用户名: 密码: 验证码:
大规模水电站群短期联合优化调度研究与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
经过60多年特别是近十几年的水电开发建设,我国水电事业实现了突飞猛进的发展,形成了由巨型梯级水电站群组成的大规模省级电网甚至区域电网水电系统。这类水电系统普遍具有电站数量多、装机容量大、流域特性差异大、输送电范围广、水力电力联系复杂等运行特点,给区域电网、省级电网、流域集控中心的运行和管理带来极大挑战,主要表现在:高水头多振动区等复杂约束的出现使得巨型水电站和电网的安稳运行面临更多的威胁、各级输电线路的运行极限要求导致省级电网调峰矛盾更加突出、复杂水电站群在运行特点与需求上的较大差异使得传统单一目标的建模方法很难满足工程实际要求、区域电网内资源与电力消费分布不均迫切需要进行大规模的跨省电力输送等方面。因此,本文以一个区域电网,五个省级电网以及多个流域梯级的实际工程项目为研究背景,结合区域电网、省级电网、巨型流域梯级的各自运行特点和相互之间的协调运作关系,深入分析当前水电调度面临的关键新颖课题与重大问题,提出了多种切实可用的求解算法与策略,主要成果如下:
     (1)提出了基于机组组合方法的巨型梯级水电站群短期负荷分配模型。该模型以梯级水电站群的有效发电出力最大为目标,通过参考日负荷变化过程引入了出力权重系数,以确定不同时段的电站有效出力,使水电站尽量按照负荷峰、平、谷的优先顺序发电。提出了以机组组合为基础的模型求解方法,在求解过程中,分别利用组合数学理论与动态规划技术生成各种组合机组、以及组合机组的振动区与最优发电特性曲线,同时依据巨型发电机组的振动区与水头之间的递增变化关系,给出了快速的振动区避开策略,并将其引入启发式搜索过程指导水电站的出力分配。在红水河流域13座水电站的应用结果显示,该模型与求解方法能高效地得到满足工程实际需求的优化结果。
     (2)提出了基于逐次逼近关联搜索算法的省级水电系统调峰电量最大模型。该模型考虑了省级电网存在的多级分区出力限制与复杂电站运行约束,期望通过水电机组对负荷峰值的调节作用,使余留给火电机组的负荷需求尽量平稳不变。将逐次逼近优化与关联搜索算法相耦合进行模型求解,依靠前者的降维优点与后者的强寻优能力,解决短期调度中面临的维数灾、与时段耦合约束和全局性控制目标导致的搜索效率下降等问题;对于多级分区出力约束,引入先松弛后修正的处理策略,在简化原问题的同时,可以基本保留算法的最优化结果。通过云南电网水电系统的实际运行检验,计算结果能够切实满足电网的调峰需求,所提方法可以有效提高逐次逼近算法的搜索性能。
     (3)提出了基于多阶段逐步优化算法的复杂水电站群差异化目标调度模型。考虑复杂水电站群在运行特点与需求方面的较大差异,对所有水电站进行归类,每一类水电站群承担一项具体的发电任务,并以此确定适合的调度目标。为避免复杂的出力波动控制约束降低问题的求解效率与结果质量,采用多阶段逐步优化算法(MSPOA)将原问题转化为一系列较大步长的类似调度问题并逐一求解,以削弱甚至消除部分时段耦合约束,扩大决策变量的可行搜索空间,进而改善原问题的初始解。通过三个不同类型的仿真实例表明,MSPOA在计算时间与结果质量两方面均优于POA,且差异化目标调度方式较单目标具有更好的实际应用效果。
     (4)针对区域电网内资源与电力消费分布不均引起的缺电与水电弃电情况,提出了大规模区域电网多电源联合发电优化调度方法,采用大系统分解协调原理,将区域电网的跨网协调问题分解为省网内部平衡和网间协调两个子问题。一方面,省网内部平衡问题按能源形式被进一步分为多个单一电源的优化调度子问题,各子问题进行独立建模求解,再按照节能原则进行多电源协调;另一方面,.以各省级电网的内部平衡结果为基础,进行区域电网平衡分析,制定合理的网间受送电计划。所提方法已被应用于中国南方电网发电优化调度系统(包括五个省级电网共188座电站),获得了满意的优化协调结果,有效解决了各省网的缺电或水电弃电问题。
     总结了全文的研究内容与重要成果,并就下一步的研究工作进行了初探与展望。
During the past more than 60 years, especially in the past decade, hydropower system has been undergoing the most concentrated and intense development boom in China. Hence, some large-scale hydropower systems for provincial even regional power grids have emerged, which are composed of many huge cascaded hydropower plants. In general, these hydropower systems are characterized with many plants, large installed capacity, discrepant running demands, wide transmission, and complex hydraulic and electric link. Consequently, a lot of general difficulties or problems in operation and management have been brought about. First, the huge hydropower plant and power grid are facing great challenges due to multi-vibration zones with high head. Second, regulating peak load for provincial power grids becomes more difficult while the operation limitation in transmission lines is considered. Third, the great difference in the inflows, total capacity of plants located on different streams, and operation requirements among hydropower plants, single-objective optimization is hard to express the discrepant demands. Furthermore, there is a pressing need for large-scale inter-provincial electric power transmission because of uneven distribution of resources and power consumption in the regional network. Therefore, a number of engineering in one regional power grid, five provincial power grids, and several cascaded hydro operation centers are chosen in the present paper. A series of effective solution methods and strategies are proposed for addressing some key problems faced currently, showing valuable results. The content of present paper is summarized as follows:
     (1) A short-term operational model based on unit commitment method is presented for huge cascaded hydropower plants. In this model, the objective is to maximize effective generation production of cascaded hydropower plants. According to load demands, generation weighting coefficients in different periods are provided so that all plants can generate in the order of system loads. A solution method based on the unit commitment is provided to optimize the model. During optimization, the assembled mathematical principle and dynamic programming are taken advantaged of to generate combined units and their vibration zones and optimal power curves respectively. Furthermore, the heuristic search method which has incorporated a rapid and efficient strategy for jumping out the vibration zones designed according to the relationship between vibration zone and water head is used to generate the operational schelduling of hydropower plants. The above solution model and technique are implemented on the Hongshuihe River hydropower system with 13 hydropower plants, generating effective and satisfactory results for real projects.
     (2) An objective of maximizing peak power generation is used to cut down peak load and secure stable operation in power grid, a solution method called successive approximation of dynamic programming with associated searching strategy is developed for solving operation problem of large-scale hydropower plants. The proposed model considers the novel limitation of multi-layer generation limitation and complex running constraints. The main objective of this model is to cut down peak loads in order to smooth the remaining loads for thermal systems. Thus, the times of operation and shut-down of thermal units should be reduced. The proposed solution method effectively combines the advantage of reducing dimensions and the strong searching capability to deal with the curse of dimensionality and complex operations and security requirements. Also importantly, the generation limitation are loosed during optimization and considered after optimization in order to simplify the original problem and keep the optimized results basically. The proposed model and method are tested by the hydro system in Yunnan Power Grid. The results indicate that the substitute of original objective function is reasonable, and that solution technique developed is efficient than successive approximation of dynamic programming in solving the present problem.
     (3) A novel scheduling method with discrepant objectives is proposed to consider the complex characteristics and demands among large-scale hydropower plants. Coorespondingly, all hydropower plants are classed into several types, and every plant group is responsible for a specific task which decides the operation objective function. To enhance the solution efficiency and improve the optimal solutions while considering complex generation fluctuation constaints, a multi-step of progressive optimality algorithm is proposed to solve short-term hydro scheduling problem. Within the framework, the original problem is first changed into a sequence of problems with different time intervals bigger than fifteen minutes. Next, the optimal solution is gotten by iteratively optimizing SHSP with an initial solution from last bigger time interval using POA. The efficiency of this algorithm is enhanced because the feasible range of state or decision variables will be greatly increased by weakening even eliminating some constraints mentioned earlier and synchronously the number of computational stages also reduced. Three different case studies are utilized to test the discrepant-objective method and MSPOA. The results show that MSPOA can get better results than POA within shorter time, and discrepant objectives among the hydropower plants can express the operation characteristics of large-scale hydroelectric systems more accurately than unique objective or multiple objectives.
     (4) Because of uneven distribution of resources and power consumption in the regional network, power shortage and water spill are caused in different provincial power grids. A short-term optimal operation method for several power sources if proposed for the regional power grid. Based on the decomposition and coordination of large-scale system, this problem is decomposed into two subproblems, load distributition problem for each provincial power grid and coordination problem among several multiple grids. On the one hand, the provincial scheduling problem is addressed by resolving several operation sub-problems for each type of plants. It should be noted that each sub-problem is sovled independently. On the other hand, reasonable acceptant and delivered generation schedules are generated based on the results obtained from each provincial operation problem. The proposed method is implemented on the case study called China Southern Power Grid (including five provincial power grids with 188 plants). The sactisfactory optimal solutions are obtained from this method, avoiding the power shortage and water spill of provincial power grids.
     Finally, a summary is made and a few issues which need to be further studied are listed.
引文
[1]Huang H, Yan Z. Present situation and future prospect of hydropower in China[J]. Renewable and Sustainable Energy Reviews,2009, (13):1652-1656.
    [2]贾金生,马静,张志会.应对气候变化必须大力发展水电[J]. http://www.waterinfo.com.cn/xsgz /gndt/Document/54341/54341.html,2009.
    [3]王文铭,艾尉.低碳经济背景下我国水电发展前景分析及建议[J].水电及农村电气化,2010,14:25-26.
    [4]黄其励.对智能化水电厂的认识和实践[J].能源技术经济,2011,23(6):1-8.
    [5]Catalao J P S, Pousinho H M I, Mendes V M F. Scheduling of head-dependent cascaded reservoirs considering discharge ramping constraints and start/stop of units[J]. Electrical Power and Energy Systems,2010,32(8):904-910.
    [6]Catalao J P S, Pousinho H M I, Mendes V M F. Scheduling of head-dependent cascaded hydro systems:Mixed-integer quadratic programming approach[J]. Energy Conversion and Management, 2010,51(3):524-530.
    [7]王金文,刘双全.短期水电系统发电调度的优化方法综述[J].水电能源科学,2008,26(6):137-143.
    [8]余贻鑫,栾文鹏.智能电网评述[J].中国电机工程学报,2009,29(34):1-8.
    [9]张智刚,夏清.智能电网调度发电计划体系架构及关键技术[J].电网技术,2009,33(20):1-8.
    [10]赵遵廉.中国电网的发展与展望[J].中国电力,2004,37(1):1-6.
    [11]Little J D C. The Use of Storage Water in a Hydroelectric System[J]. Operations Research,1955, (3):187-197.
    [12]TURGEON A. Optimal Short-Term Hydro Scheduling From the Principles of Progressive Optimality [J]. Water Resources Research,1981,17(3):481-486.
    [13]Ramesh S V, Simonovic S P. Short-term operation model for coupled hydropower reservoirs[J]. Journal of Water Resources Planning and Management,2000,126(2):98-106.
    [14]Allen R B, Bridgeman S G. DYNAMIC PROGRAMMING IN HYDROPOWER SCHEDULING[J]. Journal of Water Resources Planning and Management-ASCE,1985,112(3):339-353.
    [15]Lucas N J D. Short-term hydroelectric scheduling using the progressive optimality algorithm[J]. Water Resources Research,1985,21(9):1456-1458.
    [16]Nanda J, Bijwa P R, Kothari D P. Application of progressive optimality algorithm to optimal hydrothermal scheduling considering dererministic and stochastic data[J]. Electrical Power and Energy Systems,1986,8(1):61-64.
    [17]Wang C, Shahidephour S M. Power generation scheduling for multi-area hydro-thermal systems with the line constraints, cascaded reservoirs and uncertain data[J]. IEEE Transactions on Power and Systems,1993,8(3):1333-1340.
    [18]Ruzic S, Vuckovic A, Rajakovic N. A flexible approach to short-term hydro-thermal coordination part1 [J]. IEEE Transactions on Power and Systems,1996,11(3):1564-1571.
    [19]Ruzic S, Vuckovic A, Rajakovic N. A flexible approach to short-term hydro-thermal coordination part2[J]. IEEE Transactions on Power and Systems,1996,11(3):1572-1578.
    [20]Eriksen P B, Jmgensen C, Ravn H F. Hydro and thermal scheduling by the decoupling method[J]. Electric Power Systems Research,1996, (38):43-49.
    [21]Shawwash Z K, K.Siu T, Russell S O D. The B.C. Hydro Short Term Hydro Scheduling Optimization Model[J]. IEEE Transactions on Power Systems,2000,15(3):1125-1131.
    [22]Birger M, Anders G, Asbj(?)rn G. Integrated Risk Management of Hydro Power Scheduling and Contract Management [J]. IEEE Transactions on Power Ssytems,2001,16(2):216-221.
    [23]Rekutowski M R, Litwinowicz T, Frowd R. Optimal Short-Term Scheduling for a Large-scale Cascaded Hydro System[J]. IEEE Transactions on Power Systems,1994,9(2):805-811.
    [24]YEH W W-G. Reservoir Management and Operations Models A State-of-the-Art Review[J]. Water Resources Research,1985,21(12):1797-1818.
    [25]Simonvic S P. Reservoir analysis:closing gap between theory and practice[J]. Journal of Water resources Planning and Management,1992,118(3):263-279.
    [26]Labadie J W. Optimal operation of multireservoir systems:State-of-the-art review[J]. Journal of Water Resources Planning and Management-ASCE,2004,130(2):93-111.
    [27]董子敖.关于多年调节水库的防洪问题[J].哈尔滨工业大学学报,1958,(1):43-47.
    [28]董子敖.关于多年调节计算方法及总有效库容与调节水量关系曲线计算图[J].水利学报,1963,(5):1-12.
    [29]董子敖.关于多年调节计算方法及总有效库容与调节水量关系曲线计算图[J].水利学报,1964,(5):61-72.
    [30]张勇传.水电站水库调度[M].中国工业出版社,1963.
    [31]黄益芬,熊斯毅.拓溪水电站实行经济调度取得显著效果—最优润度方案的偏制与实施[J].水力发电,1980,(2):7-11.
    [32]熊斯毅,黄益芬.马尔柯夫决策规划在水电站水库最优调度中的应用[J].水力发电,1980,(2):11-17.
    [33]张勇传.水电站水库群优化调度方法的研究[J].水力发电,1981,11:48-52.
    [34]张勇传.水电站水库优化调度[J].华中工学院学报,1981.
    [35]戴宏.一种梯级水电站经济日调度的分解协调法及其多目标模型[J].重庆大学学报,1986,4):1-9.
    [36]李钰心,纪昌明,梅亚东.黄河上游梯级水电站短期调度软件研究[J].水力发电,1997,9):53-54.
    [37]梅亚东,朱教新.黄河上游梯级水电站短期优化调度模型及迭代解法[J].水力发电学报,2000,19(2):1-7.
    [38]沈金毛.考虑径流时空相关的梯级水电站水库群优化调度[J].水利经济,1989,(3):19-26.
    [39]陈森林,万俊,刘子龙.流域水电站群短期优化调度的均匀用水最小模型[J].水电能源科学,1999,17(3):9-12.
    [40]王金文,范习辉,张勇传.大规模水电系统短期调峰电量最大模型及其求解[J].电力系统自动化,2003,27(15):29-34.
    [41]何光宇,舒印彪,裴哲义.三峡电力市场优化调度系统及算法[J].电力系统自动化,2003,27(6):42-46.
    [42]何光宇,王稹,裴哲义.三峡电力系统调峰问题的研究[J].电网技术,2003,27(10):12-16.
    [43]裴哲义,王益民,舒印彪.三峡电力系统大型水电站群与三峡电站联合运行优化补偿调度运行方式研究[J].电网技术,2004,28(10):66-70.
    [44]吴宏宇,管晓宏,翟桥柱.水火电联合短期调度的混合整数规划方法[J].中国电机工程学报,2009,29(28):82-88.
    [45]陈浩,李战鹰.广东电网调峰分析[J].广东电力,2001,14(2):6-8.
    [46]洪祖兰.云南电网弃水调峰及其对策[J].云南水力发电,1999,15(4):1-4.
    [47]孙正运,裴哲义,夏清.减少水电弃水调峰损失的措施分析[J].水力发电学报,2003,4:1-7.
    [48]吴杰康,陆文玲.基于效益分析的水火电力系统短期优化调度[J].电网技术,2009,33(18):25-31.
    [49]郑理科,李茂军,曾黎玉.基于水电厂调峰运行的水火电混合经济调度[J].现代电力,2007,24(6):76-89.
    [50]H.Y. Yamin. Review on methods of generation scheduling in electric power systems[J]. Electric Power Systems Research,2004,69(2):227-248.
    [51]Teegavarapu R S V, Simonovic S P. Short-term operation model for coupled hydropower reservoirs[J]. Journal of Water Resources Planning and Management,1998,126(2):98-106.
    [52]MURTAGH B A, SAUNDERS M A. Large-scale linearly constrained optimization[J]. Mathematical Programming,1979, (14):251-269.
    [53]IBM C. Optimization Subroutine Library Guide and Reference-Release 2.1992.
    [54]Medina J, Quintana V H, Conejo A J. A comparison of interior-point codes for medium-term hydro-thermal coordination[J]. IEEE Transactions on Power System,1998,13(3):836-843.
    [55]Ikura Y, Gross G. Efficient Large-Scale Hydro System Scheduling with Forced Spill Conditions[J]. IEEE Transaction on Power Apparatus and Systems,1984,103(12):3502-3520.
    [56]Tong S K, Shahidehpour S M. An Innovative Approach to Generation Scheduling in Large-Scale Hydro-Thermal Power Systems with Fuel Constrained Units[J]. IEEE Transactions on Power Systems,1990,5(2):665-673.
    [57]Piekutowski M R, Litwinowicz T, Frowd R. Optimal Short-Term Scheduling for a Large-scale Cascaded Hydro System[J]. IEEE Transactions on Power Systems,1994,9(2):805-811.
    [58]叶秉如.大系统分解线性规划的最小减优率法[J].水力发电学报,1987,3:23-36.
    [59]伍宏中.水电站群补偿径流调节的线性规划模型及其应用[J].水力发电学报,1998,1:10-22.
    [60]伍宏中.HELP模型及其在水电优化开发和电力系统电源优选中的应用[J].电网技术,1999,23(2):10-14.
    [61]Barros M T L, Tsai F T C, Yang S L, et al. Optimization of large-scale hydropower system operations[J]. Journal of Water Resources Planning and Management-ASCE,2003,129(3):178-188.
    [62]Tejada-Guibert J, J.Stedinger, Staschus K. Optimization of the value of CVP's hydropower production[J]. Journal of Water Resources Planning and Management,1990,116(1):52-70.
    [63]Arnold E, P. T, P. W. Two methods for large-scale nonlinear optimization and their comparison on a case study of hydropower optimization[J]. Journal of Optimization Theory and Applications,1994, 81(2):221-248.
    [64]Unver O, mays L. Model for real-time optimal flood control operation of a reservoir system[J]. Water Resources Management,1990,4(1):21-46.
    [65]Hiew K. Optimization algorithms for large scale multi-reservoir hydropower systems[D]. Dept. of Civil Engineering Colorado State Univ., Fort Collins, CO,1987.
    [66]Finardi E C, Silva E L d. Unit commitment of single hydroelectric plant[J]. Electric Power Systems Research,2005,25(24):14-19.
    [67]郭三刚,管晓宏,翟桥柱.具有爬升约束机组组合的充分必要条件[J].中国电机工程学报,2010,32(8):904-910.
    [68]Mariano SJPS, Catalao JPS, Mendes VMF, Ferreira LAFM. Optimising power generation efficiency for head-sensitive cascaded reservoirs in a competitive electricity market[J]. Electric Power Energy System,2008,30(2):125-133.
    [69]Guan X, Svoboda A, Li C-a. Scheduling Hydro Power Systems with Restricted Operating Zones and Discharge Ramping Constraints[J]. IEEE Transactions on Power Systems,1999,14(1):126-131.
    [70]Ni E, Guan X, Li R. Scheduling Hydrothermal Power Systems with Cascaded and Head-Dependent Reservoirs [J]. IEEE Transactions on Power Systems,1999,14(3):1127-1132.
    [71]贾江涛,管晓宏,翟桥柱.水库群水电站短期调度的整数规划方法[J].西安交通大学学报,2008,42(8):1006-1009.
    [72]贾江涛,管晓宏,翟桥柱.考虑水头影响的梯级水电站群短期优化调度[J].电力系统自动化,2009,33(13):13-16.
    [73]刘广一,强金龙,于尔铿.网络流规划法在水火电联合电力系统经济调度中的应用[J].电网技术,1987,(1):37-44.
    [74]Li C-a, Jap P J, Streiffert D L. Implementation of Network Flow Programming to the Hydrothermal Coordination in an Energy Management System[J]. IEEE Transaction on Power Systems,1993,8(3): 1045-1053.
    [75]刘广一,强金龙,于尔铿.凸网络流规划及其在电力系统经济调度中的应用[J].中国电机工程学报,1988,8(6):9-18.
    [76]Rosenthal R E. A nonlinear network flow for maximizaiton of benefits in a hydroelctrical power systems[J]. Operation Research,1981,29(4):763-786.
    [77]Wakamori F, Masui S, Sugiyama T. Lagered Network Moder Approach to Optimal Daily Hydro Scheduling[J]. IEEE Transaction on Power Apparatus and Systems,1982,109(9):3310-3314.
    [78]梅亚东,冯尚友.网络流规划在水电站水库系统长期优化运行中应用[J].武汉水利电力学院学报,1989,22(2):6-15.
    [79]罗强,宋朝红,雷声隆.水库群系统非线性网络流规划法[J].武汉大学学报,2001,34(3):22-26.
    [80]Young G K. Finding reservoir operating rules[J]. Journal of the Hydraulics Division,1967,93(6): 297-321.
    [81]Arce A, Ohishi T, Soares S. Optimal Dispatch of Generating Units of the Itaipu Hydroelectric Plant[J]. IEEE Transaction on Power Systems,2002,17(1):154-158.
    [82]Heidari M, chow V t, Kokotovic P V. Discrete differential dynamic programming approach to water resources systems optimization[J]. Water Resources Research,1971,7(2):273-282.
    [83]Chow V T, Maidment D R, Tauxe G W. Computer time and memory requirements for DP and DDDP in water resources systems analysis[J]. Water Resources Research,1975,11(5):621-628.
    [84]吴晓黎,张勇传,权先璋.三峡梯级日优化算法及应用[J].华中电力,2004,17(1):1-3.
    [85]Yeh W, Trott W. Optimization of water resources development:Optimization of capacity specification for components of regional, complex, integrated, multi-purpose water resources system[M]. Los Angeles:University of califonia 1972.
    [86]李伟,纪昌明.梯级水电站群短期经济运行研究——关联预估与微增率逐次逼近相结合法[J].水电能源科学,2000,18(1):13-15.
    [87]余炳辉,王金文,李彩林.逐次逼近动态规划法求解水电机组组合问题[J].华中电力,2004,17(6):1-3.
    [88]Howson H R, Sancho N G F. New algorithm for the solution of multi-state dynamic programming problems[J]. Mathematical Programming,1975,8(1):104-116.
    [89]张勇传,耐凤山,刘鑫卿.水库群优化调度理论的研究——SEPOA方法[J].水电能源科学,1987,5(3):234-244.
    [90]唐焕文,秦学志.实用最优化方法[M].大连:大连理工大学出版社,2004.
    [91]Wardlaw R, Sharif M. Evaluation of genetic algorithms for optimal reservoir system operation[J]. Journal of Water Resources Planning and Management,1999,125(1):25-33.
    [92]Wu Y-G, Ho C-Y, Wang D-Y. A Diploid Genetic Approach to Short-Term Scheduling of Hydro-Thermal System[J]. IEEE Transactions on Power System,2000,15(4):1268-1276.
    [93]Orero S O, M.R.Irving. Economic dispatch of generators with prohibited operating zones:a genetic algorithm approach[J]. IEEE Proceediings-Generation, Transmission and Distribution,1996,143(6): 529-534.
    [94]Desouky A A E, R.Aggarwal, M.M.Elkateb, et al. Advanced hybrid genetic algorithm for short-term generation scheduling [J]. IEEE Proceediings-Generation, Transimission and Distribution, 2001,148(6):511-517.
    [95]N.Srinivas, Deh K. Multi-objective optimization using nondominated sorting in genetic algorithms[J]. Evolutionary Computation,1994,2(3):221-248.
    [96]Deh K, Pratap A, Agarwal S. A fast and elitist multiobjective genetic algorithm:NSGA--Ⅱ[J]. IEEE Transaction on Evolutionary Computation,2000,6(2):182-197.
    [97]马光文,王黎.遗传算法在水电站优化调度中的应用[J].水科学进展,1997,8(3):275-280.
    [98]伍永刚,王定一.二倍体遗传算法求解梯级水电站日优化调度问题[J].水电能源科学,1999,17(3):31-34.
    [99]王大刚,程春田,李敏.基于遗传算法的水电站优化调度研究[J].22,2001,1(5-10).
    [100]王德意,罗兴,张宇峰.改进遗传算法在水电站AGC中的应用研究[J].水力发电学报,2004,23(6):35-40.
    [101]刘建明,李茂军.基于改进遗传算法的水电经济调度[J].电力系统及其自动化学报,2007,19(5):39-44.
    [102]Jayabarathi T, Sadasivam G. Evolutionary programming based economic dispatch of generators with prohibited operating zones[J]. Electric Power Systems Research,1999,52(3):261-266.
    [103]石立宝,徐国禹,丰强.计划规划在计及阀点负荷的经济调度中的应用[J].重庆大学学报,1998,21(4):49-54.
    [104]袁晓辉,袁彦斌,于金文.水火电力系统短期发电计划优化方法综述[J].中国电力,2002,35(9):33-38.
    [105]Liang R H, Hsu Y Y. Scheduling of hydroelectric generations using artificial neural networks[J]. IEE Proceedings Generation, Transmission & Distribution,1994,141(5):452-458.
    [106]Naresh R, Sharma J. Hydro System Shcheduling Using ANN Approach[J]. IEEE Transactions on Power Systems,2000,15(1):388-395.
    [107]Naresh R, Sharma J. Short term hydro scheduling using two-phase neural network[J]. Electrical Power and Energy Systems,2002,24(7):583-590.
    [108]Su C-T, Lin C-T. New Approach with a Hopfield Modeling Framework to Economic Dispatch[J]. IEEE Transactions on Power Systems,2000,15(2):541-545.
    [109]朱敏,王定一.基于人工神经网络的梯级水电厂日优化运行[J].电力系统自动化,1999,23(10):35-40.
    [110]伍永刚,王定一.基于ANN的梯级水电站实时优化运行[J].系统工程,2000,18(3):78-80.
    [111]Metropolis N, Rosenbluth A, M.Rosenbluth, et al. Equation of State Calculations by Fast Computing Machines[J]. Journal of Chemical Physics,1953,21:1087-1092.
    [112]Mantawy A H, Soliman S A, M.E.El-Hawary. An Innovative Simulated Annealing Approach To The Long-term hydro scheduling problem[J]. International Journal of Electrical Power and Energy Systems,2001,25(1):41-46.
    [113]Liang R H. A noise annealing neural network for hydroelectric generation scheduling with pumped storage units[J]. IEEE Transaction on Power Systems,2000,15(3):1008-1013.
    [114]wong S y w. Hybrid simulated annealing/genetic algorithm approach to short-term hydro-thermal scheduling with multiple thermal plants[J]. Electrical Power and Energy Systems,2001,23(7): 565-575.
    [115]申建建,程春田,廖胜利.基于模拟退火的粒子群算法在水电站水库优化调度中的应用[J].水力发电学报,2009,28(3):10-15.
    [116]Wong K P, Wong Y W. Short-term hydrothermal scheduling par 1:simulated annealing approach[J]. IEE Proceedings-Generation, Transmission and Distribution,1994,141(5):497-501.
    [117]Wong K P, Wong Y W. Short-term hydrothermal scheduling part 2:paralel simulated annealing approach[J]. IEE Proceedings-Generation, Transmission and Distribution,1994,141(5):502-506.
    [118]许海平,朱奕,张彤.变尺度混沌优化方法在电站经济运行中的应用[J].哈尔滨工业大学学报,2000,32(4):55-58.
    [119]梁伟,陈守伦,刘德有.变尺度混沌优化算法在梯级水电站水库优化调度中的应用[J].水力发电学报,2008,27(6):8-12.
    [120]芮钧,梁伟,陈守伦.基于变尺度混沌算法的混联水电站水库群优化调度[J].水力发电学报,2010,29(1):66-71.
    [121]Bai X, Shahidephour S M. Hydro-thermal scheduling by tabu search and decomposition method[J]. IEEE Transactions on Power System,1996.
    [122]袁晓辉,袁艳斌,权先璋.基于混沌进化算法的梯级水电系统短期发电计划[J].电力系统自动化,2001,25(16):34-38.
    [123]贾仁甫,陈守伦,梁伟.基于混沌优化算法的混联水电站群长期优化调度[J].水利学报,2008,39(9):1131-1135.
    [124]吴耀武,王峥,唐权.基于C-PSO的水火电混合电力系统电源规划[J].继电器,2006,34(9):64-69.
    [125]李崇浩,纪昌明,缪益平.基于微粒群算法的梯级水电厂短期优化调度研究[J].水力发电学报,2006,25(2):94-98.
    [126]武新宇,程春田,廖胜利.两阶段粒子群算法在水电站群优化调度中的应用[J].电网技术,2006,30(20):25-28.
    [127]李安强,王丽萍,蔺伟民.免疫粒子群算法在梯级电站短期优化调度中的应用[J].水利学报,2008,39(4):426-432.
    [128]董新亮,马光文,陈尧.SAPSO算法在梯级水电站日优化调度中的应用[J].水力发电,2009,35(6):55-57.
    [129]程春田,唐子田,李刚.动态规划和粒子群算法在水电站厂内经济运行中的应用比较研究[J].水力发电学报,2008,27(6):27-31.
    [130]李刚,程春田,唐子田.结合禁忌搜索思想的粒子群算法在乌江渡水电站厂内经济运行中的应用研究[J].水力发电学报,2009,28(2):128-132.
    [131]Dorigo M, Maniezzo V, Colorni A. The Ant System:Optimization by a colony of cooperating agents[J]. IEEE Transactions on Systems, Man, and Cybernetics-Part B,1996,26(1):1-13.
    [132]Yu I K, Song Y H. A novel short-term generation scheduling technique of thermal units using ant colony search algorithms[J]. Electrical Power and Energy Systems,2001,23(4):471-479.
    [133]Huang S J. Enhancement of hydroelectric generation scheduling using ant colony system based optimization approaches[J]. IEEE Transactions on Power Systems,2001,16(3):296-301.
    [134]赵杰,董增川,王德智.遗传蚁群混合算法在水电站优化调度中的应用[J].水电能源科学,2008,26(5):132-134.
    [135]林剑艺,程春田,于滨.基于改进蚁群算法的梯级水库群优化调度[J].水电能源科学,2008,26(4):53-56.
    [136]李亮,黄强,肖燕.DPSA和大系统分解协调在梯级水电站短期优化调度中的应用研究[J].西北农林科技大学学报,2005,33(10):125-129.
    [137]倪二男,管晓宏,李人厚.梯级水电系统的优化调度算法研究[J].控制理论与应用,1998,15(5):722-728.
    [138]倪二男,管晓宏,李人厚.考虑水头影响的梯级水电系统优化调度算法研究[J].控制与决策,1998,13(6):647-652.
    [139]倪二男,管晓宏,李人厚.梯级水电系统组合优化调度方法研究[J].中国电机工程学报,1999,19(1):19-23.
    [140]Li C-a, Hsu E, Svoboda A J, et al. Hydro unit commitment in hydro-thermal optimization[J]. IEEE Transaction on Power Systems,1997,12(2):764-769.
    [141]Svoboda A J, Tseng C-L, Li C-a, et al. Short-Term Resource Scheduling with Ramp Constraints[J]. IEEE Transactions on Power Systems,1997,12(1):77-83.
    [142]Wang C, Shahidehpour S M. Optimal generation scheduling with ramping costs[J]. IEEE Transaction on Power Systems,1995,10(1):1127-1132.
    [143]周之豪,沈曾源,施熙灿.水利水能规划[M].中国水利水电出版社,1986.
    [144]滕素珍,冯敬海.数理统计学[M].大连理工大学出版社,2005.
    [145]董子敖.水库群调度与规划的优化理论和应用[M].山东科学技术出版社,1989.
    [146]杨庆之.对凝聚函数的分析[J].计算数学,1996,4):405-410.
    [147]李兴斯.解非线性极大极小问题的凝聚函数法[J].计算结构力学及其应用,1991,8(1):85-92.
    [148]侯同运,邵金平.求解极大极小问题的熵函数法的改进[J].山东农业大学学报,2009,40(3):451-453.
    [149]Xiao Y, Yu B. A truncated aggregate smoothing Newton method for minimax problems[J]. Applied Mathematics and Computation,2010,216(6):1868-1879.
    [150]蔡建章,蔡华祥,吴东平.水电站弃水电量计算探讨[J].电力系统自动化,2000,24(10):64-65.
    [151]甘应爱,田丰.运筹学[M].北京:清华大学出版社,1998.
    [152]蔡建章,蔡华徉,洪贵平.电力电量平衡算法研究与应用[J].云南电力技术,1994,3:8-11.
    [153]Catalao J P S, Mariano S J P S, Mendes V M F, et al. Nonlinear optimization method for short-term hydro scheduling considering header-dependence[J]. European Transactions on Electrical Power, 2008,20(2):172-183.
    [154]Catalao J P S, Mariano S J P S, Mendes V M F, et al. Scheduling of Head-Sensitive Cascaded Hydro Systems:A Nonlinear Approach[J]. IEEE Transactions on Power System,2009,24(1):337-346.
    [155]范习辉,伍永刚,张世钦.水电站群发电调度决策支持系统的设计与开发[J].水电自动化与大坝监测,2003,27(3):74-76.
    [156]吴迎新,伍永刚.水电站群调度系统的易扩展性和通用性设计[J].华中电力,2002,15(2):12-14.
    [157]李亮.乌江水电站水库群短期发电优化调度系统研究[D].西安:西安理工大学,2006.
    [158]徐刚,马光文,徐瑞林.重庆电网水电站群中长期发电调度决策系统[J].水力发电学报,2007,26(5):10-14.
    [159]程春田,廖胜利,武新宇.面向省级电网的跨流域水电站群发电优化调度系统的关键技术实现[J].水利学报,2010,41(4):477-481.
    [160]唐子田,程春田,李刚.水电站厂内短期经济运行系统的设计与实现[J].水电自动化与大坝监测,2007,31(1):21-24.
    [161]李辉,申建建,廖胜利.基于模糊聚类分析的水电站日初水位估算[J].中国电机工程学报,2011,30(35):118-124.
    [162]喻洁,季晓明,夏安邦.基于节能环保的水火电多目标调度策略[J].电力系统保护与控制,2009,37(1):24-27.
    [163]张贲,张毅威,梁旭.燃气机组发电特性及其在电网中运行方式的研究[J].燃气轮机技术,2009,22(2):14-18.
    [164]陈守煜.系统模糊决策理论与应用[M].大连:大连理工大学出版社,1994.
    [165]李永鑫,宋锡川.月电力电量平衡程序[J].水能技术经济,1985.
    [166]李刚.水火电系统短期节能发电调度研究与应用[D].大连:大连理工大学,2007.
    [167]史国青.火电机组负荷优化组合分配问题的研究[D].北京:华北电力大学,2005.
    [168]曹文亮,王兵树,马进.对火电厂机组负荷优化分配算法的研究[J].汽轮机技术,2004,46(1):43-46.
    [169]张力,冉景煜,杨毅.火电机组实施调峰优化运行及可视化操作平台[J].热力发电,2002,4:12-15.
    [170]杨勇平,王加璇.火电机组耗量特性的在线确定与机组间负荷最优分配[J].电站系统工程,1995,11(3):18-21.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700