用户名: 密码: 验证码:
机敏混凝土的导电性及传感特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
机敏混凝土不仅具有优异的结构性能,而且具有多种功能特性,可用于工程结构健康监测,因而受到工程界日益广泛的关注。机敏混凝土的功能特性大都基于其导电性。为了更深入了解机敏混凝土的导电性及传感特性,本文从导电相、导电路径、导电载流子以及供电方式等方面对机敏混凝土的导电性及传感特性进行了研究。另外,机敏混凝土传感器埋入大体积混凝土结构中时,往往是处于三向应力状态,所以本文又针对机敏混凝土在三向应力状态下的传感特性进行了研究。主要研究内容和创新成果如下:
     1.开展了机敏混凝土导电相的导电性及传感特性研究。研究了连续碳纤维单丝和碳纤维束的应变电阻效应,获得了它们的应变电阻灵敏系数,发现连续碳纤维束的应变电阻灵敏系数比单丝的要大,且随着纤维根数的增多灵敏系数越来越大;同时分析了连续碳纤维束的静态传感特性。
     2.开展了机敏混凝土导电路径研究。首次通过局部叠层碳纤维机敏混凝土的应变电阻效应研究,探讨机敏混凝土的导电路径问题。综合分析了连续碳纤维束、连续和局部叠层碳纤维机敏混凝土以及短切碳纤维机敏混凝土的应变电阻效应,并结合碳纤维束的拉拔实验,得出如下结论:机敏混凝土的3条导电路径(碳纤维、混凝土基体、纤维与基体间的界面)中,“纤维与基体间的界面”这条路径状态的变化是引起其电阻变化的主要原因,界面越多,材料的应变电阻灵敏系数越高,但电阻越不稳定。
     3.开展了机敏混凝土导电载流子研究。首次将Hall效应实验用于研究机敏混凝土的导电性,由此不仅获得了不同纤维含量机敏混凝土的电阻率,以及纤维含量的渗流阈值,而且还知晓了不同纤维含量下机敏混凝土的主要载流子类型、载流子浓度和载流子迁移率,为机敏混凝土导电性研究提供了一种新的、有效的方法。分析了机敏混凝土基于载流子浓度的传感机理;揭示了机敏混凝土电阻测量时出现暂态效应的原因。
     4.开展了不同供电方式下机敏混凝土传感特性及工程应用研究。发现采用不同的供电方式时,机敏混凝土的传感灵敏性和稳定性是不同的;建立了交流供电下机敏混凝土的电学模型;并探讨了机敏混凝土的传感特性在工程上的应用,结果表明,机敏混凝土作为混凝土结构的修补材料,在修补的同时,还可利用其传感特性对修补质量进行在线评估。
     5.开展了机敏混凝土在三向应力状态下的传感特性研究。首次研究了机敏混凝土试样在三轴受力情况下的应变电阻效应,并首次得到如下结论:(1)在弹性阶段,轴向电阻随着轴压的增大而减小,而随着围压的增大而增大;试块的最终受力状态相同时,无论加载次序如何,其电阻相对变化率均近似相等。(2)电阻的变化取决于应变的变化,并且轴向应变是引起试样轴向电阻变化的直接和根本原因,即,不管其它量如何变化,只要影响轴向应变,轴向电阻就会相应地发生变化。(3)同单轴受力时相比,三向应力状态下试样传感灵敏系数有所降低,但线性更好、传感极限提高;两种受力情况下稳定性变化不大,但三向受压时电阻变化滞后较严重。
Smart concrete has not only excellent structural performances, but also prominent multi-functional characteristics, which mostly based on its electric conductivity. So, it is of the increasing concern for structural health monitoring (SHM) of civil engineering structures. For further understanding of the electric conductivity and the strain sensing effect within smart concrete, in this dissertation, dependence of electric conductivity and sensing characteristic of smart concrete on conductive phase, conductive path, conductive carrier, power supply mode, etc. is studied. Further, smart concrete sensors embedded in large-scale concrete structures often work in the stress state of triaxial stress, so, its sensing characteristic under applied triaxial stress has been performed in this dissertation. The main conclusions and innovations are listed as follows:
     1. Research on electric conductivity and sensing characteristic of conductive phase of smart concrete has been carried out. The strain resistance effect of the single continuous carbon fiber and the bundle of carbon fiber was studied. It is found that the gauge factor of carbon fiber bundle is larger than that of single continuous carbon fiber. The gauge factor increases with the count of the carbon fiber increasing.In the meantime, the static sensing properties of single continuous carbon fiber was analyzed.
     2. Research on the conductive paths of smart concrete has been carried out. For the first time, the conductive pathes of smart concrete is explored by the study of strain resistance effect of part-stromatolithic carbon fiber reinforced concrete. The strain resistance effect of continuous carbon fiber bundle, continuous carbon fiber reinforced concrete, part-stromatolithic carbon fiber reinforced concrete and short-cut carbon fiber reinforced concrete was analysed by synthesis. The pull-out tests of carbon fiber bundle from concrete have been also performed. Conclusions were as following:Among the three conductive paths in smart concrete such as paths through carbon fiber, paths through concrete matrix and paths through the interface between fiber and matrix, the change of resistance is mainly caused by the change of interface between fiber and matrix. The more the fiber-concrete interface, the larger the gauge factor is, but the unstabler the electrical property is.
     3. Research on conductive carriers of smart concrete has been carried out. A new effective method, based on the Hall effect experiment, is proposed to obtain the electric resistivity of smart concrete, and the percolation threshold of fiber content. Also, the main type of charge carrier, its concentration and mobility in smart concrete with different fiber content is given. Sensing mechanism of smart concrete based on carrier concentration is analyzed. And the reason of the transient effect, which happens as the resistance of smart concrete is measured, is revealed.
     4. Research on sensing characteristic under different power supply modes and engineering application of smart concrete has been carried out. Sensing characteristic of smart concrete under different power supply modes is studied. The results show different modes of the applied electrical current for electrical resistance measurement of smart concrete can affect both stability and sensitivity of smart concrete. An electrical model of smart concrete under AC power supply has been established. For the application of smart concrete in civil engineering structures, smart concrete can be used as a kind of patching material for concrete structures to evaluate the repair quality online by use of its sensing characteristic, meanwhile, reinforced concrete structures.
     5. Research on sensing characteristic in state of triaxial stress of smart concrete has been carried out. The strain resistance effect of smart concrete under triaxal compression is performed for the first time. The following conclusions are drawn up. (1) During elastic stage, axial resistance in the cylindrical smart concrete specimens decreases with the increasing axial load, while it increases with the increasing confining pressure. When the final strainedcondition is the same, the relative rate of change of the resistance is approximately equal regardless of the loading sequences. (2) Variations of resistance depend on the change of strain greatly, while have no direct link with stress. The axial strain is the direct cause for the change of axial resistance, which has no direct relation with the hoop strain or the volume strain. That is, axial resistance changes with the axial strain, while do not depend on the stain in other directions. (3) Comparing with uniaxial compression, the gauge factor of smart concrete under triaxial stress decreases. However, it owns better linearity and the wider sensing limit. The hysteresis effect is more serious under triaxal compression.
引文
[1]杜善义,冷劲松,王殿富.智能材料系统和结构[M].北京:科学出版社,2001:1-10.
    [2]陈光,崔崇.新材料概论[M].北京:科学出版社,2003:1-7.
    [3]李卓球,宋显辉等.智能复合材料及其结构体系[M].武汉:武汉理工大学出版社,2005:1-50.
    [4]江冰,李兴丹,吴代华.Smart结构及其进展[J].力学进展,1994,24(3):353-361.
    [5]陶宝祺.智能材料结构儿点解释,九五智能(机敏)材料与结构研讨会论文集[C].南京航空航天大学,1995:22.
    [6]程家骐.机敏结构与材料简介[J].物理,1995,24(5):280-284.
    [7]D.D.L. Chung. Cement reinforced with short carbon fibers:multifunctional material [J]. Composites:Part B,2000,31:511-526.
    [8]候作富,李卓球,胡胜良.硅灰对碳纤维导电混凝士电阻率和强度的影响(J).混凝土,2003,(2):26-28.
    [9]Sun Mingqing, Li Zhuoqiu, Mao Qizhao, et al. A study on thermal self-monitoring of carbon fiber reinforced concrete [J]. Cement and Concrete Research,1999,29:769-771.
    [10]Sun Mingqing, Li Zhuoqiu, Liu Qingping, et al. A study on thermal self-diagnostic and self-adaptive smart concrete structures [J].Cement and Concrete Research,2000,30: 1251-1253.
    [11]司琼,董发勤.掺短碳纤维和石墨混凝十的电磁屏蔽性能[J].硅酸盐学报,2005,(7):917-919.·
    [12]郑立霞,宋显辉,李卓球.机敏混凝土结构变形的自诊断[J].华中科技大学学报(自科版),2004,32(4):30-31、55.
    [13]Wen S.,Chung D.D.L.Electromagnetic Interference ShieldingReaching 70dB in Steel Fiber Cement[J].Cement&Concrete Composites,2003:82-86.
    [14]Mingqing Sun, Qingping Liu, Zhuoqiu Li, et al. A study of piezoelectric properties of carbon fiber reinforced concrete and plain cement paste during dynamic loading [J].Cement and Concrete Research,2000,30:1593-1595.
    [15]孙明清,李卓球,刘清平.水泥静浆的力电和电力效应研究[J].混凝土,2001,(11):51-53.
    [16]Sihai Wen, D.D.L. Chung, Carbon fiber-reinforced cement as a strain-sensing coating [J]. Cement and Concrete Research,2001,31:665-667.
    [17]Sihai Wen, D.D.L. Chung. Uniaxial compression in carbon fiber reinforced cement, sensed by electrical resistivity measurement in longitudinal and transverse directions [J]. Cement and Concrete Research,2001,31:297-301.
    [18]刘辉,刘国军.智能材料在混凝土中的应用[J].工业建筑,2005,(6):655-656.
    [19]S.Wang, X.Shui, X.Fu, D.D.L.Chung, Early fatigue damage in carbon fiber composites observe by electrical resistance measurement[J]. J.Materials Science,1998,33:3875-3884.
    [20]Wang Xiaojun, D.D.L.Chung, Strain sensing using carbon fiber [J]. J. Mater. Res.,1999, 14(3):790-802.
    [21]eng-Qiang Shi, D.D.L. Chung, Carbon fiber reinforced concrete for traffic monitoring and weighing in motion[J].Cement and Concrete Research,1999,29:435-439.
    [22]隋莉莉,刘铁军.混凝土技术的新进展—多功能智能混凝土[J].水利水电技术,2006,12(37):30-32.
    [23]Xuli Fu, D.D.L. Chung, Improving the strain-sensing ability of carbon fiber reinforced cement by ozone treatment of the fibers [J]. Cement and Concrete Research,1998,28(2): 183-187.
    [24]Ragos-Marian, D.D.L.Chung, Damage in Carbon fiber reinforced concrete, monitored by electrical resistance measurement, Cement and Concrete Research,2000,30(4):651-659.
    [25]Yunsheng Xu and D.D.L. Chung, Cement-Based Materials Improved by Surface Treated Admixtures [J]. ACI Mater. J.2000,97(3):333-342.
    [26]Sihai Wen, D.D.L. Chung, Carbon fiber-reinforced cement as a strain-sensing coating [J]. Cement and Concrete Research,2001,31:665-667.
    [27]Sihai Wen, D.D.L. Chung. Uniaxial compression in carbon fiber reinforced cement, sensed by electrical resistivity measurement in longitudinal and transverse directions [J]. Cement and Concrete Research,2001,31:297-301.
    [28]Zhao binyuan, Li Zhuoqiu Wu Daihua. Electric resistance measurement of carbon fiber smart concrete[J]. J. Wuhan University of Technology,1995,(4):52-56
    [29]毛起炤,赵斌元,沈大荣等.水泥基碳纤维复合材料压敏性的研究[J].复合材料学报,1996,13(4):8-11.
    [30]毛起炤,杨元霞,沈大荣等.碳纤维增强水泥压敏性影响因素的研究[J].硅酸盐学报,1997,25(6):734-737.
    [31]Mao Qizhao, Chen Pinhua, Zhao Binyuan, et al. A Study on the Compression Sensibility and Mechanical Model of Carbon Fiber Reinforced Cement Smart Material [J]. ACTA MECHANICA SOLIDA SINICA,1997,10:338-344.
    [32]Zhen Mei, D.D.L. Chung, Effects of temperature and stress on the interface between concrete and its carbon fiber epoxy-matrix composite retrofit, studied by electrical resistance measurement[J]. Cement and Concrete Research,2000,30:799-802.
    [33]毛起炤,陈品华,赵斌元,等.小应力下碳纤维增强水泥的压敏性和温敏性[J].材料研究学报,1997,11(3):322-324.
    [34]毛起熠,赵斌元,沈大荣,等.极化效应对碳纤维增强水泥的导电性的影响[J].材料研究学报,1997,11(2):195-198.
    [35]郑立霞.机敏混凝土及其结构的压敏性研究[D].武汉:武汉理工大学,2003.
    [36]张小玉.碳纤维智能层的特性及其场域监测[D].武汉:武汉理工大学,2007.
    [37]刘冬.树脂基碳纤维智能层应变传感特性研究[D].武汉:武汉理工大学,2009.
    [38]唐健.树脂基碳纤维敏感层传感特性的实验研究[D].武汉:武汉理工大学,2010.
    [39]吴菁.基于界面效应的碳纤维水泥基复合材料压敏性研究[D].武汉:武汉理工大学,2008.
    [40]范晓明.机敏混凝土的压敏性及钢筋锈蚀与防护机理研究[D].武汉:武汉理工大学,2009.
    [41]龚学进.碳纤维复合材料在交通越线违规检测中的实验研究[D].武汉:武汉理工大学,2010.
    [42]王秀峰,王永兰,金志浩.碳纤维增强水泥复合材料的机敏性[J].硅酸盐学报,1998,26(3):253-257.
    [43]王秀峰,王永兰,金志浩.碳纤维增强水泥复合材料的制备与性能[J].西安交通大学学报,1997,31(3):108-113.
    [44]张跃,职任涛,朱逢吾,等.碳纤维(LCF)-无宏观缺陷(MDF)水泥基复合材料电学性能的研究[J].材料科学进展,1992,6(4):357-362.
    [45]陈兵,姚武,吴科如.用交流阻抗法研究碳纤维混凝土导电性[J].材料科学与工程,2001,19(1):76-79.
    [46]吴科如,陈兵,姚武.碳纤维机敏水泥基材料性能研究[J]。同济大学学报。2002,30(4):457-463.
    [47]周振君,杨正方.带有碳涂层的尼龙纤维增强混凝土的机敏性研究[J].硅酸盐学报,2001,29(2):192-195.
    [48]B.G. Han, B.Z. Han, J.P. Ou. Experimental study on use of nickel powder-filled Portland cement-based composite for fabrication of piezoresistive sensors with high sensitivity [J]. Sensors and Actuators A:Physical,2009,149(1):51-55.
    [49]H. Li, H.G. Xiao, J. P. OU, Effect of compressive strain on electrical resistivity of carbon black-filled cement-based Composites [J].Cement and Concrete Composites,2006,28(9): 824-828.
    [50]韩宝国,林泽,欧进萍.镍粉复合水泥基材料的压敏性研究[J].稀有金属材料与工程,2009,38(1):266-270.
    [51]简华丽.基于碳纤纤维混凝十(粗骨料)压敏性的乍重监测系统的研究[D].汕头:汕头大学,2004.
    [52]黄满华.基于碳纤维混凝十(粗骨料)压敏性的交通测速系统的研究[D].汕头:汕头大学2005.
    [53]龚振球.基于碳纤维水泥砂浆压敏性的交通监测系统研究[D].汕头:汕头大学,2007.
    [54]M.Sun, Z.Li, Q.Mao, et al. Thermoelectric percolation phenomena in carbon fiber reinforced concrete[J].Cement ang Concrete Research,1998,28(12):1707-1712.
    [55]Sun Mingqing, Li Zhuoqiu, Mao Qizhao, et al. A study on thennal self-monitoring of carbon fiber reinforced concrete [J]. Cement ang Concrete Research,1999,29:769-771.
    [56]Sun Mingqing, Li Zhuoqiu, Liu Qingping, et al. A study on thennal self-diagnostic and self-adaptive smart concrete structures [J]. Cement and Concrete Research,2000,30: 1251-1253.
    [57]张跃,职任涛.碳纤维(LCF)—无宏观缺陷(MDF)水泥基复合材料电学性能的研究[J].材料科学进展,1992,6(4):357-362.
    [58]唐祖全,李卓球,钱觉时.碳纤维导电混凝土在路面除冰雪中的应用研究(J).建筑材料学报,2004,7(2):215-220.
    [59]侯作富,李卓球,杨唐胜.碳纤维导电混凝土融雪化冰的智能控制研究[J].武汉理工大学学报(交通科学与工程版),2005,29(1):64-66.
    [60]Sihai Wen, D.D.L.Chung. Seebeek Effect in Carbon Fiber Reinforced Cement [J].Cement and Concrete Research,1999,29(12):1989-1993.
    [61][61] Sihai Wen, D.D.L. Chung. Enhancing the Seebeek Effeet in Carbon Fiber Reinforced Cement by Using Intercalated Carbon Fibers [J]. Cement and Concrete Research,2000, 30(8):1295-1298.
    [62]Sihai Wen, D.D.L. Chung. Electrical Behavior of Cement-Based Junctions Including the Pn-Junction[J]. Cement and Concrete Research,2001,31(2):129-133.
    [63]Sihai Wen. D.D.L Chung. Carbon Fiber-Reinforced Cement as a Thermistor [J].Cement and Concrete Research,1999,29(6):961-965.
    [64]Chen P, Fu X, D.D.L Chung. Microstructure and mechanical effects of latex, methyl-cellulose and silica fume on carbon fiber reinforced cement[J].AC Material Journal, 1997,94(2):147-155.
    [65]Fathad Reza, Gordon B.Batson, Jerry A·Yamamuro, et al. Volume Electrical Resistivity of Carbon Fiber Cement Composites [J]. ACI Material Journal,2001,98(1):25-35.
    [66]Jie-Fang Li, Hua Ai and Dwight Viehland. Anomalous electromechanical behavior of Portland cement:Electro-osmotically-induced shape change[J]. J. Am. Ceram. Soe.,1995, 78(2):416-420.
    [67]Lijian Yuan, Jie-Fang Li, Yuan and Dwight Viehland. Electrically induced shape change in Hardened cement Pastes and Porous silica gels:the dynamic nature of gel Pore structures during water transport [J]. J. Am. Ceram. Soc.,1995,78(12),3223-3243.
    [68]Z. J. Li, D. Zhang, K. R. Wu. Cement matrix 2-2 piezoelectric composite-Part 1, Sensory effect[J]. Materials and Structures,2001,34(10):506-512.
    [69]Sun Mingqing, Liu QingPing, Li Zhuoqiu, et al. A study of Piezoelectric Properties of carbon fiber reinforced concrete and Plain cement Paste during dynamic loading[J].Cement Concrete Research,2000,30(10):1593-1595.
    [70]Xie, P., Beaudoin, J.J.. Electrically Conductive Concrete and Its Application In Deicing, Advance in Concrete Technology, Proceeding Second CAMET/ACI International Symposium. SP-154, American Concrete Institute, Farmington Hills[J].Mich., 1995, 399-417.
    [71]D.D.L Chung. Cement-matrix composites for thermal engineering [J]. Applied Thermal Engineering,2001,21:1607-1619.
    [72]陈龙.轻集料导电混凝土路面融雪化冰性能研究[D].武汉:武汉理工大学;2010.
    [73]朱四荣.机敏混凝土结构的温差变形自调节研究[D].武汉:武汉理工大学,2004.
    [74]杨元霞,刘宝举.碳纤维水泥基复合材料电性能的若干研究[J].建筑材料学报,2001,4(2):199-202.
    [75]陈兵,吴科如,姚武.碳纤维水泥基复合材料导电性能研究[J].混凝土与水泥制品,2002,(06):36-39.
    [76]姚武,王瑞卿.基于隧道效应的CFRC材料的导电模型[J].复合材料学报,2006,(05):121-125.
    [77]姚武,王瑞卿.外加电场作用下碳纤维增强水泥基材料的输运特性[J].硅酸盐学报,2008,(01):73-77.
    [78]赖耿阳.碳材料化学与工学[M].台北:复汉出版社,1991
    [79]陈兵,吴科如,姚武.碳纤维水泥基复合材料导电性能研究[J].混凝十与水泥制品,2002,(06):36-39.
    [80]姚武,王瑞卿.外加电场作用下碳纤维增强水泥基材料的输运特性[J].硅酸盐学报,2008,(01):73-77.
    [81]Ping Xie, Ping Gu, and J.J. Beaudoin, Electrical Percolation Phenomena in cement Composites containing conductive fibers [J]. Journal of Materials science.1996,31: 4093-4097.
    [82]沈刚,董发勤.碳纤维导电混凝土的性能研究[J].公路,2004,(12):178-182.
    [83]唐祖全.碳纤维机敏混凝土路面结构融雪化冰性能研究[D].武汉:武汉理工大学,2002.
    [84]G.R. Ruschau and R.E. Newnham. J.Compos.Mater.1992,26:2727
    [85]K. Miyasaka, K. Watanabe, E. Jojima, H. Aida, M. Sumita and K. Ishikawa, J. Mater. Sci.,1982,17:1610
    [86]Ming-Qiu Zhang. J. of Mater,Sci.,1995;30:4226-4232
    [87]欧进萍.重大工程结构智能传感网络与健康监测系统研究与应用[J].中国科学基金.2005,1(1):8-12.
    [88]周智,欧进萍.用于土木工程的智能监测传感材料性能及比较研究[J].建筑技术,2002,33(4):270-272.
    [89]Housner GW. Structure control:past, present and future [J]. Journal of Engineering Mechanics,1997,123(9):897-899.
    [90]Chueng M S, Tadros G S, Brown T G et al. Field monitoring and research on performance of the Confederation Bridge [J]. Canadian Journal of Civil Engineering,1997, 24(6):951-962.
    [91]Iwaki H, Yamakawa H, Mita A. Health monitoring system using FBG-based sensors for a 12-story building with column dampers[J]. Proceedings of SPIE-Smart Structures and Materials:Smart Systems for Bridges, Structures, and Highways, Newport Beach, USA, 2001,43(30):471-478.
    [92]李爱群,缪长青,李兆霞等.润扬长江大桥结构健康监测系统研究[J].东南大学学报,2003,33(5):544-548.
    [93]赵翔,李爱群,韩晓林等.润扬大桥结构健康监测系统传感器测点布置[J].工业建筑,2005,35(1):82-85.
    [94]黄蔚,吴代华,刘迎曦.局部劣化弹性薄板的损伤识别研究[J].武汉工业大学学报,1999,21(6):37-39.
    [95]欧进萍,周智,武湛君等.黑龙江呼兰河大桥的光纤光栅智能监测技术[J].土木工程学报,2004,37(1):45-64.
    [96]安冬梅,戈新生.一种混凝土材料损伤模型研究[J].北京机械工业学院学报,2000,15(3):34-38.
    [97]郑立霞,宋显辉,李卓球.机敏混凝土结构梁变形测量时的温度补偿[J].混凝土,2004,15(9):8-9.
    [98]M. Xia, K. Kemmochi, H. Takayanagi. Analysis of filament-wound fiber-reinforced sandwich pipe under combined internal pressure and thermo mechanical loading[J]. Composite Structures,2001, (51):273-283.
    [99]Pandey AK, Biswas M, Samman MM. Damage detection from changes in curvature mode shapes [J]. Journal of Sound and Vibration,1991,145(2):321-353.
    [100]Carino JN, Sansalone M, Impact-echo:A new method for inspecting construction materials [J]. Proc. Conf. NDT&E Manuf. Constr., University of Illinois at Urbana-Champaign,1988, (1):123-129.
    [101]Ohtsu M, Watanabe T. Stack imaging of spectral amplitudes based on impact-echo [J]. NDT & E International,2002, (35):189-196.
    [102]Kim DS, et al. Feasibility study of the IE-SASW ethod for nondestructive evaluation of containment building structures in nuclear power plants [J]. Nuclear Engineering and Design, 2002,(219):97-110.
    [103]傅翔,宋人心等.冲击回波法检测预应力预留孔灌浆质量[J].施工技术,2003,32(11):37-38.
    [104]Hidalgo PA, Jordan RM, Martinez MP. An analytical model to predict the inelastic seismic behavior of shear-wall, reinforced concrete structures [J]. Engineering Structures, 2002, (24):85-98.
    [105]Hyeung-Yun Kim, Woonbong Hwang. Effect of debonding on natural frequencies and frequency response functions of honeycomb sandwich beams [J]. Composite Structures, 2002,55:51-62.
    [106]Maeck J, Abdel Wahab M, De Roeck G. Damage localization in reinforced concrete beams by dynamic stiffness determination [J]. Proceedings of International Model Analysis Conference 17, Kissimmee, Florida, USA,1999, (1):1289-1295.
    [107][103] Maeck J, De Roeck G. Detection of damage in civil engineering structures by dynamic stiffness derivation [J]. Proceedings of Eurodyn 99, Prague, Czech Republic,1999, (1):485-490.
    [108]翟伟廉,陈伟.层及高层框架结构地震损伤诊断的神经网络方法[J].地震工程与工程振动,2002,22(1):43-48.
    [109]李国强,李杰.程结构动力检测理论与应用[M].北京:科学出版社,2002:101-153.
    [110]haw MR, Molyneaux TCK, et al. Assessing bar size of steel reinforcement in concrete using ground penetrating radar and neural networks[J]. Non-Destructive Testing and Condition Monitoring,2003,45(12):813-816.
    [111]Shaw P, Bergstrom J, In-situ testing of reinforced concrete structures using stress waves and high-frequency ground penetrating radar [J]. Non-Destructive Testing and Condition Monitoring,2000,42(7):454-457.
    [112]Nagataki S, Kamada T, atsumoto A. Application of infrared thennography technique for evaluation of cracks in concrete structures [J]. Journal of the Society of Materials Science, Japan,1997,46(2):198-203.
    [113]Akbar Darabi Xavier Maldague. Neural network based defect detection and depth estimation in TNDE[J]. NDT&E International,2002,(35):165-175.
    [114]Maierhofer C, Wiggenhauser, et al. Quantitative numerical analysis of transient IR-experiments on buildings [J]. Infrared Physics and Technology,2004,46(1):173-180.
    [115]Wiggenhauser H.Active IR-applications in civil engineering [J]. Infrared Physics & Technology,2002,(43):233-238.
    [116]Maierhofer Ch, Brink A, Rollig M, et al. Transient thermography for structural investigation of concrete and composites in the near surface region[J]. Infrared Physics& echnology,2002, (43):271-278.
    [117]黄莉.基于红外热像的碳纤维混凝土损伤分析与研究:[博十学位论文].武汉:武汉理工大学,2005:20-50.
    [118]杜红秀,张雄,乔俊莲.红外热像用于水泥砂浆火灾损伤的检测与评定[J].同济大学学报,2000,27(4):422-425.
    [119]Zeng-Qiang Shi and D.D.L. Chung, Carbon Fiber Reinforced Concrete for Traffic Monitoring and Weighing in Motion [J]. Cem. Concr. Res,1999,29(3):435-439.
    [120]Yunsheng Xu and D.D.L. Chung. Cement-Based Materials Improved by Surface Treated Admixtures [J]. ACI Mater,2000,97(3):333-342
    [121]李湘洲,王伟.碳纤维增强混凝土的现状与趋势[J].混凝土,2000,(8):31-33.
    [122]Grellier S, Robain H, Bellier G, et al. Influence of temperature on the electrical conductivity of leachate from municipal solid waste [J]. Hazard. Mater.,2006,137(1): 612-617.
    [123]LaBrecque DJ, Sharpe R, Wood, et al. Small-scale electrical resistivity tomography of wet fractured rocks [J]. Ground. Water,2004,42(1):111-118.
    [124]Feng MQ, De Flaviis F, Kim YJ. Use of Microwaves for Damage Detection of Fiber Reinforced Polymer-Wrapped Concrete Structures [J]. Journal of Engineering Mechanics, ASCE,2002,128(2):172-183.
    [125]Pierri R, Brancaccio A, De Blasio F. Multifrequency Dielectric Profile Inversion for a Cylindrically Stratified Medium [J]. IEEE Trans. Geoscience and Remote sensing,2000,8(4): 716-1724.
    [126]Aruliah DA, Ascher UM, Haber E, et al. A Method for the Forward Modelling of 3-D Electromagnetic Quasi-static Problems [J]. Mathematical Models and Methods in the Applied Sciences,2001, (11):1-21.
    [127]Schueler, Ruediger, Joshi, et al. Damage detection in CFRP by electrical conductivity mapping [J]. omposites Science and Technology,2001,61 (6):921-930.
    [128]陈厚群,丁卫华,党发宁等.混凝土CT图像中等效裂纹区域的定量分析[J].中国水利水电科学研究院学报,2006,4(1):1-7.
    [129]张季如,陈超敏,管昌生.路面水泥混凝土质量检测的X射线衍射分析[J].广西工学院学报,2001,12(4):29-32.
    [130]贺福.碳纤维及其应用技术[M].北京:化学工业出版社,2004:1-10.
    [131]高波,徐自立.碳纤维及其复合材料的发展和应用[J].机电产品开发与创新,2010,23(4):37-39.
    [132]上官倩欠,蔡泖华.碳纤维及其复合材料的发展及应用[J].上海师范大学学报(自然科学版),2008,37(3):275-279.
    [133]NEWELL JA, EDIE D D,FULLER E L. Kinetics of carbonization and graphitization of PBO fiber[J]. Journal of Applied Polymer Science,1996,60:825-832.
    [134]CHAND S. Review carbon fibers for composites [J]. Journal of Materials Science,2000, 35:1303-1313
    [135]李克智,王闯,李贺军,赵建国.碳纤维增强水泥基复合材料屏蔽性能的研究.功能材料.2006,37(8):1235-1238.
    [136]Tang Zuquan, Li Zhuoqiu, Xu Dongliang. Influence of Carbon Fiber Contents on the Temperature Sensibility of CFRC Road Material [J]. Journal of Wuhan University of Technology-Mater. Sci. Ed.2002,17(3):75-77
    [137]Sihai Wen, D.D.L. Chung. Piezoresistivity in continuous carbon fiber cement-matrix composite [J]. Cement and Concrete Research,1999, (29):445-449
    [138]S Chand. Review Carbon Fibers for Composites [J]. Journal of Material Science,2000, 35:1303-1313.
    [139]欧进萍,韩宝国.碳纤维水泥石压敏传感器及其性能研究[J].功能材料.2006,37(11):1851-1855,1858.
    [140]Hou Zuofu, Li Zhuoqiu, Wang Jianjun. Electrical conductivity of the carbon fiber conductive concrete [J]. Journal of Wuhan University of Technology-Mater. Sci. Ed.,2007, 22(2):346-349.
    [141]潘少川,刘耀乙,钱浩生.实验应力分析[M].北京:高等教育出版社.1988.
    [142]陈绍杰,朱珊.大丝束碳纤维应用研究[J].飞机设计.2004,(3):13-16.
    [143]钱水林.碳纤维表面处理技术探讨[J].合成纤维,2008,37(11):17-19.
    [144]王赫,刘亚青,张斌.碳纤维表面处理技术的研究进展[J].合成纤维,2007,36(1):29-31.
    [145]胡志军.碳纤维的表面处理与成纸导电性能[J].纸和造纸,2009,28(12):17-22.
    [146]王大鹏,侯子义.碳纤维表面处理对碳纤维混凝土压敏性的影响[J].黑龙江工程学院学报(自然科学版),2004,18(3):5-7.
    [147]杨仁国.混凝土老化及其对建筑物的影响[J].福建建材,1999,(1):47-48.
    [148]Pu-Wei Chen, D.D.L.Chung, Carbon Fiber Reinforced Concrete as an Intrinsically Smart Concrete for Damage Assessment during Static and Dynamic Loading [J]. Aci Materials journal,1996,93(4):341-350.
    [149]Wen S H, Chuang D D L. Electrical-resistance-based damage self-sensing in carbon fiber reinforced cement [J]. Carbon,2007,45(4):710-719.
    [150]Mao Qizhao, Zhao Binyuan, Shen Darong, et al. Study on the compression sensibility of cement matrix carbon fiber composite [J]. Acta Material Composite Sonica,1996,13 (4): 8-11.
    [151]Sihai Wen, D.D.L. Chung. Piezoresistivity in continuous carbon fiber cement-matrix composite[J]. Cement and Concrete Research,1999, (29):445-449.
    [152]Sun Mingqing, Li Zhuoqiu, Mao Qizhao, et al. Study on the hole conduction phenomena in carbon fiber reinforced concrete [J]. Cement and Concrete Research,1998, 28(4):549-553.
    [153]孙明清.温敏混凝土与智能混凝土结构的研究[D].武汉:武汉工业大学,1997.
    [154]孙明清,李卓球,毛起炤等.CFRC塞贝克效应的主要影响因素[J].材料研究学报,1998,12(3):329-331.
    [155]梅启林,王福玲,黄志雄,等.纳米碳纤维复合材料的制备及其力学性能研究[J].武汉理工大学学报,2007,29(8):1-4.
    [156]郑立霞,宋显辉,李卓球.CFRC材料在准三向受压情况下的压敏性研究[J].硅酸盐通报,2004,(4):40-43.
    [157]唐祖全,李卓球,徐东亮.CFRC路面材料的温敏性研究[J].武汉理工大学学报,2001,23(3):5-7.
    [158]王新新,包中婷,刘春华.电工基础[M].北京:电子工业出版社,2004:60-63.
    [159]安宏,张东壁.均匀线性介质中电容器漏电电阻与电容的关系[J].工科物理,1999,9(5):17-18.
    [160]雀部博之著,曹镛译,导电高分子材料[M].北京:北京科学出版社,1989:145-153.
    [161]侯作富.融雪化冰用碳纤维导电混凝土的研制及应用研究[D].武汉:武汉理工大学,2003.
    [162]毛起炤,杨元霞,李卓球等.外加剂对CFRC导电性能的影响[J].无机材料学报,1997,12(3):415-419.
    [163]候作富,李卓球,胡胜良.硅灰对碳纤维导电混凝土电阻率和和强度的影响[J].混凝土,2003,(2):26-28.
    [164]唐祖全,李卓球,徐尔亮.CFRC路面材料的温敏性研究[J].武汉理工大学学报, 2001,23(3):5-8.
    [165]杨元霞,毛起炤,沈大荣等.碳纤维水泥基复合材料中纤维分散性的研究[J].建筑材料学报,2001,4(1):84-88.
    [166]王从曾.材料性能学[M].北京:高等工业大学出版社,2001年.
    [167]Sihai Wen, D.D.L. Chung, Cement-based materials for stress sensing by dielectric measurement [J]. Cement and Concrete Research,2002,32:1429-1433.
    [168]栋民,何丹,金欣.RDM混凝土结构修补材料[J].中国建材科技,2000,(6):9-10.
    [169]Chiu W K, Koh Y L, Galea S C, et al. Smart structure application in bonded repairs [J]. Composite Structures,2000,50:433-444.
    [170]Bleay S M, Loader C B, Hawyes V J, et al. A smart repair system for polymer matrix composites [J]. composites (Part A),2001,32:1767-1776.
    [171]朱箭.压阻效应在技术中的应用:压阻效应与压阻传感技术[DB].出版地不详:百度文库,2010.11, http://wenku.baidu.com/view/5e9762717fd5360cbaladb32.html.
    [172]牛德芳.力学量敏感器件及其应用[M].北京:科学出版社,1987:36-62.
    [173]吕泳.碳纤维毡及其复合材料传感特性研究[D].武汉:武汉理工大学,2006:52-60.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700