用户名: 密码: 验证码:
纤维素苯基氨基甲酸酯类手性固定相的合成及手性识别能力研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
众所周知,手性化合物中单一光学纯对映体表现出不同毒性、药理以及生物活性等特性,所以分离和纯化对映体在中间体、天然产品、农用化学品、制药行业等很多科学领域得到越来越多的重视。最近几十年里,用于分离对映体的色谱技术得到广泛发展,其中高效液相色谱法(HPLC)在手性药物的研发过程中表现出了很大的优势,该法对于分析对映体的光学纯度以及大规模的制备对映体方面,具有非常重要的地位。在众多的手性固定相中(CSPs),多糖衍生物,如纤维素和淀粉苯基氨基甲酸酯类,对大多数的手性化合物表现出了广泛的适应性和优异的拆分能力。目前,为了能够更好的、更多的分离手性化合物,对新型手性固定相的探求已经引起了学者们的极大关注。
     本文合成了三种新型纤维素苯基氨基甲酸酯类衍生物:纤维素-[2,3-二苯基-6-(3,5-二氯苯基)]氨基甲酸酯(CSP-1),纤维素-[2,3-二(4-甲基苯基)-6-(3,5-二氯苯基)]氨基甲酸酯(CSP-2)及纤维素[2,3-二(4-氯苯基)-6-(3,5-二氯苯基)]氨基甲酸酯(CSP-3),并将其涂敷在氨丙基硅胶的表面制备HPLC手性固定相。利用三苯基氯甲烷能够与纤维素上6-位羟基优先反应的特性,实现了纤维素糖单元上6-位羟基的保护和去保护。在以正己烷/异丙醇(90/10,v/v)作为流动相的条件下,考察了对10种手性化合物的手性识别能力,并与以手性识别能力高而著称的、含有单一取代基的纤维素衍生物(CDMPC, CDCPC, CPC, CMPC和CCPC)进行比较,结果表明该类新型手性固定相对于绝大多数对映体显示出更优的手性拆分能力,尤其值得一提的是在CDMPC上难以拆分的7号对映体,在三种新型固定相上均能获得更好的分离;在CTPC上难于拆分的3号对映体,在CSP-1上获得基线分离(分离因子α值为1.38);2号对映体在CSP-3上的拆分能力(a值为1.95)远高于CDMPC与CDCPC;4号对映体在CSP-1和CSP-3上的α值分别达到了2.06和1.81,所呈现的立体选择性远超过CDMPC与CDCPC。进一步说明了苯基氨基甲酸酯类衍生物的手性识别能力,受到糖单元2-位、3-位以及6-位苯环上的对位吸电子的甲基基团或者推电子的卤素基团的影响。
     为了克服涂敷型手性固定相在一些有机溶剂中能够溶解或者溶胀的缺点,本文合成了新型键合型手性固定相:分别含有1.2%(CSP-4),1.7%(CSP-5)和3.0%(CSP-6)的3-(三乙氧基硅基)丙基基团的纤维素-三(3,5-二氯苯基氨基甲酸酯)衍生物,并通过三乙氧基硅基基团之间的分子内缩聚反应键合在硅胶表面,得到新的键合型手性固定相;通过高效液相色谱法,用含有极性溶剂(四氢呋喃或氯仿)的混合溶液作为流动相,考察该手性固定相的手性识别能力,并与CDCPC进行比较。结果表明该新的键合型手性固定相在用极性溶剂做流动相时,可以极大的提高手性识别能力,绝大多数手性化合物的分离因子(a)值得到很大程度的提高,甚至3号对映体使用传统流动相H/I(90/10)时在CSP-5上不能拆分,而在H/T(70/30)和H/T/I(90/10/1)的极性流动相中均能得到很好的分离(α值分别为1.43和1.15);扩大了流动相的选择范围;色谱柱的使用寿命得到延长。
     本文还提出利用纤维素氨基甲酸酯衍生物与异氰酸酯进行交换反应制备新纤维素衍生物的方法,并应用该方法合成出两种同时含有3,5-二氯苯基氨基甲酸酯(CSP-7中含量为17.3%, CSP-8中含量为26.8%)和3,5-二甲基苯基氨基甲酸酯基团的混合型纤维素衍生物,考察了其作为HPLC手性固定相的手性拆分性能;通过实验证实了纤维素衍生物的稳定性、反应时间和反应体系对于交换反应的终点和进程具有很大的影响。由于CDMPC更加稳定,在DMAc/LiCl/Pyridine体系中,用纤维素-三(3,5-二氯苯基氨基甲酸酯)(CDCPC)与3,5-二甲基苯基异氰酸酯(DMPI)进行了交换反应时CDCPC几乎完全被CDMPC取代,13小时即达到反应终点;同时因该交换反应优先发生在6-位,所以可以通过控制反应时间来控制纤维素衍生物2-位、3-位或者6-位上苯基氨基甲酸酯基团的含量;而该反应在Pyridine溶剂中只有3.0%的氨基甲酸酯基团发生了交换反应;以DMSO溶剂时,CDCPC与DMPI交换反应能力居中,需要44小时方能反应结束。所以利用交换反应合成纤维素衍生物,操作方法简单便捷,克服了传统的浪费异氰酸酯和使用昂贵的保护剂的缺点;通过改变反应时间和反应体系,很容易实现在纤维素三个位置上合成含有不同氨基甲酸酯基团的衍生物;并且本文新合成的纤维素衍生物展示出了很好的手性识别能力。
It is well know that a pair of optically pure enantiomers have exhibited quite different toxicological and pharmacological behaviors, bioactivities, etc. The separation or resolution of enantiomers have beome very import in many fields of sicence, for example intermediates, natural products, agrochemicals and drugs. In recent decades, the chromatographic techniques for the separation of enantiomers are developed extensively. The high-performance liquid chromatography (HPLC) method has become most advantageous for the research and development of chiral drugs, which is essential for analysizing the optical purity of enantiomers and preparing separation for a large scale. Among many chiral stationary phases (CSPs), the polysaccharide derivatives, such as the phenylcarbamayes of cellulose and amylose exhibit broad applicability to a wide range of compounds. In order to resolve the chiral compound better, more new CSPs have been attracting much attention.
     In order to widen the chiral recognition range of chiral compounds, three new cellulose phenylcarbamate derivatives, [6-(3,5-dichlorophenyl)-2,3-bisphenyl]carbamates (CSP-1), [6-(3,5-dichlorophenyl)-2,3-bis(4-methylphenyl)] carbamates (CSP-2) and [6-(3,5-dichlorophenyl)-2,3-bis(4-chlorophenyl)] carbamates (CSP-3) were synthesized and used as the chiral stationary phase for high-performance liquid chromatography (HPLC) after coating on aminopropyl silica gel. The synthesis involved the protection and deprotection of 6-position using triphenylmethyl chloride, which can predominantly react with 6-OH of cellulose. The chiral recognition ability of obtained derivatives was evaluated using 10 racemates and a hexane/2-propanol (90:10, v/v) mixture as the eluent. The result showed that most of racemates were better resolved on the new derivatives than on the typical homogeneously substituted phenylcarbamate derivatives, tris(3,5-dimethylphenylcarbamates), tris(3,5-dichlorophenylcarbamates), tris(phenylcarbamates), tris(4-methylphenylcarbamates) and tris(4- chlorophenylcarbamates), some of which are well known due to their high ability. Especially compound 7 not resolved on CDMPC could be seperated better on CSP-1, CSP-2 and CSP-3, and compound 3 not resolved on CTPC is able to obtain baseline separation (separation factorαis 1.38), andαvalue (1.95) of compound 2 on CSP-3 andαvalues of compound 4 on CSP-1 (2.06) and CSP-3 (1.81) are much higher than those on CDMPC and CDCPC. It indicates that the chiral recognition on the phenylcarbamate derivates is influenced by the electron-donating methyl group or electron-withdrawing halogen at r-position of the phenyl ring introduced at 2-,3-and 6-site.
     Because the coated CSPs can be sissolved or swelled by some organic solvents, such as THF, chloform, toluene, ethyl acetate, and acetone, which is sometimes essential for efficient analytical and preparative resolution of enantiomers, several immobilized polysaccharide-based CSPs have been prepared. In this study, the tri-(3,5-dichlorophenylcarbamates) of cellulose (CDCPC) bearing a small amount of 3-(triethoxysilyl) propyl residues (1.2%,1.7% and 3.0%) were synthesized by a simple process (one-pot method) and efficiently immobilized onto a silica gel through intermolecular polycondensation of the triethoxysilyl groups. The obtained chiral packing materials (CPMs) were evaluated by high-performance liquid chromatography with the polar solvents (THF and chloform) in the mobile phase, and compared with CDCPC. The results indicate that the new immobilized CSPs enhance the chiral separations, separation factor (chiral recognitions) for most of the racemates were immproved to different degrees. Even compound 3 can be resolved well on CSP-5 when using H/T (70/30) and H/T/I (90/10/1) as eluents, which couldn't be chiral recognized when the traditional mobile phase H/I (90/10) is used. The immobilized columns expand the kind of solvents which can be used as the eluent and have long life. We expect that the immobilized CSPs will become more popular and will replace the coated-type CSPs.
     In this study, we discovered a new method, exchange reaction, for obtaining the phenylcarbamates derivatives with different phenylcarbamate groups. Using the exchange reaction method, new phenylcarbamate derivatives containing 3,5-dichloropnenyl carbamate and 3,5-dimethylphenyl carbamate were synthesized, and their chiral recognition ability were studied used as CSPs. It is proved that the stability of cellulose derivatives, reaction time and reaction solvents can affect the reaction end and exchange degree of the exchange reaction. Because CDMPC has more stability than CDCPC, CDCPC is almost completely replaced by CDMPC when CDCPC reacts with DMPI, and the reaction end reaches at 13 h. Since the exchange reaction occurrs on the 6- site of cellulose first, the contents of two carbamate groups at 2-,3- and 6-positions can be controlled by changing reaction time. But only 3.0% CDCPC is changed by CDMPC when pyridine is used as solvent, and 24.6% CDCPC is substitute when DMSO is used as solvent and the reaction end occurrs at 44h. The result showed that the operation of exchange reaction is simple and convenient, and overcomeing the shortcomings of the waste of isocyanate and expensive the protection agents, various new derivatives with different carbamate groups at the three positions can be easily synthesized by changing the reaction conditions, and the cellulose derivatives obtained by exchange reaction can provide new chiral packing materials with interesting chiral recognition abilities.
引文
[1]陆雄鹰.纤维素类手性固定相的研制与对安息香及反-2,3-二苯环氧乙烷的分离[D].浙江大学.2006:1-10页
    [2]陈平.高效液相色谱手性分离[D].西北师范大学.2003:1-5页
    [3]侯经国,邓启良,邓晓蓉等.纤维素-三(3,5-二甲基苯基氨基甲酸酯)涂敷手性固定相的制备表征及评价[J].色谱.2001,19(2):154-156页
    [4]黄量,戴立信.手性药物的化学与生物学[M].北京化学工业出版社,2002:2—4页
    [5]李兵,施介华,杨根生.高效液相色谱中的纤维素衍生物手性固定相[J].化学通报.2003,66(3):169-173页
    [6]Matthijs N, Perrin C, Heyden Y V, et al. J. Chromatogr. A,2004,1041(1/2):119-133P
    [7]孙艳伟,梁晓梅,周志强等.新型纤维素衍生物手性固定相的制备及其对几种对映异构体的高效液相色谱分离[J].分析化学.2006,34(特刊):S257-S259页
    [8]Knoche B, Blasehke G. Investigations of the in vitro racemization of thalidomide by hight performance liquid chromatography [J]. Chromatogr.1994,666:235P
    [9]陈立仁,蒋生祥,刘霞.高效液相色谱基础与实践[M].北京科学出版社.2001:211-254页
    [10]Kitahara T, Seung-Hyun K. Synthesis of Both the Enantiomers of 4-Methyl-l-nonanol, the Sex Pheromone of the Yellow Mealworm Proceedings of the Japan Academy. Ser. B. 1994,70:181-184P
    [11]Kitahara T, Seung Hyun K, Tamogami S, Kaiser R. Synthesis of Both Enantiomers of Methyl 3-methyloctanoate, Key Component for the Scent of African Orchids and Determination of their Absolute Configuration. Nat. Prod. Lett.1994,5(2):157-164P
    [12]杨振云,张贻亮.手性工业[J].中国医药工业杂志.1996,27(10):469-475页
    [13]李雷鸣,高连勋,丁孟贤.对映体制备性分离方法的进展[J].化学通报.1997,2:17-19页
    [14]王普善,制药工业竞争激烈.医药中间体面临严重挑战[J].精细与专用化学品.1998,17:14-15页
    [15]Remir G, Kostyanovsky, Gul'nara, Kadorkina K, Konstantin, Lyssenko A. Chiral drugs via the spontaneous resolution. Mendeleev Communications.2002,12(1):6-8P
    [16]邹汉法,张玉奎,卢佩章.高效液相色谱法[M].北京科学出版社.1998,145-147页
    [17]侯经国,邓启良,邓晓蓉等.纤维素-三(3,5-二甲基苯基氨基甲酸酯)涂敷手性固定相的制备、表征及评价[J].色谱.2001,19(2):154-156页
    [18]张宇.球形氧化锆用于高效液相色谱固定相的制备与表征[D].硅酸盐通报.2007,26(5):910-913页
    [19]邵保海,徐秀珠,吕建德等.纤维素衍生物手性固定相用于高效液相色谱对映体分离[J].分析化学.2003,31(2):239-244页
    [20]Delee E, Jullien I, Le Garrec L. Direct high-performance liquid chromatographic resolution of dihydropyridine enantiomers. Journal of Chromatography A.1988,450 (2):191-197P
    [21]Armstrong D W, Yang X F, Han S M, Menges R A. Direct liquid chromatographic separation of racemates with an alpha-cyclodextrin bonded phase. Analytical chemistry. 1987,59(21):2594-2596P
    [22]Francott E R. Ahujia S. Chiral Separation, Applications and Technilogy. American Chemical Society.1997,271-308P
    [23]Schurig V. Separation of enantiomers by gas chromatography. J. Chromatogr.2001, A 906:275-299P
    [24]Schurig. V. Chiral separations using gas chromatography. Trends Anal. Chem.2002,21: 647-661P
    [25]Wang X, Lee J T, Armstrong D W. Separation of enantiomers by capillary electrophoresis using pentosan polysulfate. Electrophoresis.1999,20(1):162-170P
    [26]Yashima E, Yamamoto C, Okamoto Y. Polysaccharide-Based Chiral LC Columns. Synlett.1998:344-360P
    [27]Okamoto Y, Yashima E., Polysaccharide derivatives for chromatographic separation of enantiomers. Angew. Chem., Int. Ed.1998,37:1021-1043P
    [28]Yashima E. Polysaccharide-based chiral stationary phases for high-performance liquid chromatographic enantioseparation. J. Chromatogr., A.2001,906:105-125P
    [29]Phinney K. W. SFC of drug enantiomers. Anal. Chem.2000,72:204A-221AP
    [30]Terfloth G. Enantioseparation in super and subcritical fluid chromatography. J. Chromatogr. A.2001,906:301-307P
    [31]Kang J, Wistuba D, Schurig V. Recent Progress in Enantiomeric Separation by Capillary Electrochromatography. Electrophoresis 2002,23:4005-4021P
    [32]Ikai T, Okamoto Y. Structure Control of Polysaccharide Derivatives for Efficient Separation of Enantiomers by Chromatography. Chem. Rev.,2009,109:6077-6011P
    [33]Okamoto Y J. Chiral polymers for resolution of enantiomers. Polym. Sci., Part A:Polym. Chem.,2009,47:1731-1739P
    [34]Stringham R W. The use of polysaccharide phases in the separation of enantiomers. Adv. Chromatogr.,2006,44:257-290P
    [35]Francotte E. Enantioselective chromatography as a powerful alternative for the preparation of drug enantiomers. J. Chromatogr. A,2001,906:379-397P
    [36]Zukowski J, Pawlowska M, Nagatkina M, Armstrong D W. High-performance liquid chromatographic enantioseparation of glycyl di- and tripeptides on native cyclodextrin bonded phases. Mechanistic considerations. Journal of chromatography.1993, 629(2):169-179P.
    [37]Okamoto Y, Yashima E. Polysaccharide Derivatives for Chromatographic Separation of Enantiomers. Angew. Chem., Int. Ed.1998,37:1020-1043P
    [38]Chen X, Qin F, Liu Y, Huang X, Zou H. Synthesis of chiral stationary phases with radical polymerization reaction of cellulose phenylcarbamate. J. Chromatogr. A.2004,1034: 109-116P
    [39]Chen X, Liu Y, Qin F, Kong L, Zou H. Synthesis of covalently bonded cellulose derivative chiral stationary phases with a bifunctional reagent of 3-(triethoxysilyl)propyl isocyanate. J. Chromatogr. A.2003,1010:185-194P
    [40]Yamamoto C, Yashima E, Okamoto Y. Structural analysis of amylose tris(3,5-dimethylphenylcarbamate) by NMR relevant to its chiral recognition mechanism in HPLC. J. Am. Chem. Soc.2002,124:12583-12589P
    [41]黄蓓,杨立荣,吴坚平.手性拆分技术的工业应用[J].化工进展,2002,21(6):375-380页
    [42]陈立仁.液相色谱手性分离.科学出版社.2006,6:4-5页
    [43]Snyder L R, Kirkland J J. Introduction to Modern Liquid Chromatography.2nd ed. New York:Willey-Interscience,1979
    [44]卢佩章等.色谱理论基础.第二版.北京科学出版社,1997
    [45]陈立仁,蒋生祥,刘霞等.高效液相色谱基础与实践.北京科学出版社,2001
    [46]Dalglish C E. The optical resolution of aromatic amino-acids on paper chromatograms. J. Chem. Soc.1952,137:3940-3942P
    [47]Hesse G, Hagel R. Eine vollstaindige racemattrennung durch elutions-chromatographie an cellulose-tri-acetat. Chromatographia,1973,6:277-280P
    [48]Hesse G, Hagel R. Die Chromatographische Racemat Trennung. Liebigs Ann. Chem. 1976:996-1008P
    [49]Blaschke G. Pharmazeutisches lnstitut der Universitat An der lmmenhurg 4, D-5300Bonn 1. Angew. Chem. Int. Ed.1980,19:13-24P
    [50]Francotte E, Wolf R M, Lohmann D, Mueller R. Chromatographic resolution of racemates on chiral stationary phases:1. Influence of the supramolecular structure of cellulose triacetate. J. Chromatogr.1985,347:25-37P
    [51]Francotte E, Wolf R M. Preparation of chiral building blocks and auxiliaries by chromatography on cellulose triacetate (CTA I):indications for the presence of multiple interaction sites in CTA I. Chirality,1990,2:16-31P
    [52]Baochun S, Xiuzhu X, Juanjuan C. Effect of the mobile phase on the retention behavior of optical isomers of the mandelic acid derivative methyl 2-phenyl-2-(tetrahydropyranyloxy) acetate by chiral HPLC. Chirality.2006,18 (9):757-761P
    [53]Wainer I W, Stiffin R M, Shibata T. Resolution of enantiomeric aromatic alcohols on a cellulose tribenzoate high performance liquid chromatography chiral stationary phases:a proposed chiral recognition mechanism. J. Chromatogr.1987,411:139-151P
    [54]Shibata T, Okamoto I, Ishii K. J. Chromatographic Optical Resolution on Polysaccharides and Their Derivatives. Liq. Chromatogr.1986,9:313-340P
    [55]Biadatti T, Esker J L, Johnson C R. Chermoenzymatic synthesis of a versatile cyclopentenone:(+)-(3aS,6aS)-2,2-dimethyl-3aβ,6aβ-dihydro-4H-cyclopenta-1,3-dioxol-4-one. Tetrahedron-Asymmetry.1996,7:2313-2320P
    [56]Adam W, Groer P. Saha2ME Her C R. Enzyme preparation of optically active a-methylene β-lactone by lipase-catalyzed kinetic resolution through asymmetric transesterification. Tetrahedron-Asymmetry,1997,8:833-836P
    [57]Miller M W, Johnson C R. Sonogashira Coupling of 2-Iodo-2-cycloalkenones:Synthesis of (+)- and (-)-Harveynone and (-)-Tricholomenyn A. J. Org. Chem.1997,62: 1582-1583P
    [58]Tomoyuki W, Yoshiharu T, Akira T, Takatoshi K. Circular dichroism on copolyaspartates containing a long alkyl side chain J. Polym. Sci. Part B:Polym. Phys.1988,25: 1809-1814P
    [59]Yashima E, Yamada M, Okamoto Y. An NMR Study of Chiral Recognition Relevant to the Liquid Chromatographic Separation of Enantiomers by a Cellulose Derivative. Chem. Lett.1994:579-582P
    [60]Oguni K, Matsumoto A, Isokawa A. The low temperature relaxation mechanisms in poly(vinyl acetate):a thermally stimulated currents study. Polymer J.1994,26: 1257-1261P
    [61]Oguni K, Ito M, Isokawa A, Matsumoto A.13C nuclear spin-spin relaxation times (T2Cs) of enantiomers in the presence of column packing material and solvents for chiral discrimination HPLC. Chirality,1996,8:372-376P
    [62]Yashima E, Yamamoto C, Okamoto Y. Enantioseparation on Fluoro-methylphenyl-carbamates of Cellulose and Amylose as Chiral Stationary Phases for High-performance Liquid Chromatography. Polym. J.1995,27:856-861P
    [63]Yashima E, Yamamoto C, Okamoto Y. NMR studies of Chiral Discrimination Relevant to the Liquid Chromatographic Enantioseparation by a Cellulose Phenylcarbamate Derivative. J. Am. Chem. Soc.1996,118:4036-4048P
    [64]Yashima E, Yamada M, Yamamoto C, Nakashima M, Okamoto Y. Chromatographic Enantioseparation and Chiral Discrimination in NMR by Trisphenylcarbamate Derivatives of Cellulose, Amylose, Oligosaccharides, and Cyclodextrins[1]. Enantiomer. 1997,2:225-240P
    [65]G. Subramanian. A Practical Approach to Chiral Separations by Liquid Chromatography. Second. VCH, Weinheim.2001:25-54P
    [66]Simon I, Scherega H, Manley R. Structure of cellulose.1. Low-energy conformations of single chains. Macromolecules.1988,21:983-990P
    [67]Wolf R M, Francotte E, Lohmann D. Quantitative correlation between calculated molecular properties and retention of a series of structurally related racemates on cellulose triacetate. J. Chem. Soc. Perkin Trans. Ⅱ.1988:893-901P
    [68]Yashima E, Yamada M, Kaida Y, Okamoto Y. Dimethyl-, Dichloro- and Chloromethylphenylcarbamates of Amylose as Chiral Stationary Phases for High-performance Liquid Chromatography J. Chromatogr. A.1995,694:347~354P
    [69]Yamamoto C, Yashima E, Okamoto Y. Bull Computational Studies on Chiral Discrimination Mechanism of Phenylcarbamate Derivatives of Cellulose. Chem. Soc. Jpn.,1999,72:1815-1825P
    [70]Okamoto Y, Aburatani R, Miura S, Hatada K, Liq J. Chiral Stationary Phases for HPLC: Cellulose Tris(3,5-dimethylphenylcarbamate) and Tris (3,5-dichlorophenylcarbamate) Chemically Bonded to Silica Gel. Chromatogr.1987,10:1613-1628P
    [71]Kimata K, Tsuboi R, Hosoya K, Tanaka N. Chemically bonded chiral stationary pahse prepared by the polymerization of cellulose p-vinylbenzoate. Anal. Meth. Instrum.1993, 1:23-29P
    [72]Oliveros L, Lopez P, Minguillon C, Franco P. Chiral chromatographic discrimination ability of a cellulose 3,5-dimethylthylphenylcarbamate/10-undecenoate mixed derivative fixed on several chromatographic matrices. J. Liq. Chromatogr.1995,18:1521-1532P
    [73]Enomoto N, Furukawa S, Ogasawara Y, Akano H, Kawamura Y, Yashima E, Okamoto Y. Preparation of Silica Gel-Bonded Amylose through Enzyme-Catalyzed Polymerization and Chiral Recognition Ability of Its Phenylcarbamate Derivative in HPLC. Anal. Chem. 1996,68:2798-2804P
    [74]Kubota T, Kusano T, Yamamoto C, Yashima E, Okamoto Y. Cellulose 3,5-Dimethylphenylcarbamate Immobilized onto Silica Gel viaCopolymerzati on with a Vinyl Monomer and Its Chiral Recognition Ability as a ChiralStationary Phase for HPLC. Chem. Lett.2001,7:724-725P
    [75]P. Franco, A. Senso, L. Oliveros, C. Minguillon. Covalently bonded polysaccharide derivatives as chiral stationary phases in high-performance liquid chromatography J. Chromatogr.2001, A 906:155-170P
    [76]Francotte E, Huynh D. Immobilized halogenophenylcarbamate derivatives of cellulose as novel stationary phases for enantioselective drug analysis. J. Pharm. Biomed. Anal. 2002,27:421-429P
    [77]Ali I, Aboul-Enein H Y. Impact of immobilized polysaccharide chiral stationary phases on enantiomeric separations. J. Sep. Sci.2006,29:762-769P
    [78]Ikai T, Yamamoto C, Kamigaitio M, Okamoto Y. Immobilized Polysaccharide-Based Chiral Stationary Phases for HPLC. Polym. J.2006,38 (2):91-108P
    [79]Ikai T, Yamamoto C, Kamigaitio M, Okamoto Y. Immobilized Polysaccharide Derivatives:Chiral Packing Materials for Efficient HPLC Resolution. Chem. Rec.2007, 7(2):91-103P
    [80]赵静丹,狄斌,冯芳.纤维素类高效液相色谱手性固定相[J].医学进展.2008,32(10):447-453页
    [81]Ikai T, Yamamoto C, Kamigaito M, Okamoto Y. Efficient Immobilization of Cellulose Phenylcarbamate Bearing Alkoxysilyl Group onto Silica Gel by Intermolecular Polycondensation and Its Chiral Recognition. Chem. Lett.2006,35 (11):1250-1251P
    [82]Ikai T, Yamamoto C, Kamigaito M, Okamoto Y. Immobilization of polysaccharide derivatives on to silica gel Facile syyhesis of chiral packing materials by means of intermolecular polycondensation of triethoxysilyl groups. J. Chromatogr. A.2007,1157: 151-158P
    [83]陈小明,毛希琴,张曾子等.键合型纤维素类手性固定相高效液相色谱法拆分对映异构体[J].化学学报.2002,60(1):93-97页
    [84]秦峰,陈小明,刘月启.聚合反应制备键合型纤页维素-三(4-甲基苯基甲酸酯)衍生物类手性固定相[J].色谱.2004,22(6):569-574P
    [85]Xiao-Ming C, Yamamoto C, Okamoto Y. Infuence of vinyl monomers and temperature on immobilization of Cellulose 3,5-dimethylphenylcarbamate onto silica gel as chiral Stationary phases for high-performance liquid chromatography. Journal of Chromatography A.2006,1104:62-68P
    [86]孙艳伟.新型纤维素衍生物高效液相色谱手性固定相的合成及其手性分离性能研究[D].中国农业大学硕士.2005:14-20页
    [87]Ching C B, Lin B G, Lee E J D, et al. Preparative resolution of praziquantel enantiomers by simulated counter-current chromatography [J]. J. Chromatogr.1993,634:215-219P
    [88]Kustcrs E, Gerber G, Antia F. Enantioseparation of a chiral epoxide by simulated moving bed chromatography [J]. Chromatogr.1995,40:387-393P
    [89]Rundlett K L, Gasper M P, Zhou E Y, et al. Capillary electrophoretic enantiometric separations using the glycopetide antihiotic[J]. Chirality.1996,8:88-107P
    [90]Armstrong D W, Liu Y B, Erhoryott K H. A covalently bonded teicoplunin chiral stationary phase for HPLC enantioseparations[J]. Chirality.1995,7:474-497P
    [91]Armstrong D W, Tang Y, Chan S, et al. Macrocyclic Antibiotics as a New Class of Chiral Selectors for Liquid Chromatography[J]. Anal. Chem.1994,66:1473-1484P
    [92]Hermansson J. Direct liquid chromatographic resolution of racemic drugs using al-acid glyeoprotein as the chiral stationary phase[J]. Chromatogr.1983,269:71-80P
    [93]Domenici E, Bertucci C, Salvadori P, et al. Synthesis and chromatographic properties of a HPLC chiral stationary phase based upon human serum albumin [J]. Chromatogr.1990, 29:170-176P
    [94]Allenmark S, Bomgrcn B, Boren H. Direct liquid chromatographic separation of anantiomers on immobilized protein stationary phases:Ⅲ. Optical resolution of a series of N-aroyl D,L-amino acids by high-performance liquid chromatography on bovine serum albumin covalently bound to silica[J]. Chromatogr.1983,264:63-68P
    [95]Miwa T, Ichikawa M, Tsuno M, et al. Direct liquid chromatographic resolution of racemic compounds. Use of ovomucoid as a column ligand[J]. Chem. Pharm. Bull.1987, 35:682-686P
    [96]Sogah G D Y, Cram D J. Host-Guest Complexation 14 Host covalently bound to polystyrene resin for chromatographic resolution of enantiomcrs of amino acid and ester salts[J]. Journal of the Am. Chem. Soc.1979,101:3035-3042P
    [97]Hyun M H, Jin J S, Lee W. Liquid chromatographic resolution of racemic amino acids and their derivatives on a new chiral stationary phase based on crown ether [J]. J. Chromatogr. A.1998,822:155-161P
    [98]Steffeck R J, Zelechonok Y, Gahm K H. Enantioselective separation of racemic secondary amines on a chiral crown ether-based liquid chromatography stationary phase[J]. J. Chromatogr. A.2002,947:301-305P
    [99]Solms J, Egli R H. Resins with inclusion chambers having cyclo-dextrin-structures [J]. Chim. Acta.1965,48:1225-1228P
    [100]YamamotoC, Hayashi T, Okamoto Y, Kobayashi S. Enantioseparation by Using Chitin Phenylcarbamates as Chiral Stationary Phases for High-Performance Liquid Chromatography. Chem. Lett.2000,12-13P
    [101]达世禄,徐伟,董亚琼.手性高效液相色谱固定相[J].化学通报.1997,2:33-44页
    [102]Hassan Y, Aboul E. High-performance liquid chromatographic enantioseparation of drugs containing multiple chiral centers on polysaccharide-type chiral stationary phases [J]. J. Chromatogr. A.2001,906:185-193P
    [103]孟磊,袁黎明.纤维素及其衍生物作为高效液相色谱手性固定相的研究进展[J].化学试剂,2001,23(4):220-223页
    [104]Ye Y K, Slzingham R W, Wirth M J. Origin of enhanced chiral selectivity by acidic additives for a polysaccharide-based stationary phase[J]. J. Chromatogr. A.2004, 1057(1/2):75-82P
    [105]惠方民,陈永雷,陈兴国等.糖肽大环抗生素作选择试剂的高效液相色谱和毛细管电泳的手性识别机理[J].分析化学.2004,32:964-968页
    [106]Ekborg-Ott K H, Liu Y, Armstrong D W. Highly enantioselective HPLC separations using the covalently bonded macrocyclic antibiotic, ristocetin A, chiral stationary phase[J]. Chirality.1998,10:434-483P
    [107]Daeppen R, Arm H, Meyer V R. Applications and limitations of commercially available chiral stationary phases for high-performance liquid chromatography[J]. J. Chromatogr., 1986,373:1-20P
    [108]Norbert M M, Pilaf R, Wolfgaag L. Separation of enantiomers:needs, challenges, respectives[J]. J. Chromatogr. A.2001,906:3-33P
    [109]Wainer I W. Proposal for the classification of high-performance liquid chromatographic chiral stationary phases:how to choose the right column[J]. Trends in Analytical Chemistry.1987,6(5):125-134P
    [110]敦惠娟,韩小茜,柳春辉等.纤维素-(3,5-二甲基苯基氨基甲酸酯)涂敷氧化钻手性固定相的制备和色谱评价[J].分析化学.2003,8(33):901-905页
    [111]Emmanuelle L, Virginie G, Grahame M, et al. Determination of the enantiomeric purity of nucleoside analogs related to d4T and acyclovir, new potential antiviral agents, using liquid chromatography on cellulose chiral stationary phases[J]. J. Chromatogr A.2002, 972(2):211-219P
    [112]Martine B, Philippe M, Jean Paul R, et al. HPLC quantitation of the four stereoisomers of benzoxathiep in derivatives with cellulose phenyl type chiral stationary phase and circular dichroism detection [J]. J Pharm Biomed Anal.2006,41(2):5442-5481P
    [113]Zdzislaw C, Hanna K, Malgorzata L, et al. Structure-enantioselectivity relationship of hypnotic-sedative 1,4-disubstituted piperazine derivatives on cellulose tris(4-methylbenzoate) chiral stationary phase[J]. Anal Chim. Acta.2005,536(1/2): 7-13P
    [114]Balazs V, Tunde K, Nina G, et al. Chiral separation of thiazide diuretics by HPLC on Chiralcel OD- RH(?), Chiralcel OJ- R(?) and Chirobiotic-TTM(?) phases[J]. J Biochem Biophys Methods.2002,53(1/3):15-24P
    [115]Tekewe A, Singh S, SinghM, et al. Development and validation of HPLC method for the resolution of drug inter mediates:dl-3-phenyllactic acid, dl-O-acetyl-3-phenyllactic acid and (±)-mexiletine acetamide enantiomers [J]. Talanta.2008,75(1):239-245P
    [116]Irma K, Martial K, Thierry H, et al. Comparative HPLC enantioseparation of new chiral hydantoin derivatives on three different polysaccharide type chiral stationary phases [J]. J. Pharm Biomed Anal.2002,27(3/4):457-465P
    [117]Wenjian L, Gan J. High-performance liquid chromatographic separation of imidazolinone herbicide enantiomers and their methyl erivatives on polysaccharide-coated chiral stationary phases[J]. J Chromatogr A.2006,1117(2): 184-193P
    [118]Jr. Champion W L, Lee J, Garrison A W, et al. Liquid chromatographic separation of the enantiomers of trans-chlordane, cis-chlordane, heptachlor, heptachlor epoxide and a-hexachlorocyclohexane with application to small-scale preparative separation[J]. J Chromatogr A.2004,1024(1/2):55-62P
    [119]Ikeda K, Hamasaki T, Kohno H, et al. Direct Separation of Enantiomers by Reversed-phase High Performance Liquid Chromatography on Cellulose Tris(3,5-dimethylphenylcarbamate)[J]. Chem. Lett.1989,210(6):1089-1090P
    [120]Ishikawa A, Shibata T, Liq J. Cellulosic Chiral Stationary Phase Under Reversed-Phase Condition[J]. Chromatogr.1993,16(4):859-878P
    [121]王鹏,江树人,张宏军,周志强.戊唑醇和三唑酮对映体的手性拆分[J].分析化学. 2004,32(5):625-627页
    [122]侯经国,周志强,陈立仁,等.纤维素-三(苯基氨基甲酸酯)涂敷手性固定相的制备及其在反相条件下的手性分离[J].色谱,1998,16(4):337-340页
    [123]Kaida Y, Okamoto Y. Bull. Optical Resolution on Regioselectively Carbamoylated Cellulose and Amylose with 3,5-Dimethylphenyl and 3,5-Dichlorophenyl Isocyanates. Chem. Soc. Jpn.1993,66:2225-2232P
    [124]Kondo S, Yamamoto C, Kamigaito M, Okamoto Y. Synthesis and Chiral Recognition of Novel Regioselectively Substituted Amylose Derivatives. Chem. Lett.2008,37:558-559P
    [125]Shen J, Ikai T, Okamoto Y. Synthesis and Chiral Recognition of Novel Amylose Derivatives Containing Regioselectively Benzoate and Phenylcarbamate Groups. J. Chromatogr. A.2010,1217:1041-1047P
    [126]Ikai T, Muraki R, Yamamoto C, Kamigaito M, Okamoto Y. Cellulose Derivative-based as Chiral Stationary Phase for HPLC. Chem. Lett.2004,33: 1188-1189P
    [127]Ikai T, Chiyo Y, Kamigaito M, Okamoto Y. Immobilization of Polysaccharide Derivatives onto Silica Gel. Facile Synthesis of Chiral Packing Materials by Means of Intermolecular Polycondensation of Triethoxysilyl Groups J. Chromatogr. A,2007,1157: 151-158P
    [128]Chankvetadze B, Yamamoto C, Okamoto Y. HPLC Enantioseparation with Cellulose Tris(3,5-dichlorophenylcarbamate) in Aqueous Methanol as a Mobil Phase. Chem. Lett. 2000:352-353P
    [129]Felix G. Regioselectively modified polysaccharide derivatives as chiral stationary phases in high-performance liquid chromatography[J]. J Chromatogr A,2001,906(1): 171-184P
    [130]Yamamoto C, Hayashi T, Okamoto Y. High-performance Liquid Chromatographic Enantioseparation Using Chitin Carbamate Derivatives as Chiral Stationary Phases. J. Chromatogr. A.2003,1021:83-91P
    [131]Chen X, Qin F, Liu Y, Huang X, Zou H. J. Synthesis of chiral stationary phases with radical polymerization reaction of cellulose phenylcarbamate derivatives and vinylized silica gel. Chromatogr. A.2004,1034:109-116P
    [132]Shen J, Ikai T, Shen X, Okamoto Y. Synthesis and Immobilization of Amylose Derivatives Bearing a 4-tert-Butylbenzoate Group at the 2-Position and 3,5-Dichlorophenylcarbamate/3-(Triethoxysilyl)propylcarbamate Groups at 3- and 6-Positions as Chiral Packing Material for HPLC. Chem. Lett.2010,39:442-444P
    [133]Chankvetadze L, Kartozia I, Yamamoto C, Chankvetadze B, Blaschke G, Okamoto Y. Enantioseparations in Nonaqueous Capillary Liquid Chromatography and Capillary Electro-chromatography Using Cellulose Tris(3,5-dimethylphenylcarbamate) as Chiral Stationary Phase. Electrophoresis. 2002,23:486-493P
    [134]Okamoto Y, Hatano K, Aburatani R. Tris(4-t-butylphenylcarbamate)s of Cellulose and Amylose as Useful Chiral Stationary Tris(4-t-butylphenylcarbamate)s of Cellulose and Amylose as Useful Chiral Stationary Phases for Chromatographic Optical Resolution. Chem. Lett.1989,22:715-718P
    [135]Li J Q, Ikai T, Okamoto Y. Preparation and HPLC application of chiral stationary phase from 4-tert-butylphenylcarbamates of cellulose and amylose immobilized onto silica gel. J. Sep. Sci.2009,32:2885-2891P
    [136]Okamoto Y, Kawashima M, Hatada K. J. Controlled Chiral Recognition of Cellulose Triphenylcarbamate Derivatives Supported on Silica Gel. Chromatogr.,1986,363:173-186P
    [137]Kubota T, Yamamoto C, Okamoto Y. Solvent-Induced Switching of the Macromolecular Helicity of Poly((4-carboxyphenyl)acetylene) Induced by a Single Chiral Amino Alcohol. J. Polym. Sci. Part A:Polym. Chem.2003,41:3703-3737P

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700