用户名: 密码: 验证码:
复杂背景抑制及弱小目标检测算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
红外预警系统依靠被动地接受红外辐射实现检测、识别和跟踪来袭目标,相比雷达预警系统,它所具有的隐蔽性好、角分辨率高、抗电磁干扰能力强等优点,已受到各国军方的高度重视。由于红外预警系统还具备体积小、重量轻、机动性强等优点,它已逐渐成为现代化信息对抗体系中的一个重要组成部分。随着导弹、飞机等进攻性兵器速度的不断提高,要求红外预警系统能在较远的距离处搜索到来袭目标,以为我方对抗系统提供足够的预警时间。然而,当目标较远时,系统接收的是一种复杂背景中的微弱信号,即其不仅背景复杂、目标信号微弱、信噪比低,而且尺寸小、无形状、纹理信息,很难将其从背景中检测出来,以致如何实现复杂背景下红外弱小目标的可靠检测,成了当今国内外同仁广为研究的热门课题,它是一个具有重要理论意义和工程应用价值的研究课题。
     本文主要研究天空复杂背景下的红外弱小目标检测问题,首先分析了红外图像中弱小目标及其背景特性,然后利用矩阵论、仿生学理论、多尺度几何分析、局部滤波、非线性滤波等理论工具,研究了相应的算法,主要包括红外弱小目标背景抑制和红外弱小目标多帧检测两方面的算法。本文主要研究成果有:
     1、提出了两种背景抑制算法。针对天空中可能出现的大面积云层背景,提出了基于奇异值分解的人工蚁群背景抑制算法。该算法利用图像矩阵中奇异值在代数和几何上的不变性原理,对图像进行奇异值分解,用人工蚁群对分解结果优化。实验证明,该算法能有效抑制复杂多变的云层背景,提高了图像的信噪比和对比度,且适应性强,但是运算量偏大。为提高算法的实时性提出了一种基于多尺度奇异值分解背景抑制算法,该算法利用atrous小波的多尺度和平移不变性等优势,对小波分解后的子带进行特征值截断来调整系数,达到了抑制背景的目的。仿真结果表明该算法对一般的背景结构都能取得较好的抑制效果,有效地增强了目标信号。
     2、针对天空背景中可能出现的结构化背景和强起伏云层,提出了一种改进的双边滤波算法和基于双边滤波的非抽样轮廓波背景抑制算法。利用目标和背景与其周围邻域相关性差异的特点,对像素的灰度和几何结构与其局部邻域之间的关系进行分析,提出了一种改进的双边滤波算法。该算法通过对背景图像的预测实现目标与背景的分离。利用非抽样轮廓波变换所具有的多尺度、多方向和平移不变性特点,采用双边滤波对各子带系数在空间距离、几何结构和灰度关系进行调整,提出了一种基于双边滤波的非抽样轮廓波背景抑制算法。实验证明,所提算法能对空空系统中的结构化背景进行有效抑制,提高图像整体的信噪比,使红外图像中复杂背景的抑制效果得到很大的提高。
     3、提出了两种基于序列图像处理的弱小目标检测算法。利用目标图像的帧问相关特性和运动轨迹的连续性,构造了相关系数,针对机动性弱的常规线性运动目标,提出了一种基于卡尔曼滤波的帧间相关检测算法。当目标机动性较大时,其运动模型具有较强的非线性,针对这种情况提出了Unsecured粒子滤波的序列检测算法,实现了对该类目标的快速准确检测,并将该算法成功地应用于红外预警系统中。仿真结果表明,两种算法在不同运动模型下对目标的检测效果更加准确,减少了目标检测过程中虚假目标和漏检目标的数目,提高了对序列图像中弱小目标的检测能力。
     4、红外弱小目标检测算法性能分析。红外弱小目标检测算法的性能与多种因素有关,就图像质量而言其评价指标包括信噪比和对比度等,就检测要求而言其评价指标包括检测概率和虚警概率等。本文对上述几个重要指标进行了综合、详细地分析,从理论上阐述了虚警概率和检测门限之间的关系、检测概率和信噪比之间的关系以及检测概率和虚警概率之间的关系。从工程实际出发,详细地分析了ROC曲线对于红外弱小目标检测算法性能评估的重要意义。利用仿真的序列图像对算法进行性能评估校验,给出了本文所提算法与经典算法比较的ROC曲线。
Infrared Surveillance System (IRSS) is used for target detection, recognition and trackion which employ electro-optical detectors receiving infrared emission passively. IRSS has advantages of high resolution, invisibility, fine anti-jamming ability, small size, lightweight and high maneuverability. For these advantages, IRSS becomes an important part of modern information confrontation system, and obtains more attention in recent years. As the speed of missiles and planes increase, IRSS is required to meet the demand of detecting long distance targets to ensure enough pre-alarm time. However, it is difficult to separate targets from background because of its small size, usually occupying only several pixels, no shape and texture information and so on. Therefore, how small and dim targets can be reliably detected in complex background has become a hot research issue and has important theoretical and practical value.
     Aiming at the problem of small and dim target detection in complex sky background, the characteristics of target and background in infrared images are analyzed in this dissertation. Singular value decomposition (SVD) theory, ant colony system (ACS), multi-scale geometry analysis, bilateral filter and non-linear filter are deeply studied and used for infrared dim and small target detection. This study mainly focuses on background suppression algorithm for infrared small target and multi-frame infrared small target detection algorithm.
     1. Aiming at the case that infrared images contain highlighted and large area background, two background suppression algorithms are proposed. According to the singular value with invariance principle in the algebra and geometry, a background suppression algorithm based on SVD and ACS is proposed to suppress complex sky background. The experimental results show that the algorithm can restrain the complex and various background structures, improve the SNR and contrast of image, but it has heavy computation. So a background suppression algorithm based on multi-scale SVD is developed to make it real-time implemention. According to the stationary wavelet characteristics with multi-scale and translation invariance, the algorithm suppress the background based on singularity value decomposition which adjusted the stationary wavelet sub-bands coefficients with truncated eigenvalue. Experimental results demonstrate that the algorithm can suppress the background and enhance the target signal effectively.
     2. In order to suppress strong undulant background with complex texture effectively, two background suppression algorithms are developed based on new bilateral filtering. Through analyzing the relationship between each pixel with gray level, geometric structure and local neighborhood pixel, an improved bilateral filter algorithm is proposed, which can separate targets from background with prediction of the background image. By the advantage of the nonsubsampled contourlet transform (NSCT) characteristics with multi-scale, multi-directional and translation invariance. A new infrared dim target background suppression algorithm based on bilateral filter is proposed which adjusted the NSCT sub-bands coefficients with local neighborhood pixel in spatial distances, geometric structure and intensity. Experimental results show these algorithms can restrain complex background for surface-sky detection system effectively.
     3. Two dim and small target detection algorithms are proposed based on the sequence image. Using inter-frame correlation and motion continuity of target, as well as the constructed gray correlation coefficient, a dim target detection algorithm based on Kalman filter is proposed. Since the actual target usually has high maneuverability, which means it has strong non-linear motion, so a unsecured particle filter for sequence detection algorithm is developed. Experimental results demonstrate that new algorithms can detect moving target under different motion model accurately, reduce the number of false targets and missed targets, and improve the detection capability of dim and small target in image sequences.
     4. The performance of dim and small target detection algorithm is also studied in this dissertation. The performance of dim and small target detection algorithm is associated with many factors. As image quality is concerned, SNR, contrast ratio etc are involved as evaluation indicators. As for detection requirement, detection probability, false alarm probability etc are involved. In this study, the relationship between the false alarm probability and detection threshold is studied deeply, so as the relationship between detection probability and SNR, the detection probability and the false alarm probability. The ROC curves for performance evaluation in infrared dim and small target detection are also given. Simulation experiments evaluate the performances of the proposed algorithms using the ROC curves, which proves that the algorithms proposed are more efficient compared with the classical algorithms.
引文
[1]杨宜禾,邱敏.红外系统[M].北京:国防工业出版社,1985.
    [2]Richard D Hudson, Jr. Infrared System Engineering [M]. John Wiley&Sons, Inc. 1969.
    [3]吴晗平.红外警戒系统的技术方法研究[J].现代防御技术,1985(5):50-58.
    [4]Zhang Wei, Cong Ming-yu, Wang Li-ping. Algorithm for optical weak small targets detection and tracking:Review[J]. IEEE International Conference on Neural Networks & Signal Processing.2003:643-647.
    [5]汪国有,陈振学,李乔亮.复杂背景条件下的红外弱小目标检测的方法研究综述[J].红外技术,2006,28(5):287-292.
    [6]杨磊.复杂背景条件下的红外弱小目标检测与跟踪算法研究[D].上海交通大学博士论文.2006.
    [7]张惠娟,梁彦,程咏梅,等.运动弱小目标先跟踪后检测技术的研究进展[J].红外技术.2006,28(7):423-430.
    [8]杨卫平,沈振康.红外图像序列小目标检测预处理技术[J].红外与激光工程.1998,27(1):23-28.
    [9]Barnett J. Statistical analysis of median subtraction filtering with application to point target detection in infrared backgrounds. SPIE.1989.1050:10-18.
    [10]徐英.红外图像序列中运动弱小目标检测的方法研究.红外技术.2002,11.24(6):27-30.
    [11]蔡敬菊,彭先容,马茜,魏宇星,等.红外小目标图像预处理及FPGA实现[J].光电工程.2003,30(2):47-49.
    [12]杨卫平,沈振康.红外图像序列小目标检测预处理技术[J].红外与激光工程.1998,27(1):23-28.
    [13]Muller M. Saliency Measures in Cluttered IR Images for ATR. SPIE. Apr 1999. 3699:150-154.
    [14]Scharfand L L, Friedlander B. Matched subspace detectors. IEEE Trans. On Sig. Pro. Aug 1994.42 (8):2146-2156.
    [15]左震,张天序.基于小波变换的红外成像海面小目标检测算法[J].红外与激光工程,1998,27(3):42-45.
    [16]G. Davidson, H. D. Griffiths. Wavelet detection scheme for small target in sea clutter[J]. IEEE Electronics Letters,2002,38 (19):1128-1130.
    [17]Zhicheng Wang, Jinwen Tian, Jian Liu, et al. Small infrared target fusion detection based on support vector machines in the wavelet domain[J]. Optical Engineering.2006,45 (7):1-9.
    [18]Firooz A. Sadjadi. Infrared target detection with probability density functions of wavelet transform subbands[J]. APPLIED OPTICS.2004,43 (2):315-323.
    [19]温佩芝,史泽林,于海斌.基于小波变换的复杂海面背景红外小目标检测[J].激光与红外,2003,33(6):449-452.
    [20]顾静良,万敏,张卫,郑捷.基于小波变换和数据融合技术的弱小目标检测[J].强激光与粒子束,2005,17(7):983-986.
    [21]徐军,向健华,梁昌洪.最大化背景模型用于检测红外图像中的弱小目标[J].光子学报,2002,31(12):1483-1486.
    [22]朱红,赵亦工.基于背景自适应预测的红外弱小运动目标检测[J].红外与毫米波学报,1999,18(4):305-310.
    [23]陈振学,汪国有.基于自适应背景预测的红外弱小目标检测算法[J].激光与红外,2005,35(8):608-610.
    [24]尹超,向建勇,韩建栋.一种基于区域背景预测的红外弱小目标检测方法[J].红外技术,2004,26(6):62-65.
    [25]吴一全,罗子娟.基于最小一乘背景预测的红外小目标检测算法[J].光电工程,2008,35(4):12-16.
    [26]James R. Zeidler, Performance analysis of LMS adaptive prediction filters[C]. Proceedings of the IEEE.1990,78 (12):1781-1806.
    [27]J. N. Lin, X. Nie, R. Unbehauen. Two-dimensional LMS adaptive filter incorporating a local-mean estimator for image processing [J]. IEEE Transactions on Circuits and System. Analog and Digital Signal Processing.1993,40 (7) 417-428.
    [28]朱斌,樊祥,马东辉,程正东.一种改进的自适应背景预测红外弱小目标检测算法[J].激光与红外.2007,37(7):683-686.
    [29]Tarun Soni, James R. Zeidler, Walter H. Ku. Performance evaluation of 2-D adaptive prediction filters for detection of small objects in image data[J]. IEEE Trans. On Image Processing.1993,2 (3).327-340.
    [30]尹超,向健勇,韩建栋.一种基于区域背景预测的红外弱小目标检测方法[J].红外技术.2004,26(6):62-65.
    [31]杨丽萍,冯晓毅.一种基于背景预测的红外弱小目标检测方法[J].红外技术.2007,29(7):404-408.
    [32]朱斌,樊祥,马东辉,等.基于固定权值背景预测的红外弱小目标检测[J].舰船电子对抗.2008,31(1):54-56.
    [33]ZHANG Shi-jun, JING Zhong-liang, LI Jian-xun. Small target detection of infrared image based on energy features [J]. IEEE Neural Networks and Signal Processing,2003,1:672-676.
    [34]汪洋,郑亲波,张钧屏.基于数学形态学的红外图像小目标检测[J].红外与激光工程.2008,32(1):28-31.
    [35]Suyog D. Deshpande, M.H.Er, V. Ronda, Phillip Chan. Max-mean and max-median filters for detection of small targets[C]. SPIE.1999:74-82. Vol. 3890.
    [36]I. S. Reed, R. M. Gagliardi, H. M. Shao. Application of three dimensional filtering to moving target detection[J]. IEEE Trans. On Aerospace and Electronic System (AES).1983:898-905.
    [37]I. S. Reed, R. M. Gagliardi, L. Stotts. Optical moving target detection with 3-D matched filtering[J]. IEEE Trans. On AES.1988,24 (4):327-336.
    [38]Yuan Cao, Ruiming Liu, Jie Yang, et al. Infrared small target detection using PPCA[J]. Int J Infrared Milli Waves.2008,29:385-395.
    [39]Delian Liu, Jianqi Zhang, weike Dong. Temporal profile based small moving target detection algorithm in infrared image sequences [J]. Int J Infrared Milli Waves.2007,28:373-381.
    [40]刘瑞明,刘尔琦,杨杰等.核Karhunen-Loeve变换红外小目标检测[J].红外与毫米波学报,2008,27(1):47-50.
    [41]Pohlig, S C. An algorithm for detection of moving optical targets[J]. IEEE Trans. AES,1989,25 (1):56-63.
    [42]刘志刚,卢焕新,陈辉煌.一种低信噪比下点目标检测新算法[J].系统工程与电子技术.2004,26(11):1588-1592.
    [43]Steven D Blostein, Thomas S Huang. Detection of small moving objects in image sequences using multistage hypothesis testing[J]. IEEE Trans. On Signal Processing,1991,39 (7):1611-1629.
    [44]S. Tantaratana, H. V. Poor. Asymptotic efficiencies of truncated sequential tests[J]. IEEE Trans. On Information Theory.1982,8(6):911-923.
    [45]Blackman, S S. Multiple hypothesis tracking for multiple target tracking[J]. IEEE Aerospace and Electronic Systems Magazine,2004,19(1):5-18.
    [46]宋柳平.图像序列中小信杂比点目标的检测方法研究[D].国防科大博士论文,1992.
    [47]C. E. Caefer, J. Silverman, J. M. Mooney, et al. Temporal filtering point target detection in staring IR imagery:Ⅰ. damped sinusoid filters[C]. Proc. SPIE.1998, 3373:111-122.
    [48]Koch W., Van K. G. Multiple hypothesis track maintenance with possibly unresolved measurements [J]. IEEE Trans on AEIS.1997,33 (3):883-892.
    [49]Alexis P. T., Dana H. B. Detection of point targets in image sequences by hypothesis testing a temporal test fist approach[C]. IEEE Conference on Acoustics, Speech and Signal Processing[C].1999,6:3377-3380.
    [50]Blostein S D, Richardson H S, A sequential detection approach to target tracking[J]. IEEE Trans AES,1994,30 (1):197-212.
    [51]Bamiv Y. Dynamic programming solution for detection dim moving targets[J]. IEEE Trans. AES,1985,21 (1):144-156.
    [52]Larson R. E., Pescchon J. Dynamic programming approach to trajectory estimation[J]. IEEE Trans. On AC.1996,11 (3):537-540.
    [53]Tonissen S. M., Evans R. J. Performance of dynamic programming technique for track-before-detect[J]. IEEE Trans on AES.1996,32 (4):1444-1450.
    [54]James A., Henry P. Detection and tracking of low-observable targets through dynamic programming[J]. SPIE Signal and Data Processing of Small Targets. 1990,1305:206-217.
    [55]Arnold, J., Shwa, Sand Pasternack H. Efficient target tracking using dynamic programming[J]. IEEE Trans. Aerospace and Electrical Systems,1993,29 (1) 44-56.
    [56]Johnston L A, Krishnamurthy V. Performance analysis of a dynamic programming track before detect algorithm [J]. IEEE Transactions on Aerospace and Electronic Systems,2002,38 (1):288-241.
    [57]R. Liou, M. R. Azimi-Sadjadi. Dim target detection using high order correlation method[J]. IEEE Trans. On AES.1993,29 (3):841-856.
    [58]R. Liou, M. R. Azimi-Sadjadi. Multiple target detection and track identification using modified high order correlations[A]. IEEE Proceedings of ICNN'94, Orlando[C].1994:3277-3282.
    [59]R. Liou, M. R. Azimi-Sadjadi. Multiple target detection using modified high order correlations[J]. IEEE Trans. On AES.1998,34 (2):553-567.
    [60]Gordon N J, Salmond D J, Smith A F. Novel approach to nonlinear/non-gaussian Bayesian state estimation[A]. Proc. Of the Radar and signal Processing,1993, 107-113.
    [61]Salmond D J, Birch H. A particle Filter for Track-before-detect[C].//IEEE Proceedings of the American Control Conference. Washington 2001:3755-3760.
    [62]姚剑敏.粒子滤波跟踪方法研究[D].长春:中国科学院长春光学精密机械与物理研究所.2004.
    [63]武斌.红外弱小目标检测技术研究[D].西安:西安电子科技大学博士论文.2008.
    [64]程建,等.基于粒子滤波的宏伟目标跟踪[J].红外与毫米波学报,2006,25(2):113-117.
    [65]胡洪涛,敬忠良,胡士强.基于辅助粒子滤波的红外小目标检测前跟踪算法[J].控制与决策,2005,20(11):1208-1211.
    [66]Taratakovsky A., Blazek R. Effective adaptive spatial-temporal technique for clutter rejection in IRST[J]. SPIE Proceedings Signal and Data Processing of Small Targets,2000 (4048):1-11.
    [67]Wang Guoyou, Zhang Tianxu, Wei Luogang, et al. Efficient method for multiscale small target detection from a natural scene[J]. Optical Engineering, 1996,35 (3):761-768.
    [68]Tian Y, Tan T N. Do singular values contain adequate information for face recognition [J]. Pattern recognition.2003,36 (3):649-655.
    [69]张贤达.矩阵分析与应用[M].北京:清华大学出版社.2004:341-400.
    [70]Dorigo M, Maniezzo V, Colorni A. The ant system:optimization by a colony of cooperating agents [J]. IEEE Trans Syst Man Cybern part B,1996,26 (1):1-13.
    [71]Nezamabadi-Pour, S. Saryazdi, and E. Rashedi, Edge detection using ant algorithms [J]. Soft Computing,2006,10:623-628.
    [72]Jing Tian, Weiyu, Shengli Xie. An ant colony optimization algorithm for image edge detection [C]//IEEE Congress on Evolutionary Computation (CEC), Hongkong,2008:751-756.
    [73]Tomasi C, Manduchi R. Bilateral filtering for gray and color images[C]. In:Proc. 6th Int. Conf. Computer Vision. New Delhi, India.1998,839-846.
    [74]Cai Chao, Ding Mingyue Zhou Chengping. Bilateral filtering in the wavelet domain[J]. Proceedings of SPIE.2001,4552:246-252.
    [75]靳明,宋建中.一种自适应的图像双边滤波方法[J].光电工程.2004,31(7)65-72.
    [76]李德军,赵文杰,谭海峰,等.一种基于双边滤波的图像边缘检测方法[J].计算机技术与发展.2007,17(4):161-163.
    [77]蔡超,丁明跃,周成平,等.小波域中的双边滤波[J].电子学报.2004,32(1):128-131.
    [78]王丽辉,袁保宗.鲁棒的模糊C均值和点云双边滤波去噪[J].北京交通大学学报.2008,32(2):18-21.
    [79]I. Daubechies. Ten Lectrues on Wavelets[M]. SIAM, Philadelphia,1992.
    [80]崔锦泰著,程正兴译.小波导论[M].西安:西安交通大学出版社,1995.
    [81]赵松年.子波变换与子波分析[M].北京:电子工业出版社,1996.
    [82]李世雄.小波变换及其应用[M].北京:高等教育出版社,1997.
    [83]Stephane Mallat, Gabriel Peyre. A wavelet tour of signal processing:the sparse way[M].3nd Ed, San Diego:Academic Press,2009.
    [84]姜锦峰.红外图像的目标检测、识别与跟踪技术研究[D].西安:西北工业大学,2004.18-19.
    [85]M. J. Carlotto. Nonlinear Background Estimation and Change Detection for Wide-area Search[J]. Opt. Eng.2000,39 (5):1223-1229.
    [86]Christopher WK. Infrared target detection:signal and noise sensitivity analysis thesis. Dec 1989. AD-A215-207.
    [87]Wang S C H, DudoffG, Jost S, et.al. WymanHigh-performance longwave infrared HgCdTe scanning focal plane arrays for surveillance applications[C]. SPIE. 2225:335-349.
    [88]徐军,红外图像中弱小目标检测技术研究[D].博士论文,西安电子科技大学,2003.4.
    [89]孙滨生.前视红外探测技术现状及发展航空信息研究报告.1994,3.HY94007(总第00380期)1-23.
    [90]陈继述,胡燮荣,徐平茂.红外探测器.第一版.北京:国防工业出版社,1986.
    [91]Bar-Shatom Y, Shertukde H M, Pattipati K R, Precision target tracking for small extended objects[C]. SPIE.1989.1096:66-63.
    [92]Chan D S K, Langan D A, Staver D A. Spatial processing techniques for detection of small targets in IR clutter[C]. SPIE.1990,1305:53-62.
    [93]Nishiguchi K, Kobayashi M, Ichikawa A. Small target detection from image sequences using recursive max filter[C]. SPIE.1995.2561:153-165.
    [94]徐树方,矩阵计算的理论与方法,北京大学出版社,1994.
    [95]G. H. Golub and C. F. von Loan (1996). Matrix Computation. The Johns Hopkins University Press.
    [96]J. Dongarra, C. Moler, J. Bunch, G. W. Stewart, LINPACK User's Guide, SIAM, Philadelphia.1979.
    [97]秦翰林,周慧鑫,刘上乾,等.基于奇异值分解的红外弱小目标背景抑制[J].半导体光电.2009,30(3):473-476.
    [98]李士勇,陈永强,李研.蚁群算法及其应用[M].哈尔滨:哈尔滨工业大学出版社.2004.
    [99]H. Nezamabadi-Pour, S. Saryazdi, E. Rashedi. Edge detection using ant algorithms[J]. Soft Computing,2006,10:623-628.
    [100]刘刚,敬忠良,孙韶媛.基于多孔小波和模糊区域特征的图像融合方法[J].计算机工程.2005,31(16):33-34.
    [101]M. J. Shensa. The discrete wavelet transform:wedding the "atrous" and Mallat algorithms[J]. IEEE Trans. Signal Proc,1992,40 (10):2464-2482.
    [102]叶传奇,王宝树,苗启广.一种基于区域特性的红外与可见光图像融合算法[J].光子学报.2009,38(6):1498-1503.
    [103]M.N.Do, M. Vetterli. Contourlets. Beyond Wavelets. J. Stoeckler and G. V. Welland eds. Academic Press,2002:1-27.
    [104]S. Mallat. A wavelet tour of signal processing.2nd edition. Boston:Academic Press,1998.
    [105]Arhtur L. da Cunha, Jianping Zhou. The nonsubsampled contourlet transform: theory, design, and applications [J]. IEEE Trans. On Image Processing.2006,15 (10):3089-3101.
    [106]R. H. Bamberger, M. J. T. Smith. A filter bank for the directional decomposition of images:theory and design[J]. IEEE Trans. Signal Proc.1992,40 (4):882-893.
    [107]Cunha, A L, Zhou J P, Do M N. Nonsubsampled contourlet transform:filter design and application in denoising. In:IEEE Int. Conf. on Image Proc., Genoa, Italy,2005,749-752.
    [108]J. P. Zhou, A L Cunha, M N Do. Nonsubsampled contourlet transform: construction and application in enhancement. In:IEEE INTERNATIONAL Conference on Image Processing., Genoa, Italy,2005:468-472.
    [109]Zhang Q, Guo B L. Rescarch on image fusion based on the nonsubsampled contourlet transform. In:2007 IEEE International Conference on Control and Automation, Guangzhou, China,2007:3239-3243.
    [110]焦李成,侯彪,王爽,等.图像多尺度几何分析理论与应用[M].西安:西安电子科技大学出版社.2008.
    [111]Wang G, Rafact I M, McVey E S. A pipeline algorithm for detection and tracking of pixel-sized target trajectories[C]. SPIE.1990,1305:167-176.
    [112]Chen Y. On sub-optimal detection of 3-dimentional moving targets[J]. IEEE Trans. Aerospace and Electronic Systems,1989,25 (3):375-392.
    [113]Xiong Yan, Peng Jiaxiong et al. An effective method for trajectory detection of moving pixel-sized target[C]. Proceed. of IEEE Inter. Confer. On System s, Man and Cybernetics, Vancouver, Canada.1995,3:2570-2575.
    [114]Horn B K, Schunck B G. The image flow constraint dquation[J]. CVGIP,1986, 35 (3):26-31.
    [115]Lavagetto F. Automatic target detection in infrared sequences through semantic labeling[A]. SPIE[J].1990,1349:476-485.
    [116]Diani M, Corsini G, Baldacci A. Space-time processing for the detection of airborne targets in IR image sequences LEE Proceedings of Vision[J]. Image and Signal Processing.2001,148 (3):151-157.
    [117]赵小明,袁胜春,马晓丽,等.基于移动式管道滤波的红外小目标检测方法研究[J].红外技术.2009,31(5):295-297.
    [118]刘靳,继红兵.基于移动式加权管道滤波的红外弱小目标检测[J].西安电子科技大学学报(自然科学版).2007,34(5):743-747.
    [119]Patterson T. J., Charles D. M. Christiansen R W. Detection algorithms for image sequence analysis [J]. IEEE Trans on ASSP,1989,37 (9):1130-1137.
    [120]卓宁,孙华燕.一种低信噪比运动点目标检测算法[J].激光与红外.2004,34(6):484-486.
    [121]周润芝,马良荔,王江安,等.一种基于帧间相关的红外弱小目标运动轨迹检测方法[J].海军工程大学学报.2010,22(1):78-82.
    [122]徐军,周翔,梁昌洪.红外序列图像弱小目标检测算法[J].红外与激光工程.2003,32(4):390-393.
    [123]刘建华,毕笃彦,王红卫.一种红外图像序列弱小目标的检测方法[J].光电工程.2008,35(10):48-53.
    [124]D. Willner, C. B. Chang, K. P. Dunn. Kalman filter algorithms for a multisensor system [D]. In Proc. IEEE Conf. Decision and Control, Dec.1976.
    [125]Aidala, V. J. Behavior of the Kalman filter applied to bearings-only target motion analysis [D]. Naval Underwater Systems center. NUSC Tech. Rep.4984, Nov. 1976.
    [126]张有为.维纳与卡尔曼滤波理论导论.北京:人民教育出版社.1980.
    [127]W. Sorensor. Kalman filering:theory and application[J]. IEEE Press,1985.
    [128]Yvo Boers, Hans Driessen. Particle filter based track before detect algorithms[J]. Signal and Data Processing of Small Targets,2003:20-30.
    [129]B. Ristic, S. Arulampalam, N. Gordon. Beyond the Kalman filter:Particle filgers for tracking applications[C]. Artech House,2004.
    [130]胡洪涛,敬忠良,胡士强.基于辅助粒子滤波的红外小目标见测前跟踪算法[J].2005,20(11):1208-1211.
    [131]程建,周越,蔡念,等.基于粒子滤波的红外目标跟踪[J].红外与毫米波学报.2006,25(2):113-117.
    [132]Salmond, D. J., Birch H.. A particle filter for track-before-detect[C]. American Control Conference,2001,5:3755-3760.
    [133]Liu J., Chen R. Sequential Monte Carlo methods for dynamical systems[J]. Amer. Statist. Assoc.,1998,93:1032-1044.
    [134]R. Vander. Merwe, A. Doucet. The unscented particle filter[C]//Advances in Neural Information Processing Systems, MIT,2000.
    [135]Popp R L., Pattipati K R., Bar-Shalom Y. M-best SD assignment algorithm with application to multitarget tracking[J]. IEEE Trans. On Aerospace and Electronic Systems,2001,37 (1):22-39.
    [136]Doucet A. On sequential Monte Carlo methods for Bayesian filtering[C]. Dept. Eng., Univ. Cambridge, UK, Tech. Rep.,1998.
    [137]B. P. Carlin, N. G. Polson, D. S. Stoffer. A monte carlo approach to nonnormal and nonlinear state-space modeling[M]. J. Amer. Statist. Assoc,1992,87 (418) 493-500.
    [138]J. H. Kotecha, P. A. Djuric. Gaussian particle filtering[J]. IEEE Trans. Signal Process.,2003,51 (10):2592-2601.
    [139]李涛.非线性滤波在导航系统中的应用研究[D].长沙:国防科技大学,2003.
    [140]Yang Y, Xu T, He H. On adaptively kinematic filtering[J]. Selected Paper for English of Acta Geodetica et Cartographica Sinica,2001:25-32.
    [141]Angrisani. L., Baccigalupi. A, et al. Ultrasonic time-of-flight estimation through unscented kalman filter[J]. IEEE Transactions on Instrum entation and Measurement,2006,55 (4):1077-1084.
    [142]Vander Merwe R, Wan E A. The square-root unscented kalman filter for state and parameter-estimation. In:Proceedings of the International Conference on Acoustics, Speech, and Signal Processing, Salt Lake City, Utah,2001:461
    [143]何友,修建娟,张晶炜,等.雷达数据处理及应用[M].北京,电子工业出版社.2006.
    [144]Dimitris Manolakis. Realistic matched filter performance prediction for hyperspectral target detection[J]. Optical Engineering,2005,44 (11) 116401.1-116401.7.
    [145]Jun X., Jingqi Zhang, Changhong Liang. Prediction of the performance of an algorithm for the detection of small targets in infrared images[J]. Infrared Physics & Technology,2001,42:17-22.
    [146]R. Succary, H. Kalmanovitch, Y. Shumik, Y. Cohen, E. Cohen, S. R. Rotman. Point target detection[C]. The International Society for Optical Engineering,2002, 4820:671-675.
    [147]A. Margalit, I. S. Reed, Robert, M. Gagliardi. Adaptive optical target detection using correlated images [J]. IEEE Transactions on Aerospace and Electronic Systems.1985, AES-21 (3):394-405.
    [148]Lawrence E. Hoff, James R. Zeidler, Christopher R. Yerkes. Adaptive multispectral image processing for the detection of targets in terrain clutter. SPIE, 1992,1698:100-114.
    [149]孙长亮,何峻,肖怀铁.基于ROC曲线的目标识别性能评估方法[J].雷达科学与技术.2007,5(1):17-21.
    [150]孙长亮,肖怀铁.ACC和AUC在ATR算法评估中的应用[J].电光与控制,2008,15(4):9-12.
    [151]M. Bar-Tal, S. R. Rotman. Performance measurement in point target detection[J]. Inf. Phys. Tech.1996:231-238.
    [152]Marzban C. A Comment on the ROC Curve and the Area Under it as Performance Measures[EB/OL]. http://www.nhn.ou.edu/marzban.
    [153]Alsing S G. The evaluation of competing classification[D]. US:Air Force Institute of Technology,2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700