-4584
    [125]赵爽,刘伟成,裘季燕,等.多粘类芽孢杆菌抗菌物质和防病机制之研究进展. 中国农学通报.2008,24(7):347-350
    [126]张道敬,龚春燕,魏鸿刚,等.多粘类芽孢杆菌HY96-2的化学成分.华东理工大学学报(自然科学版).2008,34:71-73
    [127]盛保伟.多粘类芽孢杆菌HY96-2芽孢培养工艺优化与过程放大.2006,华东理工大学硕士学位论文,上海,25-32
    [128]Beatty P H. Investigation of an Antifungal Antibiotic Produced by Enviromental Isolate of Paenibacillus Polymyxa.2000, Doctoral dissertation of Alberta University, Canada,16-128
    [129]Nakajima N, Chihara S. A new antibiotic, Gatavalin. I. Isolation and characterization. The Journal of Antibiotics.1972,25:243-247
    [130]Kajimura Y, Kaneda M. Fusaricidin A, a new depsipeptide antibiotic produced by Bacillus polymyxa KT-8 taxonomy, fermentation, isolation, structure elucidation and biological activity. Journal of Antibiotics.1996,49:129-135
    [131]He Z, Kisla D, Zhang L, et al. Isolation and identification of a. Paenibacillus polymyxa strain that coproduces a novel lantibiotic and polymyxin. Applied and Environmental Microbiology.2007,73:168-178
    [132]Kuroda J, Fukai T, Konishi M. LI-F antibiotics, a family of antifungal cyclic depsipeptides produced by Bacillus polymyxa L-1129. Heterocycles.2000,53: 1533-1549
    [133]Ito M, Koyama Y. Jolipeptin, a new peptide antibiotic. The Journal of Antibiotics. 1972,25:304-308
    [134]邢维玲.粘杆菌素高产菌株的选育及提取的研究.2002,中国农业大学硕士学位论文,北京,10-31
    [135]陈海英.多粘类芽孢杆菌CP7抗菌物质的分离纯化及杀菌机理研究.2006,华南农业大学博士论文,广州,99-114
    [136]Kurusu K, Ohba K. New peptide antibiotics LI-F03, F04, F05, F07, and F08, produced by Bacillus polymyxa. The Journal of Antibiotics.1987,40:1506-1514
    [137]Kajimura Y, Kaneda M. Fusaricidins B, C and D, new depsipeptide antibiotics produced by Bacillus polymyxa KT-8:Isolation, structure elucidation and biological activity. Journal of Antibiotics.1997,50:220-228
    [138]范磊.多粘类芽孢杆菌HY96-2产Fusaricidins抗真菌物质的分离及抑菌活性的研究.2010,上海,华东理工大学硕士毕业论文,21-56
    [139]河内真一郎,藤牧司,金井芳则,等.属于类芽孢杆菌属的新菌株和通过使用这些菌株或其培养物防治植物病害的方法.2005,中国:200580030670.7
    [140]何培青,田黎,李光友.海洋细菌B-9987发酵条件的优化及胞外抑菌活性物质的理化特性.中国海洋药物.2001,2:8-12
    [141]Toledo F L, Gonzalez-Lopez J, Calvo C. Production of bioemulsifier by Bacillus subtilis, Alcaligenes faecalis and Enterobacter species in liquid culture. Bioresource Technology.2008,99:8470-8475
    [142]Mukherjee S, Das P, Sivapathasekaran C, et al. Antimicrobial biosurfactants from marine Bacillus circulans:extracellular synthesis and purification. Letters in Applied Microbiology.2009,48:281-288
    [143]Joshi S, Bharucha C, Desai A J. Production of biosurfactant and antifungal compound by fermented food isolate Bacillus subtilis 20B. Bioresource Technology.2008,99: 4603-4608
    [144]李海淼,郭兴忠,马奇,等.水基SiC浆料的喷雾造粒特性.中国(传统)陶瓷科技发展大会暨中国硅酸盐学会陶瓷分会2007年学术年会论文集.42-45
    [145]Ongena M, Jacques P. Bacillus lipopeptides:versatile weapons for plant disease biocontrol. Trends in Microbiology.2007,16:115-125
    [146]Montesinos E. Antimicrobial peptides and plant disease control. FEMS Microbiology Letters.2007,270:1-11

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700