用户名: 密码: 验证码:
高效低污染非道路卧式柴油机关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
非道路柴油机是我国农业机械、工程机械、林业机械、内河机动船、发电机组以及水泵等的主要配套动力,我国现有非道路卧式柴油机因售价低以及冷却方式和结构的限制,技术发展严重滞后,主要表现在:体积大、比质量大、升功率低,可靠性低、寿命短,冷却效果差,燃油经济性差、噪声和排放污染物严重。针对现有非道路卧式柴油机存在的技术问题,提出了开发高效低污染非道路卧式柴油机需解决的关键技术方案,开展了以下研究工作。
     (1)针对进气系统,研究了螺旋进气道结构及其流动特性的影响关系
     针对柴油机螺旋进气道复杂的自由曲面特征,通过建立螺旋段表面空间三维曲线方程组数学模型和启用曲线关联特性,研究了一种柴油机螺旋进气道正向设计方法。结合气道稳流实验,建立了气道流动仿真模型,研究了螺旋进气道直流段和螺旋段几何结构参数、进气门位置对气道和缸内气体流动特性的影响关系,分析了进气道的关键结构参数和敏感部位。
     (2)针对冷却系统,研究了卧式柴油机冷却水套结构及其流动特性
     针对新型高效低污染非道路卧式柴油机的技术要求,选择了强制冷却闭式循环系统,设计了冷却水套结构方案。在不同工况下试验测试了水套内冷却水流量、温度和压力,建立了冷却水流动的数值模拟仿真模型,分析了水套内冷却水流动性能,研究了不同结构参数对冷却水流动和换热的影响关系,优化了原方案冷却水套结构和水泵流量。
     (3)研究了活塞组动力学特性及其影响因素
     针对卧式柴油机活塞组件动力学特性,试验研究活塞、缸套热负荷作用下的温度场分布,建立了活塞组件动力学仿真模型。采用正交分析方法,研究了活塞和活塞环结构参数对活塞组二阶运动、机油耗以及漏气量等活塞组动力学特性的影响关系。
     (4)高效低污染非道路卧式柴油机的设计
     通过对燃烧系统的设计与优化匹配试验、冷却系统、润滑系统、活塞组件、配气机构等部件的设计与分析以及总体布置,设计了一款新型高效低污染非道路用卧式两缸柴油机,其结构特点及性能指标如下:
     (1)结构紧凑、重量轻。自然吸气柴油机产品总质量221kg,比质量6.05kg/kW;废气涡轮增压功率强化后2D25ZL总质量227kg,比质量4.54kg/kW。
     (2)燃油经济性好。自然吸气柴油机外特性最低燃油消耗达到224g/(kW·h),标定功率工况点有效燃油消耗率为234g/(kW·h);增压中冷柴油机外特性最低燃油消耗达到221g/(kW·h),标定功率工况点有效燃油消耗率为246g/(kW·h)。发动机最经济有效燃油消耗区宽广,动力适配范围宽。
     (3)润滑油消耗低。自然吸气柴油机标定功率工况下平均机油耗0.299 g/(kW·h),平均机油燃油消耗比为0.127%;增压中冷柴油机标定功率工况下平均机油耗0.293 g/(kW·h),平均机油燃油消耗比为0.119%。
     (4)排气污染物低,可靠性高。自然吸气柴油机满足非道路国Ⅱ排放限值的要求,并通过了1000小时可靠性试验检验。
The off-road diesel engines are mainly power, which are widely uesed as agricultural machines, engineering machines, forestry machines, marine ships, generators and pumps in our country. Because of the low price and the limit of cooling method and structures, the technologic development of horizontal off-road diesel engine lagged seriously in our country. The chief characteristics were the large volume, the heavy mass density, the low power per liter and the reliability, the short life, the bad cooling effect and fuel economy, and the serious noise and emission pollutant. Aiming at the technical matters of the existing horizontal off-road diesel engine, the key technical proposals for designing the high efficiency and low pollute off-road diesel engines were put forward, and the researching work were investigated as follows.
     (1) Researching the influent relationship of the structure of helical intake port to flow characteristics of the intake port
     Aiming at the complex free curved surface characteristic of helical intake port, a top-down design way of helical intake port for diesel engine was put forward and the complicated three-dimensional model and the numerical simulation model of helical intake port for diesel engine were set up by establishing three-dimensional curve mathematical model of the helical section surface space and using curve association characteristic. The simulation model of intake port was built based on the steady flow experiments. The effects of the geometry parameters of helical intake port straight section and helical section and the intake valve position on the intake port and the gas flow characteristic in cylinder were researched and the key geometry parameters and the sensitive part of the intake port were analyzed.
     (2) Researching the structure of cooling jacket and flow characteristics of the cooling system
     In order to fulfill the technical requirements of a high-efficiency low-emissions off-road horizontal diesel engine, a unique design is proposed for the cooling water jacket structure with a forced-cooling closed-loop cooling system. The cooling water flow rate, temperature, and pressure at the inlet and several other critical locations of the cooling water jacket were measured and analyzed at different engine operating conditions for the water jacket design. A numerical simulation model of the coolant flow and the cooling system was built and used to analyze the thermal/fluid characteristics of the coolant flow in the water jacket. The impact of different structural and packaging design parameters on the coolant flow and heat transfer was investigated. The cooling water jacket structure and the water pump flow rate were optimized.
     (3) Researching the dynamics characteristics and influent factors of piston assembly
     Based on the dynamics characteristics of piston assembly, the temperature distribution of the piston and cylinder liner was researched on the thermal load condition and the dynamic model of piston assembly was established. The influent relation of piston and piston rings structural parameters to the secondary motion of the piston assembly, the influent relation of oil consumption and gas leak to dynamics characteristic of piston assembly were researched based on the orthogonal design method.
     (4) Designing the high efficiency and low pollute horizontal off-road diesel engine
     A new type of high efficiency low pollute horizontal off-road diesel engine was designed based on the design and optimization of matching test of the combustion system, the innovative design and analysis of engine body, cooling system, lubrication system, piston assembly, valve trains and overall layout of other components. The structural characteristics and performance indices of this new engine are as follows:
     (1) The diesel engine was compact and light. The total mass was 221kg, and the specific mass was 6.05kg/kW with the state of naturally aspirated. The total mass was 227kg, and the specific mass was 4.54kg/kW after being strengthened by the exhaust turbocharger.
     (2) The fuel consumption was economical. At the full load characteristic working state of naturally aspirated, the lowest fuel consumption was 224g/(kW·h) and the effective fuel consumption was 234g/(kW·h) at the point of rated power. At the working state of turbocharged and intercooled, the lowest fuel consumption was 221g/(kW·h) and the effective fuel consumption was 246g/(kW-h) at the point of rated power. This showed that the effective fuel consumption area and the power adaptive range were wide to this diesel engine.
     (3) The lubricating oil consumption was lower. At the full load characteristic working state of naturally aspirated, the average oil consumption was 0.299 g/(kW·h) and the average fuel consumption ratio was 0.127%. At the working state of turbocharged and intercooled, the average oil consumption was 0.293 g/(kW·h) and the average fuel consumption ratio was 0.119%.
     (4) The exhaust emissions were low and worked reliably. The emissions were in accordance with the National stageⅡemission limits at the full load characteristic working state of naturally aspirated. And the reliability experiment of 1000 hours met the National Standard at the extra characteristics working state of naturally aspirated.
引文
[1]中国内燃机工业协会,《中国内燃机工业年鉴》编委会.中国内燃机工业年鉴[M].上海:上海交通大学出版社,2008.
    [2]中国内燃机工业协会,《中国内燃机工业年鉴》编委会.中国内燃机工业年鉴[M].上海:上海交通大学出版社,2009.
    [4]黄佐华.内燃机节能与洁净利用开发与研究的现状与前沿[J].汽车安全与节能学报,2010,1(2):89-97.
    [5]赵华,何邦全.乘用车高效低污染动力总成技术[J].内燃机学报,2008增刊(26):68-76.
    [6]黄佐华,蒋德明,王锡斌.内燃机燃烧研究及面临的挑战[J].内燃机学报,2008增刊(26):101-106.
    [7]罗马吉,熊锋,颜伏伍,等.降低非道路用增压柴油机NOx和PM排放的试验研究[J].内燃机工程,2009,30(5):27-30.
    [8]Kawaguchi A, Aiba T, Takada N, etc. A Robustness-Focused Shape Optimization Method for Intake Ports[C]. SAE Paper 2009-01-1777,2009.
    [9]Andreatta E C, Barbieri F A A, Lucas L F. Squaiella, etc. Intake Ports Development:Euro Ⅳ Diesel Engine Cylinder Head[C]. SAE Paper 2008-36-0331,2008.
    [10]Jung H S, Sung-Su J, Wook-Hyeon Y, etc. Design and Application of Composite Piston for High Power Diesel Engine[C]. SAE Paper 2009-01-0192.
    [11]陈传举.内燃机活塞裙部型面设计.北京:机械工业出版社,2006:46-54.
    [12]Ramesh B. Edara. Reciprocating Engine Piston Secondary Motion-Literature Review[C]. SAE Paper 2008-01-1045,2008.
    [13]Kurbet S N, Malagi R R. Review On Effects of Piston and Piston Ring Dynamics Emphasis with Oil Consumption and Frictional Losses in Internal Combustion Engines[C]. SAE Paper 2007-24-0059.
    [14]Robinson K, Hawley J G, Campbell N A F. A Review of Precision Engine Cooling[C]. SAE Paper 1999-01-0578.
    [15]Koch F W, Haubner F G. Cooling System Development and Optimization for DI Engines. SAE Paper 2000-01-0283.
    [16]Torregrosa A J, Olmeda P, Garcia-Ricos A, etc. A Methodology for the Design of Engine Cooling Systems in Standalone Applications[C]. SAE Paper 2010-01-0325.
    [17]何常明,毕玉华,雷基林,等.一种新的柴油机螺旋进气道参数化设计方法[J].内燃机学报,2009,27(3):265-269.
    [18]王天友,刘大明,沈捷,等.四气门柴油机进气道的开发[J].内燃机工程,2008,29(2):52-55.
    [19]王忠,苟菁,梅德清,等.柴油机螺旋进气道的三维造型设计[J].江苏大学学报(自然科学版),2004,25(4):306-309.
    [20]Stanley K. Widener. Parametric Design of Helical Intake Ports[C]. SAE Paper 950818, 1995.
    [21]常思勤,刘雪洪,何小明.螺旋进气道的三维造型设计研究[J].内燃机工程,2000,(3):23-27.
    [22]Stanley K. Widener. Parametric Design of Helical Intake Ports[C]. SAE Paper 950818, 1995.
    [23]Chant A, Wilcock D, Costello D. The Determination of IC Engine Inlet Port Geometries by Reverse Engineering[J]. International Journal of Advanced Manufacturing Technology, 1998,14(1):65-69.
    [24]Yoshihide Takenaka, Hiroshi Nakajima, Darius Mehri. Application of Automatic Geometry Creation and Mesh Generation Technique for Port[C]. SAE Paper 2000-05-0019,2000.
    [25]Bates M C, Heikal M R. A Knowledge-Based Model for Multi-Valve Diesel Engine Inlet Port Design[C]. SAE Paper 2002-01-1747,2002.
    [26]曹暑林,黄荣华.四气门柴油机进气道的三维实体造型及流动数值模拟[J].内燃机工程,2004,25(6):38-43.
    [27]Giuseppe Cantore, Stefano Fontanesi, Vincenzo Gagliardi, etc. Effects of Relative Port Orientation on the In-Cylinder Flow Patterns in a Small Unit Displacement Hsdi Diesel Engine[C]. SAE Paper2005-32-0093,2005.
    [28]司鹏昆,侯树梅,张惠明,等.螺旋进气道结构参数对气道流通特性的影响[J].内燃机工程,2008,29(3):25-28.
    [29]孙平,夏开彦,谢雪峰,等.柴油机稳流气道试验台的仿真与试验[J].农业工程学报,2007,23(1):99-105.
    [30]刘福水,李向荣,姜庆强.可变进气涡流系统气道入口流速的PIV测量[J].北京理工大学学报,2006,26(6):492-495.
    [31]Stefan Zuelch, Kai Behnk, Roland Deepe, etc. The New Hardware-Assisted Inlet Port Development Process for Diesel Engines Using Doppler Global Velocimetry[C]. SAE Paper 2005-01-0640,2005.
    [32]许俊峰,白敏丽,吕继祖,等.四气门柴油机缸内流场LDA实验数据的分析研究[J].内燃机学报,2007,25(3):241-246.
    [33]Micklow GJ, Gong WD. Intake and In-Cylinder Flowfield Modelling of a Four-Valve Diesel Engine[C]. Proceedings of the Institution of Mechanical Engineers Part D-Journal of Automobile Engineering,2007,221(D11):1425-1440.
    [34]Jebamani DR, Kumar TMN. Studies on Variable Swirl Intake System For DI Diesel Engine Using Computational Fluid Dynamics[J]. THERMAL SCIENCE,2008,12(1):25-32.
    [35]Rathnaraj JD, Bose BJR, and Kumar MN. Simulation and Experimental Investigation of Variable Swirl Intake Port in DI Diesel Engine Using CFD[C]. ASME Conf. Proc. FEDSM,2006:203-210.
    [36]胡玉梅,肖会芳,罗丫.基于数值模拟的螺旋进气道结构优化[J].重庆大学学报(自然科学版),2007,30(6):10-14.
    [37]杨靖,陈浩,崔东晓,等.双切向进气道柴油机进气过程的三维瞬态数值模拟分析[J].内燃机工程,2008,29(3):29-32.
    [38]Andras Horvath, Zoltan Horvath. Application of CFD Numerical Simulation for Intake Port Shape Design of A Diesel Engine[J]. Journal of Computational and Applied Mechanics, 2003,4(2):129-146.
    [39]Enrico Mattarelli, Massimo Borghi, Stefano Fontanesi, etc. The Influence of Swirl Control Strategies on the Intake Flow in Four Valve Hsdi Diesel Engines[C]. SAE Paper 2004-01-0112,2004.
    [40]Lee K.H., Ryu J.D., Lee C.S., et al. Effect of Intake Port Geometry on The In-Cylinder Flow Characteristics in a High Speed DI Diesel Engine[J]. International Journal of Automotive Technology,2005,6(1):1-8.
    [41]Giuseppe Cantore, Stefano Fontanesi, Vincenzo Gagliardi, etc. Effects of Relative Port Orientation on the In-Cylinder Flow Patterns in a Small Unit Displacement HSDI Diesel Engine[C]. SAE Paper2005-32-0093,2005.
    [42]Jayashankara B, Ganesan V. Effect of Intake Port Bend Angle on Flow Field Inside the Cylinder of a DI Diesel Engine. ASME Conf. Proc[C]. JRC/ICE,2007:417-427.
    [43]刘书亮,沈捷,刘德新,等.螺旋进气道形状和位置偏差对涡流比及流量系数的影响[J].燃烧科学与技术,2003,9(5):397-403.
    [44]周松,戴景民,王贺武.螺旋气道结构参数对内燃机流场的影响[J].西安交通大学学报,2003,37(5):456-458.
    [45]蔡忆昔,蔡继业.基于Fluent软件的直喷柴油机螺旋进气道设计[J].农业机械学报,2006,37(6):1-4.
    [46]黄荣华,肖华,纪志高,等.4气门柴油机进气道结构参数对进气性能的影响[J].华中科技大学学报(自然科学版),2008,36(7):52-56.
    [47]Senecal P K, Uludogan A, Reitz R D. Development of Novel Direct-injection Diesel Engine Combustion Chamber Designs Using Computational Fluid Dynamics. SAE Paper 971594.
    [48]Corcione F E, Vaglieco B M, Corcione G E, etc. Study of the Combustion System of a New Small DI Diesel Engine with Advanced Common Rail Injection System. SAE Paper 2003-01-1782.
    [49]Fasolo B, Doisy A M, Dupont A, etc. Combustion System Optimization of a New 2 Liter Diesel Engine For EURO IV. SAE Paper 2005-01-0652.
    [50]Verbiezen K, Donkerbroek A J, Klein-Douwel R J H, etc. Diesel combustion:In-cylinder NO concentrations in relation to injection timing. Combustion and Flame,2007(151): 333-346.
    [51]Benajes J, Molina S, Gonzalez C, etc. The role of nozzle convergence in diesel combustion. Fuel,2008 (87):1849-1858.
    [52]Payri R, Salvador F J, Gimeno J, etc. Effects of nozzle geometry on direct injection diesel engine combustion process. Applied Thermal Engineering,2009 (29):2051-2060.
    [53]Benajes J, Molina S, Martin J, etc. Effect of advancing the closing angle of the intake valves on diffusion-controlled combustion in a HD diesel engine. Applied Thermal Engineering, 2009(29):1947-1954.
    [54]Shanjin W, Christophe C, Nicolas D, etc. Noise Optimization of Diesel Engines with New Combustion Systems. SAE Paper 2009-01-2081.
    [55]邓名华,范维澄.柴油机燃烧系统优化的一种新方法.内燃机学报,1999,17(4):327-329.
    [56]邓名华,徐智,蒋勇,等.涡流室柴油机燃烧系统参数对性能作用规律的研究.江苏理工大学学报(自然科学版),2000,21(1):24-27.
    [57]乔信起,黄震,肖进,等.车用柴油机燃烧系统的改进.农业机械学报,2004,35(2):17-20.
    [58]闫伟,张浩,陆剑峰,等.直喷式柴油机燃烧系统的均匀试验设计研究.机械工程学 报,2005,41(1):212-215.
    [59]林学东,王霆,宋涛,等.重型车用柴油机低排放直喷燃烧系统参数的优化.内燃机学报,2006,24(6):518-525.
    [60]蒋德明.达到欧洲Ⅵ排放法规的新一代车用重载柴油机.车用发动机,2009(4):1-6.
    [61]万渤华.不同汽车发动机冷却系统的节能减排效益及安全性分析[J].安全与环境工程,2010,17(1):51-53.
    [62]M. Cardone, A. Senatore, D. Buono, etc. A Model for Application of Chen's Boiling Correlation to a Standard Engine Cooling System[C], SAE Paper 2008-01-1817.
    [63]于秀敏,陈海波,黄海珍,等.发动机冷却系统中流动与传热问题数值模拟进展[J].机械工程学报,2008,44(10):162-167.
    [64]Zeynep N. Cehreli. Cooling System Optimization on a 5-Cylinder Engine[C]. SAE Paper 2007-01-2600.
    [65]王宇.CFD在多缸柴油机冷却系统设计中的应用[D].[硕士学位论文].大连:大连理工大学,2007.
    [66]Bernhard U, Friedrich B, Jurgen F, etc. Development of Engine Cooling Systems by Coupling CFD Simulation and Heat Exchanger Analysis Programs[C]. SAE Paper 2000-01-1695.
    [67]Pamela M. Norris, William Wepfer, Kevin L. Hoag, etc. Experimental and Analytical Studies of Cylinder Head Cooling[C]. SAE Paper 931122.
    [68]Satheesh Makkapati, Steve Poe, Zafar Shaikh, etc. Coolant Velocity Correlations in an IC Engine Coolant Jacket[C]. SAE Paper 2002-01-1203.
    [69]Matsutani T, Nakada T. Shinpo Y, etc. Water jacket spacer for improvement of cylinder bore temperature distribution[C]. SAE Paper 2005-01-1156.
    [70]S. Fontanesi, E. V. McAssey. Experimental and Numerical Investigation of Conjugate Heat Transfer in a HSDI Diesel Engine Water Cooling Jacket[C]. SAE Paper 2009-01-0703.
    [71]王书义,王宪成,段初华.发动机冷却水流动的试验研究[J].车用发动机,1994,3:34-36.
    [72]朱义伦,邓康耀.发动机缸头冷却水流场试验研究[J].上海交通大学学报,2000,34(4):463-465.
    [73]屈盛官,夏伟,王颖,等.高强化柴油机气缸套周围冷却水流动的数值模拟和试验研究[J].内燃机工程,2004,25(4):32-35.
    [74]李佑长,吕林,戴湘利,等.某四缸柴油机冷却水流动的试验研究[J].武汉理工大学学报(交通科学与工程版),2006,30(5):793-795.
    [75]赵金刚,潘剑锋,李德桃,等.多缸柴油机气缸盖冷却水道优化研究[J].小型内燃机与摩托车,2008,37(6):5-8.
    [76]Zenyong X, Johnson J H, Chiang E C. A Simulation Study of a Computer Controlled Cooling System for a Diesel Powered Truck[C]. SAE Paper 841711.
    [77]Moeckel M D. Computational Fluid Dynamic (CFD) Analysis of a Six Cylinder Diesel Engine Cooling System with Experimental Correlations[C]. SAE Paper 941081.
    [78]Moffat J. Coupling of 1-D and 3-D CFD Models to Predict Transient Hydraulics in an Engine Cooling Circuit[C]. SAE Paper 2002-01-1285.
    [79]Shih S, Itano E, Jun X, etc. Engine Knock Toughness Improvement Through Water Jacket Optimization[C]. SAE Paper 2003-01-3259.
    [80]Etemad S, Wallesten J, Stein C F, etc. CFD-Analysis of Cycle Averaged Heat Flux and Engine Cooling in an IC-Engine[C]. SAE Paper 2005-01-0200.
    [81]Gavali M G Subbarao A V, Marathe N V. Optimization of Water Jacket Using CFD for Effective Cooling of Water-Cooled Diesel Engines[C]. SAE Paper 2007-26-049.
    [82]Kruger M, Kessler M P, Mendes A S, etc. Numerical Analysis of Flow at Water Jacket of an Internal Combustion Engine[C]. SAE Paper 2008-01-0393.
    [83]Antonelli M, Martorano L, Simi A, etc. A Cooling System Effectiveness Prediction Methodology through the use of Analytical and Numerical Techniques[C], SAE Paper 2010-01-0623.
    [84]王书义,王宪成,段初华,等.发动机冷却水流动二维数值模拟基础研究[J].内燃机学报,1994,12(1),57-63.
    [85]刘巽俊,陈群,李骏,等.车用柴油机冷却系统的CFD分析[J].内燃机学报,2003,21(2):125-129.
    [86]白敏丽,吕继组,丁铁新.六缸柴油机冷却系统流动与传热的数值模拟研究[J].内燃机学报,2004,22(6):525-531.
    [87]李迎.内燃机流固耦合传热问题数值仿真与应用研究[D].[博士学位论文].杭州:浙江大学,2006.
    [88]王虎,桂长林.内燃机缸体一冷却液流固耦合模型的共轭传热研究[J].汽车工程,2008,30(4):317-353.
    [89]李宝童,洪军,孙静,等.发动机冷却液流动与传热的数值模拟[J].西安交通大学学 报,2009,43(3):17-21.
    [90]白敏丽,徐哲,吕继组.纳米流体对内燃机冷却系统强化传热的数值模拟研究[J].内燃机学报,2008,26(2):183-187.
    [91]杨帅,邹任玲,周毅,等.纳米流体作为柴油机冷却系传热介质的数值模拟[J].同济大学学报,2010,38(2):285-289.
    [92]Ito A, Shirakawa H, Nakamura M, et al. A Study on the Mechanism of Lubricating Oil Consumption of Diesel Engines-1st report:The Effect of the Design of Piston Skirt on Lubricating Oil Consumption[C]. SAE Paper 2005-01-2169.
    [93]Nakamura M, Hayashi H, Ito A. A Study on the Mechanism of Lubricating Oil Consumption of Diesel Engines-2nd report:Mechanism of Oil Film Generation on Piston Skirt[C]. SAE Paper 2005-01-2167.
    [94]Nakamura M, Hayashi H, Ito A. A Study on the Mechanism of Lubricating Oil Consumption of Diesel Engines-3rd report:Effect of Piston Motion on Piston Skirt Oil Film Behavior[C]. SAE Paper 2006-01-3349.
    [95]Ito A, Tsuchihashi K, Nakamura M. A Study on the Mechanism of Lubricating Oil Consumption of Diesel Engines-4th Report:The Measurement of Oil Pressure Under the Piston Oil Ring[C]. SAE Paper 2006-01-3440.
    [96]Ragot P, Rebbert M. Investigations of Crank Offset and It's Influence on Piston and Piston Ring Friction Behavior Based on Simulation and Testing[C]. SAE Paper 2007-01-1248.
    [97]Kurbet SN, Malagi R R. Review On Effects of Piston and Piston Ring Dynamics Emphasis with Oil Consumption and Frictional Losses in Internal Combustion Engines[C]. SAE Paper 2007-24-0059.
    [98]Akalin O, Newaz G M. A New Experimental Technique for Friction Simulation in Automotive Piston Ring and Cylinder Liners[C]. SAE Paper 981407.
    [99]Akalin O, Newaz G M. Piston ring-cylinder bore friction modeling in mixed lubrication regime:Part I-Analytical results[C]. Journal of Tribology& Transactions of the ASME, 2001,123(1):211-218.
    [100]Akalin O, Newaz G M. Piston Ring-Cylinder Bore Friction Modeling in Mixed Lubrication Regime:Part II-Correlation With Bench Test Data[C]. Journal of Tribology-Transactions of the ASME,2001,123(1):219-223.
    [101]Cho S W, Choi S M, Bae C S. Frictional modes of barrel shaped piston rings under flooded lubrication[J]. Tribology International,2000,33:545 - 551.
    [102]Nakayama K, Tamaki S, Miki H, et al. The Effect of Crankshaft Offset on Piston Friction Force in a Gasoline Engine[C]. SAE Paper 2000-01-0922.
    [103]Wakabayashi R, Takiguchi M, Shimada T, et al. The Effects of Crank Ratio and Crankshaft Offset on Piston Friction Losses. SAE Paper 2003-01-0983.
    [104]Teraguchi S, Suzuki W, Takiguchi M, et al. Effects of Lubricating Oil Supply on Reductions of Piston Slap Vibration and Piston Friction[C]. SAE Paper 2001-01-0566.
    [105]Mufti R A, Priest M. Experimental evaluation of piston-assembly friction under motored and fired conditions in a gasoline engine[C]. Journal of Tribology-Transactions of the ASME,2005,127(4):826-836.
    [106]Livanos G A, Kyrtatos N P. Friction model of a marine diesel engine piston assembly[J]. Tribology International,2007,40(12):1441-1453.
    [107]Mazouzi R, Maspeyrot P, Kellaci A, et al. Effects of piston design parameters on skirt-liner friction[J]. Mecanique& Industries,2009,10(2):91-101.
    [108]刘煜,谢友柏.内燃机缸套—活塞环混合润滑特性及摩擦力分析[J].内燃机学报,1995,13(3):299-305
    [109]刘煜,桂长林,谢友柏.活塞环—缸套润滑状态周向不均匀性的研究[J].内燃机学报,1997,15(3):281-289
    [110]于旭东,王政,王成焘,等.新型光纤式油膜厚度探测系统的研究[J].内燃机学报,1999,17(4):379-382
    [111]杨俊伟,于旭东,王成焘,等.考虑活塞热变形的活塞裙部润滑计算分析[J].内燃机学报,2002,20(4):365-368
    [112]戴旭东,袁小阳,谢友柏.缸套—活塞系统润滑行为与动力学行为耦合分析[J].摩擦学学报,2003,23(6):519-523
    [113]王义亮,谢友柏.多缸内燃机缸套—活塞系统摩擦学与动力学耦合问题的研究[J].润滑与密封,2005,2:1-5
    [114]张执南,张效翔,李响,等.活塞二阶运动及活塞裙部摩擦的瞬态分析[J].摩擦学学报,2010,30(2):184-189.
    [115]韩志武,任露泉,刘祖斌.激光织构仿生非光滑表面抗磨性能研究[J].摩擦学学报,2004,24(4):289-293.
    [116]白敏丽,丁铁新,董卫军.活塞环—气缸套润滑摩擦研究[J].内燃机学报,2005,23(1):72-76
    [117]周龙,白敏丽,吕继组,等.用耦合分析法研究内燃机活塞环—气缸套传热润滑摩擦 问题[J].内燃机学报,2008,26(1):69-75.
    [118]Usui M, Murayama K, Oogake K, et al. Study of Oil Flow Surrounding Piston Rings and Visualization Observation[C]. SAE Paper 2008-01-0795.
    [119]Thirouard B, Tian T. Oil Transport in the Piston Ring Pack (Part 1):Identification and Characterization of the Main Oil Transport Routes and Mechanisms[C]. SAE Paper 2003-01-1952.
    [120]Thirouard B, Tian T. Oil Transport in the Piston Ring Pack (Part 2):Zone Analysis and Macro Oil Transport Model[C]. SAE Paper 2003-01-1953.
    [121]Vokac A, Tian T. An Experimental Study of Oil Transport on the Piston Third Land and the Effects of Piston and Ring Designs[C]. SAE Paper 2004-01-1934.
    [122]Przesmitzki S, Vokac A, Tian T. An Experimental Study of Oil Transport between the Piston Ring Pack and Cylinder Liner[C]. SAE Paper 2005-01-3823.
    [123]Ito A, Shirakawa H, Nakamura M, et al. A Study on the Mechanism of Lubricating Oil Consumption of Diesel Engines (1st report):The Effect of the Design of Piston Skirt on Lubricating Oil Consumption[C]. SAE Paper 2005-01-2169.
    [124]Nakamura M, Hayashi H, Ito A. A Study on the Mechanism of Lubricating Oil Consumption of Diesel Engines (2nd report):Mechanism of Oil Film Generation on Piston Skirt[C]. SAE Paper 2005-01-2167.
    [125]Nakamura M, Hayashi H, Ito A. A Study on the Mechanism of Lubricating Oil Consumption of Diesel Engines (3rd Report):Effect of Piston Motion on Piston Skirt Oil Film Behavior[C]. SAE Paper 2006-01-3349.
    [126]Ito A, Tsuchihashi K, Nakamura M. A Study on the Mechanism of Lubricating Oil Consumption of Diesel Engines (4th Report):The Measurement of Oil Pressure Under the Piston Oil Ring[C]. SAE Paper 2006-01-3440.
    [127]Herbst H M, Priebsch H H. Simulation of Piston Ring Dynamics and Their Effect on Oil Consumption[C]. SAE Paper 2000-01-0919.
    [128]Basaki M, Saito K, Nakashima T, et al. Analysis of Oil Consumption at High Engine Speed by Visualization of the Piston Ring Behaviors[C]. SAE Paper 2000-01-2877.
    [129]仲志全,李华字,尹琪.发动机运行工况对机油耗影响的试验研究[J].内燃机工程,2004,25(5):69-71.
    [130]马呈新,赵旭东.优化活塞结构降低柴油机机油耗[J].内燃机与动力装置,2007(5):37-39.
    [131]吴东兴,夏兴兰,卜安珍,等.柴油机机油耗的模拟分析[J].现代车用动力,2008(2):31-35.
    [132]张卧波,刘世英.发动机缸内摩擦副组件性能数值模拟与试验研究[J].内燃机工程,2008,29(2):42—45.
    [133]王树青,吴国栋,郭金宝.活塞环动力学数值模拟计算及试验研究[J].内燃机与动力装置,2008(1):14-19.
    [134]傅德薰,马延文.计算流体力学[M].第1版.北京:高等教育出版社,2002.
    [135]陈志娥.冷却水套结构对卧式柴油机冷却水流动特性的影响研究[D].[硕士学位论文].昆明:昆明理工大学,2010.
    [136]毕玉华,何常民,雷基林,等.柴油机螺旋进气道结构参数对气道性能的影响分析[J].空气动力学报,2010,28(5):571-575.
    [137]赵选民.实验设计方法[M].北京:科学技术出版社,2009:64-71.
    [138]Gale N F. Diesel Engine Cylinder Head Design:The Compromises and the Techniques[C]. SAE Paper 900133.
    [139]申立中,雷基林,颜文胜,等.单双缸卧式柴油机强制冷却结构[P]:中国,ZL200720104721.2,2008-04-09.
    [140]申立中,雷基林,颜文胜,等.卧式柴油机冷却进水腔[P]:中国,ZL200820080962.2,2008-12-31.
    [141]申立中,雷基林,颜文胜,等.卧式柴油机冷却结构[P]:中国,ZL200810058189.4,2010-8-13.
    [142]雷基林,申立中,陈志娥,等.新型卧式柴油机冷却水套结构及其流动特性研究[C].内燃机科技——中国内燃机学会第八届学术年会论文集,上海:同济大学出版社,2010:406-412.
    [143]王宪成,孙嘉林,王书义.漏气率对柴油机性能的影响[J].内燃机学报,1994,12(2):164-168.
    [144]苏颖颖,王伯年.发动机环组漏气分析[J].上海理工大学学报,1998,20(4):330-334.
    [145]AVL. Theory of AVL Excite Piston& Rings[M]. Version 7.0.3,2007,12.
    [146]雷基林,申立中,毕玉华,等.增压中冷柴油机活塞温度场试验研究[J].内燃机工程,2007,28(5):41-44.
    [147]雷基林,申立中,杨永忠,等.4100QBZ增压柴油机活塞机械负荷与热负荷耦合分析[J].内燃机工程,2008,14(1):61-66.
    [148]郭磊,郝志勇,张鹏伟,等.活塞动力学二阶运动的仿真方法与试验研究[J].内燃机工程,2009,30(6):41-47.
    [149]杨连生.内燃机设计[M].北京:中国农业机械出版社,1981.
    [150]Franz Guenter Cantow.大缸径发动机活塞环[J].国外内燃机,2007,2.
    [151]刘胜吉,吴晓栋,尹必峰.喷油系统与柴油机匹配中结构参数的计算方法[J].农业机械学报,2003,23(4):15-18.
    [152]唐维新,袁文华,龚金科等.燃烧室几何形状和位置对燃烧过程的影响[J].中南大学学报(自然科学版),2006,37(6):1161-1165.
    [153]林学东,宋涛,冯先振,等.车用柴油机低排放缩口燃烧系统的优化[J].吉林大学学报(工学版),2007,37(1):54-59.
    [154]Rahman M M, Bakar R A, Sani M S M, et al. Investigation into Surface Treatment on Fatigue Life for Cylinder Block of Linear Engine Using Frequency Response Approach[C].15th International Congress on Sound and Vibration,6-10 July 2008, Daejeon, Korea.
    [155]陆际清,沈祖京.汽车发动机设计(第二册)[M].北京:清华大学出版社,1993.
    [156]GB20891-2007《非道路移动机械用柴油机排气污染物排放限值及测量方法(中国ⅠⅡ阶段)》[M],国家环境保护总局,国家质量监督检验检疫总局,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700