用户名: 密码: 验证码:
船舶电力系统的非线性鲁棒控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
不同于陆上电力系统,船舶电力系统的推进负载对电网的稳定性有着明显的影响。船舶电力系统中的动/静态负载与发电机系统形成强非线性、强耦合的动态特征。船舶电力系统控制问题属于一类典型的非线性系统控制研究范畴,研究船舶电力系统的非线性控制问题具有重要的理论价值和现实意义。为此,本文基于鲁棒非线性控制理论,对包含推进负载的船舶电力系统进行稳定性分析,探讨船舶电力系统的非线性控制问题,旨在提高船舶电力系统的动态品质。具体研究工作如下:
     第一,建立包含电力推进负载的柴油发电机组的非线性数学模型,该模型可以反映负载与发电机的频率和电压的影响,充分体现了船舶电力系统的变量耦合关系。
     第二,基于对柴油发电机组的非线性数学模型及其动/静态负载的相互耦合的非线性动态结构特性的深入分析,采用Backstepping控制技术与L2干扰抑制相结合的控制设计思想,提出发电机组调速、调压的非线性控制策略。由于充分考虑了系统的非线性特性,该控制器在保证系统稳定的条件下,能有效地抑制干扰对发电机系统功角和频率的影响。仿真表明,给系统突加动/静态负载的情况下,该控制器能有效地抑制负载对系统性能的影响。
     第三,为了获得更加简洁的控制器结构,基于Hamilton能量理论控制方法,研究了具有螺旋桨推进负载的船舶电力系统的励磁与调速的综合控制问题。通过构造Hamilton能量函数,给出保持系统稳定的综合控制律。特别地,不同于已有的结果,该控制律清晰地给出了螺旋桨转速对控制器性能影响的函数关系。
     第四,提出基于Hamilton能量函数方法的带有SMES的舰船电网的综合控制策略。电力推进及新概念武器的引入对舰船电力系统功率分配提出更高的要求,SMES能够四象限范围内对系统有功和无功进行调节。在充分分析了柴油机组的非线性数学模型、SMES及其推进电机负载的相互耦合的非线性动态结构特性的基础上,通过预置状态反馈完成了耗散Hamilton实现,然后基于耗散实现设计了SMES、调速与励磁综合控制器,该控制器结构简单,物理意义明确。
     第五,提出多机并联系统的稳定控制问题,建立包含螺旋桨负荷的多机结构保留系统模型,即微分代数系统,并利用Hamilton能量函数方法,研究了具有螺旋桨推进负载的船舶多机电力系统的励磁与调速的综合控制问题,通过构造Hamilton能量函数,给出保持系统稳定的综合控制律。最后对双机并联系统进行仿真,仿真验证了控制器的鲁棒性。
Compared to the land power systems, the stability of ship power systems have been influenced by the propeller loads obviously. Furthermore, the dynamic/static loads and generators have high nonlinear and coupling interactions. Therefore, based on the method of nonlinear robust control, the stability analysis and nonlinear control problems for ship power systems with thruster load are investigated to increase dynamic quality of ship power systems.
     Firstly, a nonlinear mathematical model of diesel generator set is established which contains thruster load. The model reflects the impacts of loads and frequency and voltage of generators and shows the relationships of variable coupling of ship power systems.
     Secondly, the nonlinear relationships among the generators and the dynamic/static loads are deeply analyzed based on mathematical models. Then the speed regulation controller, voltage regulation control and comprehensive coordination control is designed by using Backstepping techniques and L2 disturbances attenuation methods, which seriously reduces the impact of disturbances. Lastly, simulations show that the designed controller is effective to reject the unknown external disturbances when in the case of increase dynamic/static loads.
     Thirdly, based on Hamilton energy theory control approach, a simple controller structure is obtained. The problem of integrated coordination control involved in excitation and speed-adjusting of ship power systems with propeller loads is investigated. A stabilizing integrated controller is proposed by constructing Hamilton energy function. In particular, the obtained control law explicitly formulates the function relations of the influence of propeller rev on control performance, as different from the existing results.
     Fourthly, a coordinated control problem of ship power system with SMES is addressed based on Hamilton function method. The higher performance is required for power assignment of ship power systems since power thruster loads and new styles of weapons are introduced, SMES can effectively adjust active power and reactive power in four quadrant directions. Firstly, nonlinear modeling of marine diesel engine generator, SMES modeling, and thruster load modeling, coupling relations among them are analyzed sufficiently. Then Hamilton realization of the modeling of the generator is obtained by a pre-feedback technique. As such, the controllers with SMES are designed to perform speed adjustment, excitation adjustment via Hamilton dissipation theory. The designed controllers have simple structure and tangible physical meanings.
     Fifthly, this section focuses on the modeling and the problems of integrated coordinate control of ship multi-generator power systems with propeller loads. A control algorithm is developed based on Hamilton energy theory which produces a coordinate control law involved in excitation and speed-adjusting. A stabilizing integrated controller is proposed by constructing Hamilton energy function. A paralleling system of dual machine is simulated. Simulation shows the robustness of the proposed controller.
引文
[1]倪以信,陈寿孙.动态电力系统的理论和分析,清华大学出版社,2002:1-180.
    [2]刘梦欣.多机电力系统励磁和广义Hamilton实现控制方法与应用.上海交通大学硕士学位论文,2008:1-60.
    [3]何斌.微分代数方程Hamilton系统及其在电力系统稳定控制中的应用研究.上海交通大学博士研究生学位论文,2007:1-40.
    [4]安德逊P.M,电力系统的控制与稳定.北京:水利电力出版社,1979:1-360.
    [5]刘笙,汪静.电力系统暂态稳定的能量函数分析.上海交通大学出版社,1996:10-50.
    [6]Hiskens I A,Hill D J.Energy functions,transient sability and voltage behaviour in power systems with nonlinear loads,IEEE power engineering review,1989:1525-1533.
    [7]Chiang H D,Chia C C,Cauley G. Direct stability analysis of elecrtic power systems using energy functions:theory,applications,and perspective.Proceedings of the IEEE,1995:1497-1529.
    [8]Bergen A R,Hill D J.A structure preserving model for power system stability analysis.IEEE Transactions on power apparatus and systems,1981,100(1):25-35.
    [9]Nikos A T,Aristotle A,Pravin P V.A structure preserving energy function for power system transient stability analysis.IEEE transactions on circuits and systems.1985,32(10):1041-1049.
    [10]Robert J D,Ian A H.lyapunov function for multi-amchine power systems with generator flux decay and voltage dependent loads.IEEE Transactions on circuits and systems:fundamental theoty and aplications.1997,44(9):796-812.
    [11]Natarajan N,Mohamed T M.A generailized energy function for transient stability analysis of power systems.IEEE Transactions on circuits and systems,1984,31(7):637-645.
    [12]Hao J,Wang J,Chen chen.Nonlinear excitation conrol of multi-machine powwer systems with structure preserving models based on Hamiltonian system theory.Electric power systems research.2005,74:401-408.
    [13]Liu Y H,Chen T J,li W C.JEnergy-based L2 disturbance attenuation excitation control of differential algebraic power systems.IEEE transactions on circuits and systems,2008:1081-1085.
    [14]Liu Y H,Li W C.Decentralized excitation control of multi-machine multi-load power systems using Hamiltonian function method.Acta automatica sinica,2009:919-925.
    [15]He B,Zhang X B,Zhao X Y.Transient stabilization of structure preserving power systems with excitation control via energy-shaping.Electrical power and energy systems,2007:822-830.
    [16]Hao J,Chen C,Shi L B.Nonlinear decentralized disturbance attenuation excitation control for power systems with nonlinear loads based on the hamiltonian theory.IEEE Transactions on energy conversion,2007,22(2):316-324.
    [17]Lu Q,Sun Y Z.Nonlinear stabilizing control of multimachines systems,Power enqineering review IEEE,1989,9:56-57.
    [18]栗春,姜齐荣,王仲鸿等.静止无功补偿器的非线性控制器的设计.电网技术,1998.22(6):34-38.
    [19]马幼捷,周雪松,迟正刚,基于直接反馈线性化理论的微机非线性励磁控制器.控制理论与应用,1997,14(6):857-861.
    [20]马幼捷,周雪松,静止无功补偿器非线性控制对系统功角稳定的影响.中国电机工程学报,2003.23(12):84-88.
    [21]阎彩萍,用精确线性化方法设计的SVC非线性控制器,1993,清华大学学报,1993,33(1):18-24.
    [22]韩绪鹏,李志民,孙勇.基于反馈线性化的TCSC滑模控制.控制工程,2010,17(1):51-54.
    [23]彭晓涛,程时杰,王少荣,基于反馈线性化的超导磁储能装置控制器研究.电力自动化设备,2006:6:5-8.
    [24]周双喜,汪兴盛.基于直接反馈线性化的非线性励磁控制器.中国电机工程学报,1995,15(4):281-288.
    [25]陈铁,舒乃秋,基于直接反馈线性化的非线性励磁控制策略的研究.电力科学与工程,2005,1:第30-32页.
    [26]于达仁,毛志伟.基于直接反馈线性化的非线性励磁控制的容错性研究.电力系统自动化,1997,21(12):1-5.
    [27]颜伟,吴文胜,华智明等,SSSC非线性控制的直接反馈线性化方法.中国电机工程学报,2003,23(03):65-68.
    [28]王杰,阮映琴,傅乐.计及动态负荷的电力系统静止无功补偿器与发电机励磁控制.中国电机工程学报,2004,24(6):24-29.
    [29]Sekoguchi M,Konishi H,Goto M.Decentralized nonlinear stabilizing control using state-space linearization.Power enqineering society winter meeting,2002,2:1240-1245.
    [30]Wei H.Mei S W.Lu Q.Nonlinear adaptive decentralized stabilizing control for the governors of multimachine system s.Inteli gent control and automation,2002,2:1065-1068,
    [31]张风营,朱守真,基于强跟踪滤波器的自适应励磁控制器.中国电机工程学报,2005(23):31-35.
    [32]Wang M Y,Ji F,Wei G.Simulation analysis of adaptive power control method in TD-SCKMA system. Systems and information engineering design symosium IEEE,2007:1-4.
    [33]Johansson N,Angquist L,Nee H P.An adaptive controller for poower system stabilityimprovement and power flow control by means of a thyristor switched series capacitor(TSSC).Power systems,IEEE Transactions on volume,2010,25:381-391.
    [34]宋运忠,赵光宙,齐冬莲,电力系统混沌振荡的自适应补偿控制.电力系统及其自动化学报,2006(04):5-8.
    [35]Wang L,Cheung H,Hamlyn A.Model prediction adaptive control of inter-area oscillations in multi-generators power systems.Power and energv society general meeting,2009,10:1-7.
    [36]付俊,赵军与乔治·迪米罗夫斯基,静态无功补偿器鲁棒控制的一种新自适应逆推方法.中国电机工程学报,2006:10:7-11.
    [37]Ritonja J,Dolinar D,Grcar B.Simple adaptive control for a power-system stabiliser.Control theory and applications,2000,147:373-380.
    [38]Jain S,Khorrami F,Fardanesh B.Adaptive nonlinear excitation control of power systems with unknown interconnections.Control systems technology,1994,2:436-446.
    [39]王明俊,大电网继电自动装置的隐藏故障、脆弱性和适应性问题.电力自动化设备,2005(03):1-5.
    [40]耿博,姜睿,罗贵明,新型自适应控制算法及在电力系统中的应用.哈尔滨工业大学学报,2008(11):1796-1799.
    [41]周汉成,胡国根,许克明,多机系统中同步发电机的励磁自适应控制研究.贵州工学院学报,1990(03):34-43.
    [42]Demiroren A,Tacer M E.Parameter adaptive control for stability enhancement of multimachine power system.Electrotechnical conference,1994,3:984-987.
    [43]葛友,李春文,多重滑模鲁棒励磁控制器设计.电力系统自动化,2001,19:6-10.
    [44]Rintamaki M,Koivo H,Hartimo I.Adaptive closed-loop power control algorithms for CDMA cellular communication systems.Vehicular Technology.IEEE,2004,52:1756-1768,
    [45]王宝华,逆推自适应滑模励磁控制器设计.电力自动化设备,2009,06:54-57.
    [46]韩绪鹏等,基于反馈线性化的TCSC滑模控制.控制工程,2010,01:51-54.
    [47]王江,曾启明,基于奇异摄动方法的同步发电机二阶滑模控制器的设计(英文).中国 电机工程学报,2003,10:142-147.
    [48]余向阳.自适应积分逆推滑模励磁控制研究.中国电机工程学报,2009,10:74-77.
    [49]Liu W X,Venayagamoorthy G K,Wunsch D C.Adaptive neural network based powersystem stabilizer design.Neural networks,2003,4:20-24.
    [50]Sharaf A M,Lie T T,Gool H B.Neural network based power system,stabilizers.Artificial neural networks and expert systems,1993:306-309.
    [51]赵建民,管霖,程时杰,基于神经网络的电力系统控制器的在线自学习研究.电力系统自动化,1998,07:35-39.
    [52]卢建昌,韩红领,基于灰色神经网络组合模型的日最高负荷预测.华东电力,2008,02;60-63.
    [53]Chen C J,Chen T C.Power system stabilizer for multi-machine using genetic algorithms based on recurrent neural network.Innovative computing information and control,2007:276-280.
    [54]李培强.神经网络负荷模型的综合能力研究.湖南大学学报(自然科学版),2009,12:40-44.
    [55]刘艳,顾雪平,李军,用于暂态稳定评估的人工神经网络输入特征离散化方法.中国电机工程学报,2005,15:56-61.
    [56]唐蕾,陈维荣,电力系统负荷建模中的小波神经网络新技术.电力自动化设备,2003,03:72-74.
    [57]戴先中.神经网络逆系统及其在电力系统控制中的应用.电力系统自动化,2001,03:11-17.
    [58]高炜欣,罗先觉,基于Hopfield神经网络的多阶段配电变电站的规划优化.电工技术学报,2005,5:58-64.
    [59]沈沉,孙元章与卢强,运用人工神经网络进行电力系统运行参数的在线估计.电力系统自动化,1997(09):4-11.
    [60]Wei S,Nakamura K,Sone M.Neural network based power system trasient stability criterion using DSP-PC system.Neural Networks to power systems,1993:136-141.
    [61]尤勇,盛万兴与王孙安,一种新型短期负荷预测模型的研究及应用.中国电机工程学报,2002,22(09):15-18.
    [62]杜一,郁惟镛,采用神经网络和专家系统的变电站故障诊断系统.电力系统及其自动化学报,2003,15(5):28-31.
    [63]Mei S W,Feedback Linearization H∞ Control and Its Applicationto Excitation Systems.Tsinghua Science and Technology,1999,4:1701-1706.
    [64]李树荣,王钊,基于H∞控制理论的2-DOF内模控制器设计及其在电力系统中的应用. 控制理论与应用,2003,01:81-84.
    [65]孙勇,李志民,于继来,基于最小熵H∞控制的降阶电力系统稳定器设计.吉林大学学报(工学版),2010,2:523-528.
    [66]莫逆,梅生伟,车文妍,提高电力系统小干扰稳定性的全状态H∞控制器.清华大学学报(自然科学版),2009,07:929-933.
    [67]蔡超豪,考虑时滞影响的汽轮发电机汽门开度的广域H∞控制.电力科学与工程,2009,02:5-9.
    [68]张秀华,张庆灵,谢彦红.一类鲁棒非线性励磁控制器设计的新方法.东北大学学报,2004,1:17-19.
    [69]卢强,李树荣,孙春晓,电力系统鲁棒励磁控制器设计.控制理论与应用,1996,04:482-488.
    [70]张冰,姜长生,刘维亭,基于LMI理论的舰船电力系统稳定器的设计.中国造船,2006,1:72-77.
    [71]刘碧玉,桂卫华,陈宁,一类关联电力系统的时滞相关分散H∞控制.控制与决策,2007,6:702-706.
    [72]徐丽杰,王玮,多机电力系统H∞分散鲁棒励磁控制器的优化设计.电工技术学报,2004,10:42-46.
    [73]万健如.一种灵敏度最小化的电能质量同步补偿方法.中国电机工程学报,2006,19:76-80.
    [74]Lu Q.Recursive design of nonlinear H∞ excitation controller.Science in China(Series E:Technological Sciences),2000,1:23-31.
    [75]席在荣,程代展,多机非线性系统分散汽门H_∞控制器.电力系统自动化,2002,21:7-11.
    [76]张秀华,张庆灵,靖新,具有鲁棒微分代数模型的励磁控制器设计.电机与控制学报,2005,9(3):229-233
    [77]汤洪海,李春文,多机电力系统H∞滑模分散鲁棒励磁控制器设计.电力系统及其自动化学报,2007,4:100-105.
    [78]孙运全等,H2/H∞保性能控制理论在静止无功发生器控制中的应用.控制理论与应用,2009,6:641-646.
    [79]田立军,郭雷,陈珩,H∞电力系统稳定器的设计.中国电机工程学报,1999,19(03):59-63.
    [80]阮映琴,王杰,SVC与发电机励磁无源协调Backstepping控制.电工技术学报,2007,6:135-140.
    [81]王智涛.基于无源控制方法的TCSC控制器及其仿真研究.电力系统自动 化,2003,1:11-15.
    [82]孙元章.基于广义哈密顿系统理论的汽轮调速器分散无源控制.电力系统自动化,2002,3:6-9.
    [83]Sun Y Z,Cao M,Shen T 1.Passivation controller design for turbo-generators based on generalised hamiltonian system theory.Generation,Transmission and distribution.2002,149:305-309.
    [84]Escobar G,Sira R H,A passivity based-sliding mode control approach for the regulation of power factor precompensators.Decision and control,1998,3:2423-2424.
    [85]Xue H,Wang Y F,Yang F.Adaptive passivity-based control strategies of doubly fedinduction wind power generator systems.Power elctronics for distributed generation systems,2010:731-734.
    [86]Kwasinski A,Krein P T.Stabilization of constant power loads in Dc-Dc convertersusing passivity-based control.Telecommunications energy conference,2007:867-874.
    [87]Qian P,Xu B.Passivity-based control strategies of doubly fed induction wind powergenerator systems.Information science and engineering,2010:395-399.
    [88]Passivity-based control for three-phase four-leg shunt active ower filter.Control andautomation,2009:2106-2110.
    [89]刘艳红,宋伟华,王杰,包含SVC和非线性负荷的电力系统耗散实现与控制.控制理论与应用,2010,1:47-52.
    [90]兰海,基于耗散系统实现电力系统励磁鲁棒非线性控制.电机与控制学报,2003,3:255-259.
    [91]兰海,李殿璞,SVC与发电机励磁鲁棒非线性协调控制.哈尔滨工程大学学报,2004,2:183-187.
    [92]兰海,李殿璞,龚伟等.通过干扰抑制实现电力系统励磁鲁棒非线性控制.哈尔滨工程大学学报,2003,4:402-406.
    [93]兰海,徐殿国,刘胜等,基于耗散理论的TCSC与励磁协调控制研究.系统仿真学报,2006,8:2230-2234.
    [94]关天祺,梅生伟,徐政.分散励磁与超导储能装置的干扰抑制控制,电力系统自动化,2002,1:1-6.
    [95]Shen T L,Mei S W,Lu Q.Robust nonlinear excitation control with L_2 disturbance attenuation for power systems.Decision and control,1999,3:2491-2492.
    [96]Lu Q,Mei Shengwei,Hu W.Nonlinear decentralized disturbance attenuation excitation control via new recursive design for multimachine power systems.Power systems,2001,16:729-736.
    [97]Wang B,Ji H H,Li X M.Nonlinear robust control of dual-excited hydro turbine generator based on hamiltonian energy theory. Control and automation,2007,10:691-695.
    [98]孙元章,彭疆南,基于Hamiltonian理论的受控电力系统暂态稳定分析方法.电网技术,2002,9:1-6.
    [99]Sun Y Z,Li X,Song Y H.A new lyapunov function for transient stability analysis ofcontrolled power systems. Power engineering society winter meeting,2000,2:1325-1330.
    [100]刘艳红,李春文,王玉振,基于Hamilton函数方法的多机多负荷电力系统分散励磁控制(英文).自动化学报,2009,7:919-925.
    [101]马进,席在荣,梅生伟,基于哈密顿理论的发电机汽门鲁棒非线性控制器设计.电力系统自动化,2001,18:7-10.
    [102]王玉振,葛树志,程代展,广义Hamilton系统的观测器及基于观测器的H∞控制设计.中国科学E辑:信息科学,2004,12:1313-1328.
    [103]Sun Y Z,Cao M,Shen T L.Passivation controller design for turbo-generators based ongeneralised hamiltonian system theory. Generation,Transmissi on and distribution,2002,149(3):305-309.
    [104]Liu Q J,Sun Y Z,Shen T L.Adaptive nonlinear co-ordinated excitation and STATCOM controller baed on hamiltonian structure for multimachine power system stability enbancement.Control theory and aplications,2003,150(3):285-294.
    [105]梁志珊,谢争先,张化光,同步发电机励磁和ASVG哈密顿系统建模与协调控制.电机与控制学报,2007,5:440-444.
    [106]程代展.广义Hamilton控制系统的几何结构及其应用.中国科学E辑:技术科学,2000.4:341-355.
    [107]王玉振,广义Hamilton控制系统理论:实现、控制与应用.北京:科学出版社,2007:5-66.
    [108]孙郁松,三峡水轮发电机组调速系统的非线性鲁棒控制及工程实用化研究,清华大学博士学位论文,2001:1-60.
    [109]刘艳红,李春文.基于Hamilton函数方法的非线性微分代数系统反馈控制,中国科学E辑.信息科学,2006:825-835.
    [110]刘孙贤.基于Hamilton能量函数含SVC的电力系统非线性控制.电力系统及其自动化学报,2006,4:24-28.
    [111]Wang Y Z,Feng G,Cheng D Z. Adaptive L2 disturbance attenuation control of multi-machine power systems with SMEX units,Automatica,2006,42:1121-1132.
    [112]Xi Z R, Cheng D Z,Lu Q. onlinear decentralized controller design for multimachine power systems using Hamiltonian function method, Automatica,2002,38:527-534.
    [113]Xi Z R,Lam James.Stabilization of generalized Hamiltonian systems with internally generated energy and applications to power systems,Nonlinear analysis:real world aplications,2008,9:1202-1223.
    [114]刘艳红,李春文.电力系统微分代数模型耗散Hamilton实现.控制与决策,2007,4:403-407.
    [115]仲悟之,汤涌,电力系统微分代数方程模型的暂态电压稳定性分析.中国电机工程学报,2010,25:10-16.
    [116]朱志宇,刘维亭,蔡立勇,基于输出延迟反馈方法的船舶电力系统混沌控制.船舶工程,2009,6:36-40.
    [117]刘维亭,王德明,基于Riccati法的舰船电力系统鲁棒励磁控制研究.电机与控制学报,2004,4:338-341.
    [118]刘维亭,李文秀,舰船电力系统分散鲁棒励磁控制器的研究.船舶工程,2003,3:46-50.
    [119]朱志宇,刘维亭,蔡立勇,船舶电力系统自适应Backstepping混沌控制.中国造船,2010,2:169-174.
    [120]Yan C,Venayagamoorthy G K,Corzine K.Hardware implementation of an ais-based optimal excitation controller for an electri ship.Industry applications:2011,47:1060-1070.
    [121]孙才勤,郭晨,史成军,大型轮机模拟器中船舶电力系统的建模与仿真.系统仿真学报,2009,11:3251-3254.
    [122]程木军,孙才勤,智能PID控制器在船舶发电机电压控制中的应用.大连海事大学学报,2006,2:5-8..
    [123]沈智鹏,郭晨,孙才勤,混合智能控制技术在船舶电站励磁控制中的应用.中国航海,2003,1:62-66.
    [124]宋克明,黄曼磊,魏志达,船舶电站柴油发电机组H2/H∞控制器的研究.系统仿真技术,2007,4:221-224.
    [125]黄曼磊,王常虹,船舶电站柴油发电机组的非线性数学模型.哈尔滨工程大学学报,2006,1:15-19.
    [126]黄曼磊,李殿璞,船舶电站柴油发电机组H∞综合控制器的研究.中国造船,2004,45(1):45-53.
    [127]黄曼磊,王常虹,船舶电站柴油机非线性H∞调速器.电工技术学报,2006,10:56-61.
    [128]黄曼磊,柴油发电机组H,励磁控制器的研究.中国造船,2009,4:156-164.
    [129]黄曼磊,宋克明,魏志达,柴油发电机组非线性H2/H∞调速器的研究.控制理论与应用,2009,8:873-878.
    [130]黄曼磊,王常虹,船舶电站柴油机H∞调速器的仿真研究.电机与控制学报,2006,2:125-129.
    [131]宋克明,黄曼磊,魏志达,船舶电站柴油发电机组混合H2/H∞调速器的研究.舰船电子工程,2008,3:118-121.
    [132]魏志达,黄曼磊,宋克明,混合H2/H∞励磁控制器在船舶同步发电机组并联中的应用.船电技术,2008,1:30-34.
    [133]宋克明,黄曼磊,魏志达,基于H2/H∞调速器的柴油发电机组并联仿真研究.船舶工程,2008,4:51-53.
    [134]孙勇,李志民,于继来,船舶电站柴油机最小熵H∞调速控制器的设计.电力系统及其自动化学报,2009,1:8-11.
    [135]方勇纯,卢桂章,非线性系统理论.清华大学出版社,2009:31-43.
    [136]刘小河,非线性系统分析与控制引论,清华大学出版社,2008:95-177.
    [137]胡跃明,非线性控制系统理论与应用,国防工业出版社,2005:36-53.
    [138]贺昱曜,闫茂德.非线性控制理论及应用.西安电子科技大学出版社,2007:42-100.
    [139]Khalil H.K.Nonlinear systems.,Publishing House of Electronics Industry,2007:3-55.
    [140]焦晓红,关新平.非线性系统分析与设计.电子工业出版社,2008:48-92.
    [141]黄曼磊,鲁棒控制理论及应用,哈尔滨工业大学出版社,2007:104-175.
    [142]梅生伟,申铁龙,刘志康.现代鲁棒控制理论与应用.北京:清华大学出自版社,2003.120-155.
    [143]黄曼磊.H∞控制理论在船舶电站中的应用研究.哈尔滨工程大学博士学位论文,2003:1-40.
    [144]赵鑫.基于L2增益的直线进给系统的鲁棒控制器研究.沈阳工业大学硕士学位论文,2008,1:3-30.
    [145]马进,席在荣,梅生伟.基于Hamilton能量理论的发电机汽门与励磁非线性稳定控制器的设计.中国电机工程学报,2002,22(5):88-93
    [146]张增强.基于Hamilton理论的电力系统非线性控制.西安理工大学硕士学位论文,2009:4-50.
    [147]张靠社,张增强,杨宝杰.基于Hamilton能量函数含TCSC的电力系统非线性控制.陕西电力,2009:23-26.
    [148]庞科旺.船舶电力系统设计.机械工业出版社,2010:1-100.
    [149]张兴华.永磁同步电机的模型参考自适应反步控制.控制与决策,2008.23(3):341-345.
    [150]李殿璞,王宗义,池海红.螺旋桨特性四象限Chebyshev拟合式的建立与深潜艇直航全工况运动仿真的实现.2002,14(7):935-951.
    [151]杨琳.电力推进系统对船舶电网稳定的影响研究.哈尔滨工程大学硕士学位论文,2009,12:30-60.
    [152]宫强.粒子群优化算法在船舶电站控制中的应用研究.哈尔滨工程大学硕士学位论文,2006,3:5-30.
    [153]杨晓丽.吊舱式电力推进系统的动态仿真的研究.上海海事大学硕士论文,2004,07:8-48.
    [154]拉弗林契叶夫B M.船舶推进器,高等教育出版社,1960:10-30.
    [155]华南工学院船舶船厂电气自动化教研组,船舶电力系统.北京:国防工业出版社,1982:2-40.
    [156]戴陶珍.超导磁储能系统在舰船电力系统中的应用前景及其关键课题.中国工程科学,2002,6:16-19.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700