用户名: 密码: 验证码:
菜心Cd积累的品种间差异及Cd污染控制方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了应对农田土壤的重金属污染,筛选、培育和利用重金属低积累品种已经成为国际上的研究热点。十字花科芸薹属植物具有较强的重金属吸收能力,容易受到Cd、Pb等重金属的污染。为了降低土壤重金属污染通过食物链威胁人类健康的风险,本研究以芸苔属的叶类蔬菜菜心(Brassica parachinensis)为研究对象,进行菜心镉(Cd)低积累品种的大规模筛选,得到了菜心Cd积累典型品种;随后调查了典型品种在不同土壤和不同采收期的Cd积累稳定性,以及混植和施磷等常见农艺措施降低菜心典型品种Cd积累的效果,并利用差速离心和连续浸提法研究了Cd在菜心典型品种体内的亚细胞分布和化学结合形态,探讨了典型品种间Cd积累的差异和施磷降低菜心Cd积累的主要生化机制,最后分析了菜心典型品种与Cd积累相关基因的单核苷酸多态性,探讨了利用SNP技术对菜心Cd低积累特征进行分子标记的可行性。本研究为明确菜心Cd低积累的生物化学和分子生物学机理提供了理论基础,在实际农业生产应用方面,为通过结合农艺措施与Cd-PSC策略降低菜心Cd污染风险、保障菜心安全生产提供了重要的试验依据。主要研究结果如下:
     1.通过盆栽试验研究了31个菜心(Brassica parachinensis)品种在对照(0.114 mg kg~(-1))、低Cd(0.667 mg kg~(-1))、高Cd(1.127 mg kg~(-1))污染土壤中的Cd吸收积累情况。在低Cd处理下,全部菜心品种的地上部Cd含量均超出了CAC的限量标准(0.2 mg kg~(-1),FW)。在高Cd处理下,品种CLW的Cd含量甚至超出标准高达10倍,说明菜心极易从Cd污染土壤中吸收Cd。方差分析结果表明,菜心地上部Cd含量的品种效应在所有Cd处理下均达到了极显著水平(p < 0.01),对照、低Cd处理和高Cd处理下的地上部Cd含量分别为0.033 - 0.162 mg kg~(-1)、0.283 - 1.743 mg kg~(-1)和0.434 - 2.276 mg kg~(-1),品种间最大差异分别为4倍、5.2倍和5.6倍,足以鉴定镉低积累品种,同时地上部Cd含量在各个处理间的相关性都达到了极显著水平(p < 0.01),说明菜心对Cd的积累能力具有稳定性,是属于可遗传的内在特性。依据上述结果确定了SJ19、49CX、XG49、CH4、LB70和YL80为典型的Cd低积累品种,CLW为典型的Cd高积累品种,用于后续研究。
     2.通过盆栽试验研究了菜心典型品种对土壤Cd、Pb复合污染的响应。方差分析结果表明,菜心地上部Cd含量的品种效应在所有处理下均达到了极显著水平(p < 0.01),六个Cd低积累品种的平均Cd含量为0.079 - 0.097 mg kg~(-1),而Cd高积累品种为0.242 mg kg~(-1),在所有处理下,供试的6个Cd低积累品种的地上部Cd含量均极显著地(p < 0.01)低于Cd高积累品种CLW。7个品种的平均地上部Pb含量范围为0.145 - 0.200 mg kg~(-1),排序为CLW > YL80 > XG49 > SJ19 > 49CX > LB70 > CH4,Cd高积累品种CLW在大部分处理下的地上部Pb含量也为最高。方差分析表明,Cd、Pb的交互作用显著(p < 0.01),土壤Pb在本试验所选取的浓度范围(51.02 - 91.25 mg kg~(-1))内明显抑制了菜心对Cd的吸收。根据CAC标准和PSC的定义,在本试验条件下(土壤Cd:0.111 - 0.383 mg kg~(-1);土壤Pb:23.50 - 91.25 mg kg~(-1)),供试的Cd低积累品种均可以看做Cd+Pb-PSCs,而Cd高积累品种CLW为non-Cd+Pb-PSCs。
     3.探讨了不同土壤和采收期对菜心典型品种Cd积累稳定性的影响。六个供试典型品种在Soil A和Soil B上的地上部Cd含量范围分别为0.026 - 0.080 mg kg~(-1)和0.452 - 1.349 mg kg~(-1)。所有品种在Soil A上的Cd含量都要极显著低于Soil B(p < 0.01),最大相差倍数分别达到了20和13倍,这可能与Soil A的土壤有效P浓度远高于Soil B有关。在两种土壤上,Cd高积累品种CLW和CX4的地上部Cd含量和Cd迁移率都要显著高于(p < 0.05)Cd低积累品种SJ19、CH4、LB70和YL80,说明菜心典型品种的Cd吸收特性在不同土壤上表现稳定。供试菜心品种在采收期T1(第25天)、T2(第40天)和T3(第60天)时的平均地上部Cd含量分别为0.734 mg kg~(-1)、0.569 mg kg~(-1)和0.527 mg kg~(-1),所有菜心品种的地上部Cd含量均在生长初期最高,随着生长时间的延长而下降,从T1到T2的降幅最为明显。T1、T2、T3期的平均每日Cd累积量分别为0.46μg pot~(-1) day~(-1)、0.87μg pot~(-1) day~(-1)和0.01μg pot~(-1) day~(-1),可见菜心在生长中期地上部Cd积累的速率最快,是生长初期的1.9倍。不管在哪个采收期,SJ19和CH4的地上部Cd含量都要显著地低于CLW和CX4(p < 0.05),并且地上部Cd积累量仅为后者的1/3~1/2。可见菜心Cd吸收特性的品种间差异不会随采收期而改变,典型品种的Cd积累特性在不同采收期保持一致。
     4.以菜心Cd-PSC(SJ19和CH4)和non-Cd-PSC(CLW和CX4)为对象,研究混植效应对菜心典型品种Cd吸收积累的影响。CLW、SJ19、CH4、CX4混植后的地上部Cd含量范围分别为:0.485 - 0.551、0.274 - 0.522、0.233 - 0.423和0.643 - 0.775 mg kg~(-1),两Cd低积累品种SJ19和CH4除了与CX4混植后的Cd含量稍微偏高外,其余混植处理下的Cd含量都要显著低于(p < 0.05)Cd高积累品种CLW和CH4。Cd低积累品种与Cd高积累品种CLW混植,两者的地上部Cd含量均无显著变化,而与另一高Cd品种CX4混植,则地上部Cd含量显著上升。两个Cd低积累品种混植则两者的地上部Cd含量与单植相比都会显著下降(p < 0.05),下降幅度范围分别为24.6%-26.2%和25.8%-28.7%。试验结果表明根际环境在菜心Cd吸收积累方面具有重要作用,选择合适的混植组合可以有效降低菜心受Cd污染的风险。
     5.以3个Cd低积累品种(Cd-PSC)和2个Cd高积累品种(non-Cd-PSC)为研究对象,研究在不同土壤P水平下,土壤重金属Cd的形态变化以及菜心典型品种对重金属Cd的吸收积累情况。在CK土壤以及CH4和CX4的根际土壤中,可交换态Cd的浓度和比例都随着土壤P水平的升高而下降,与此同时,三种土壤上的铁锰氧化物结合态Cd的浓度和比例随着土壤P水平的升高而增加,推测施磷降低了土壤Cd的生物有效性,减少Cd进入菜心体内的总量。所有供试菜心品种的地上部Cd含量均随土壤P水平的提高呈降低趋势,与P1处理相比,CLW、CX4、SJ19、CH4和LB70在P4处理下的地上部Cd含量分别下降了64%、68%、50%、63%和63%,Cd转运系数分别降低了33.6%、35.4%、23.9%、48.3%和28.0%,可见土壤P水平的提高不仅降低了菜心地上部Cd含量,而且有效抑制了Cd从地下部向地上部的转运。两个Cd高积累品种CLW和CX4的地上部Cd含量始终显著高于(p < 0.05)Cd低积累品种SJ19、CH4和LB70,表明土壤P水平对菜心典型品种的Cd吸收特性的品种间差异并未产生影响。
     6.利用差速离心和连续浸提法研究了不同土壤P水平下Cd在菜心LB70(Cd-PSC)和CX4(non-Cd-PSC)体内的亚细胞分布和化学结合形态。结果表明LB70细胞壁组分结合的Cd的比例要明显高于CX4,而细胞质组分和细胞器组分的Cd比例却始终低于CX4;LB70体内的NaCl提取态Cd以及残渣态Cd的比例都要高于CX4,然而乙醇提取态和去离子提取态Cd的比例却要低于CX4。因此,LB70细胞壁较强的滞留Cd的能力以及体内Cd较低的移动性可能与其Cd低积累特性相关。土壤P水平的升高明显增加了LB70和CX4与细胞壁组分结合的Cd的比例;两典型品种乙醇提取态Cd的比例随着土壤P浓度的升高而下降,同时离子水提取态Cd和醋酸提取态Cd的比例则随之上升。P可能通过增强菜心体内(特别是地下部)细胞壁组分滞留Cd的能力,以及降低菜心体内无机态Cd的比例等过程,使得Cd在菜心体内的移动性大大下降,从而抑制菜心体内Cd的转运。
     7.以17个分别具有Cd低积累、中积累和高积累特性的菜心典型品种为研究对象,通过直接测序法,研究了三个已报道的与Cd积累相关的膜蛋白基因(Pcr1、HMA4和NRAMP3)的单核苷酸多态性。在三个基因序列上均发现了丰富的SNP位点。Pcr1、HMA4和NRAMP3基因的SNP发生频率分别为1 SNP/34.4 bp、1 SNP/50.8 bp和1 SNP/34.7 bp,发生转换的位点是颠换的2~(-1)0倍,这说明SNP碱基置换存在偏好性,其主要类型是转换。Pcr1和NRAMP3基因的Indel频率分别为1 Indel/218 bp和1 Indel/84.9 bp,在HMA4基因序列上没有发现Indel,说明HMA4基因比Pcr1和NRAMP3基因保守。根据基因序列的多态性,Pcr1、HMA4和NRAMP3基因分别形成了8、10和10个单倍型(haplotype),Pcr1基因的haplotype 8包括了5个Cd低积累品种,这个单倍型与菜心的Cd低积累特征基本一致,可以作为一个重金属Cd低量积累的标记用于菜心重金属吸收特性的分子标记辅助选择。Pcr1和HMA4基因的聚类分析表明,菜心Cd低积累品种的基因序列存在较高的相似性,表明其亲缘关系较近。
The screening, breeding and exploiting of cultivars that accumulate low heavy metals in edible part has been a hot point to cope with the heavy metal pollution in agriculture soil. It has been reported that plants belonging to cruciferae genus Brassica are high heavy metal accumulator and could be easily polluted by heavy metals such as Cd and Pb. In order to minimize the entry of Cd into the food chain, the present study investigated the Cd accumulation of Chinese flowering cabbage (Brassica parachinensis), a member of the genus Brassica, for selection of low Cd cultivars. Several tapical cultivars were obtained, and the stability of Cd accumulative characteristics was investigated in different soils and different harvest times. Then, the effets of agricultural approaches such as culture mixture and P application on the Cd accumulation of the typical cultivars were evaluated. The subcellular distribution and chemical speciation of Cd in the typical cultivars were investigated with methods of centrifugation technique and successive extraction, to explain the main biochemical mechanisms of cultivar variation of Cd accumulation and the inhibition effect of P application on Cd accumulation. We also analyzed the single mucleotide polymorphism (SNP) of 17 Chinese flowering cabbage cultivars and investigated the feasibility of identifying low Cd cultivars with molecular biomarkers. This study provided theoretical basis to specific the biochemical and molecular michanisms of the low Cd accumulative characteristic of Chinese flowering cabbage. It also provided the scientifical evidence for the combination of agricultural approaches with Cd-PSC (pollution safe cultivar) stratigy to lower the risk of Cd pollution in Chinese flowering cabbage and ensure the safe production of Chinese flowering cabbage in practical agricultural actions. The main results were as below:
     1. A pot experiment was conducted to investigate Cd accumulation of 31 Chinese flowering cabbage cultivars under CK (0.114 mg kg~(-1)), LCd (0.667 mg kg~(-1)) and HCd (1.127 mg kg~(-1)) treatments. The shoot Cd concentrations of all cultivars exceeded the maximum limit of CAC for Cd (0.2 mg kg~(-1),FW) under the LCd treatment, and the Cd concentration of CLW was even 10 times higher of this limit under HCd treatment. These results indicated Chinese flowering cabbage could readily take up Cd from polluted soils. The variance analysis showed that the variety effect on the shoot Cd concentration of Chinse flowring cabbage was prominent at level of p < 0.01. The shoot Cd concentrations of the tested cultivars under CK, LCd and HCd treatments were 0.033-0.162 mg kg~(-1), 0.283~(-1).743 mg kg~(-1)and 0.434-2.276 mg kg~(-1). The maximum differences of Cd concentration between the cultivars under the same treatment were 4, 5.2 and 5.6 folds, enough for the seletion of low Cd cultivar. The correlation of shoot Cd concentrations between each treatment were significant at p < 0.01 level, showing the stabllity of Cd accumulation of Chinese flowering cabbage. Six cultivars, SJ19, 49CX, XG49, CH4, LB70 and YL80 were selected as typical low Cd cultivars, and CLW was typical high Cd cultivar.
     2. The responses of the typical cultivars to the Cd and Pb compound pollution were investigated using a pot experiment. The variety effect on the shoot Cd concentration of Chinese flowering cabbage were significant at p < 0.01 level under all treatments. The average Cd concentrations of six low Cd cultivars were 0.079 - 0.097 mg kg~(-1), while that for the high Cd cultivar was 0.242 mg kg~(-1). Shoot Cd concentraions of 6 low cultivars were always significantly lower (p < 0.01) than those of the high Cd cultivar, CLW. Shoot Pb concentration of 7 tested cultivars were 0.145 - 0.200 mg kg~(-1), in the decreasing order of CLW > YL80 > XG49 > SJ19 > 49CX > LB70 > CH4. The high Cd cultivar accumulated the highest Pb in shoots than other cultivars under most treatments. The variance analysis showed the interaction between Cd and Pb was significant (p < 0.01). The soil Pb (51.02 - 91.25 mg kg~(-1)) obviously inhibited the Cd accumulation of Chinese flowering cabbage. According to the definition of CAC and PSC, all the low Cd cultivars could be treated as Cd+Pb-PSCs, and the high Cd cultivar was non-Cd+Pb-PSCs under the soil condition in this study (Cd: 0.111 - 0.383 mg kg~(-1); Pb: 23.50 - 91.25 mg kg~(-1)).
     3. The present study investigated the effects of different soils and harvest times on the typical cultivars of Chinese flowering cabbage. The shoot Cd concentrations of six typical cultivars in soil A and soil B were 0.026 - 0.080 mg kg~(-1) and 0.452 - 1.349 mg kg~(-1), respectively. Both the shoot and root Cd concentraions of all cultivars in soil A were significantly (p < 0.01) lower than those in soil B, with the maximum differences being 20 and 13 folds, respectively. It might have relationship with the extremely higher soil available P content in soil A as compared with soil B. The shoot Cd concentrations and transfer ratios of high Cd cultivars, CLW and CX4, were always significantly higher than those of low Cd cultivars, SJ19, CH4, LB70 and YL80, indicating the Cd accumulative characteristics of typical cultivars were stable under different soils. The average shoot Cd concentrations of all tested cultivars for harvest time T1 (25th day), T2 (40th day) and T3 (60th day) were 0.734 mg kg~(-1), 0.569 mg kg~(-1) and 0.527 mg kg~(-1), respectively. The shoot Cd concentrations of all tested cultivars were highest in the initial growth stage (T1), decreasing as time goes, with the most obvious decrease from T1 to T2. The average Cd amount absorbed by the tested cultivars each day for the T1, T2 and T3 were 0.46μg pot~(-1) day~(-1), 0.87μg pot~(-1) day~(-1)and 0.01μg pot~(-1) day~(-1), respectively, showing the fastest absorption speed of Cd in the middle stage (T2) of growth, being 1.9 folds of initial stage (T1). The shoot Cd concentrations of low Cd cultivars, SJ19 and CH4, were always significantly lower than those of high Cd cultivars, CLW and CX4. The amount of total Cd in shoots of low Cd cultivars were only 1/3 - 1/2 of those of high Cd cultivars, showing that the harvest time would not change the Cd accumulative characteristics of typical cultivars.
     4. Taking the Cd-PSCs (SJ19 and CH4) and non-Cd-PSCs (CLW and CX4) as objects for study, the cultivar mixture on the Cd accumulation of typical Chinese flowering cabbage cultivars was investigated. The shoot Cd concentrations of CLW, SJ19, CH4 and CX4 were 0.485 - 0.551、0.274 - 0.522、0.233 - 0.423 and 0.643 - 0.775 mg kg~(-1), respectively. The shoot Cd concentrations of SJ19 and CH4 under cultivar mixtures were significantly (p < 0.05) lower than those of CLW and CX4, except that the Cd concentrations of SJ19 and CH4 were a little high when co-cropped with CX4. There was no significant effect of cultivar mixture on shoot Cd concentrations when the low Cd cultivars co-cropped with high Cd cultivar“CLW”, but the shoot Cd concentrations of the low Cd cultivars increased significantly (p < 0.05) when they were co-cropped with another high Cd cultivar“CX4”. When the low Cd cultivar“SJ19”co-cropped with the other low Cd cultivar“CH4”, the shoot Cd concentrations of both culticars significantly (p < 0.05) decreased, with decreses of 24.6%-26.2% and 25.8%-28.7%, respectively. The results showed that rhizosphere plays an important role in the Cd accumulation of Chinese flowering cabbage, and the selection of proper cultivar mixture will effectively decrease the risk of Cd pollution of Chines flowering cabbage.
     5. This study investigated the soil Cd fractions and the Cd accumulation of three Cd-PSCs and two non-Cd-PSCs under different soil P levels. The concentrations and proportions of exchangeable Cd in the CK soil and rhizosphere soils of CH4 and CX4 decreased with the increasing soil P level, but those of Fe-Mn oxide Cd showed the opposite trend. It assumed that P applying decreased the bioavailability of soil Cd, and thus reduced the total amount of Cd absorbed by Chinese flowering cabbage. The shoot Cd concentrations of all tested cultivars decreased with the increasing of soil P levels. Compared with P1 treatment, the shoot Cd concentrations of CLW, CX4, SJ19, CH4 and LB70 under P4 treatment decreased by 64%, 68%, 50%, 63% and 63%, respectively, and the translocation factors of Cd decreased by 33.6%, 35.4%, 23.9%, 48.3% and 28.0%, respectively. The increase of soil P level not only decreased the shoot Cd concentration of Chinese flowering cabbage, but also effectively inhibited the translocation of Cd from root to shoot. The non-Cd-PSCs always showed higher Cd shoot concentrations than Cd-PSCs, indicating there was no effect of soil P on the Cd accumulative charateristics of the typical cultivars.
     6. The subcellular distribution and chemical speciation of Cd in LB70 and CX4 under different soil P levels were investigated with the methods of centrifugation technique and successive extraction. The results showed that the proportions of Cd bound to the cell wall fraction were obviously higher in LB70 than in CX4, but the proportions of Cd in the soluble fraction and organelle fraction were always higher in CX4 than in LB70. Compared to CX4, LB70 had lower proportions of Cd in inorganic form and water-soluble from, but higher proportions of Cd in proteins / pectates integrated form, implied that the Cd accumulation in LB70 is associated with the low mobility of Cd in vivo. The increase of soil P level obviously improved the proportions of Cd bound to cell wall fraction and the proportions of Cd in water-soluble form and insoluble Cd-phosphate complexes, but decreased the proportions of Cd in inorganic form. The P application decreased the mobility of Cd in vivo and inhibited the translocation of Cd from roots to shoots through the courses of enhancing the bouding of Cd to cell wall fraction and decreasing proportions of Cd in inorganic form.
     7. This study investigated the single mucleotide polymorphism of three membrane protein genes which were reported to be associated with Cd accumulation, Pcr1, HMA4 and NRAMP3, in 17 cultivars which were low, middle or high Cd accumulators, respectively. Abundant SNPs were obtained through sequence analysis. The frequencies of SNP in Pcr1, HMA4 and NRAMP3 were 1 SNP/34.4 bp, 1 SNP/50.8 bp and 1 SNP/34.7 bp, respectively. The frequency of transition was 2~(-1)0 folds of transversion, indicating the preference of the base substitution. The frequencies of Indel in Pcr1 and NRAMP3 were 1 Indel/218 bp and 1 Indel/84.9 bp, no Indel was found in HMA4, showing the HMA4 was more conservative than the other two genes. According to the nucleotide polymorphism, the Pcr1, HMA4 and NRAMP3 formed 8, 10 and 10 haplotypes, respectively. The haplotype 8 of Pcr1 included 5 low Cd cultivars, therefore, this haplotype was consistent with low Cd accumulation and could be used as a molecular marker for the assistant selection of low Cd cultivars of Chinese flowering cabbage. The cluster analysis showed that the sequences were similar among the low Cd cultivars which may have close genetic relationship.
引文
曹利军,王华东.土壤作物系统镉污染及其防治研究.环境污染与防治. 1996, 18(5): 8-11.
    曾晓舵,何其轩.不同形态的肥料对菜心吸收镉的影响.热带亚热带土壤科学. 1997, 6(1): 42-44.
    陈怀满.环境土壤学.科学出版社, 2005, 9-11.
    陈苏,孙丽娜,孙铁珩等.钾肥对镉的植物有效性的影响.环境科学. 2007, 28(1): 182-188.
    陈玉娟,温琰茂,柴世伟.珠江三角洲农业土壤重金属含量特征研究.环境科学研究, 2005, 18(3): 75-77.
    陈志良,仇荣亮,张军书等.重金属污染土壤的修复技术.环境保护. 2002(6): 21-23.
    崔悦宏,依艳丽,张大庚等.水分和碳酸钙对土壤Cd形态的影响.安徽农业科学. 2007, 35(9): 2674-2676.
    杜彩艳,祖艳群,李元.石灰配施猪粪对Cd、Pb和Zn污染土壤中重金属形态和植物有效性的影响.武汉植物学研究. 2008, 26(2): 170 -174.
    高翔云,汤志云,李建和等.国内土壤环境污染现状与防治措施.江苏环境科技. 2006, 19(2): 53-55.
    龚玉莲.蕹菜(Ipomoea aquatica Forsk.)镉积累典型品种的根际研究.中山大学博士学位论文, 2009.
    何江华,柳勇,王少毅等.蔬菜对重金属富集能力的研究-以广州蔬菜生产基地为例.重庆环境科学. 2003, 25(12):5- 6.
    胡宁静,李泽琴,黄朋等.我国部分市郊农田的重金属污染与防治途径.矿物岩石地球化学通报. 2003, 22(3): 251-254.
    李梦梅,杨中艺,龙明华等.钙、钾、锌肥和秸秆肥对抑制菜心吸收镉的效果.土壤通报. 2007, 38(4): 828-830.
    刘建中.利用植物自身潜力提高土壤中磷的生物有效性.生态农业研究. 1994, 2: 16-23.
    柳李旺,侯喜林,龚义勤等.分子标记技术在蔬菜作物品种鉴定与纯度检测中的应用.分子植物育种. 2004, 2(4): 563-568.
    罗绍春,董秋红,张祥喜等.耐低磷油菜品种的初步筛选.江西农业学报. 1999, 11(4):69-72.
    孟淑春,张海英,郑晓鹰等.大白菜基因组DNA的提取及AFLP反应体系的建立.农业科学与技术. 2009, 10(3): 29-35
    倪文娟.菜心(Brassica parachinensis)镉积累相关基因SNP分子标记研究.中山大学硕士学位论文, 2010.
    沈彤,盛穗,马赛平.长沙市蔬菜中铅、镉含量状况及控制对策.湖南农业科学. 2005, 4: 62-63.
    宋菲,郭玉文,刘孝义等.土壤中重金属镉锌铅复合物的研究.环境科学学报. 1996 ,16(4) :431-435
    汪雅各,卢善玲,盛沛麟等.蔬菜重金属低富集轮作.上海农业学报. 1990, 6(3): 41-49.
    王冬卿.甘蓝型油菜(Brassica napus L.)品种间及品种内Cd积累差异研究.中山大学硕士学位论文, 2007.
    王果,李建超,杨佩玉等.有机物料影响下土壤溶液中镉形态及其有效性研究.环境科学学报. 2000, 20(5): 621-626.
    王焕校等.污染生态学.高等教育出版社,施普林格出版社. 2001, 188 -189.
    王建义.小叶杨抗逆相关基因的克隆及单核苷酸多态性分析.内蒙古农业大学硕士学位论文, 2008.
    王俊丽.叶用蔬菜对Cd胁迫响应的种间和品种间差异及其机理研究.中山大学博士学位论文, 2006.
    王艳红,龙新宪,刘彦洪等.两种生态型东南景天套种对其生长和吸收土壤中Zn的影响.华南农业大学学报. 2007, 28(3): 6-10.
    咸翼松.施用泥炭对土壤镉形态及其植物有效性的影响.浙江大学博士论文, 2008.
    肖思思.水分预处理对水稻土中外源Cd迁移转化及牧草吸收Cd的影响.南京农业大学硕士学位论文, 2005.
    辛俊亮.蕹菜(Ipomoea aquatica Forsk.)品种对镉铅胁迫的响应及镉含量性状的遗传分析研究.中山大学博士学位论文, 2010.
    徐照丽,吴启堂,依艳丽.不同品种菜心对镉抗性的研究.生态学报. 2002, 22(4): 571-576.
    杨苏才,南忠仁,曾静静.土壤重金属污染现状与治理途径研究进展.安徽农业科学. 2006, 34(3): 549-552.
    杨暹,郭巨先,刘玉涛.华南特产蔬菜菜心的营养成分及营养评价.食品科技. 2002, 9: 74-76.
    杨昭庆,洪坤学等.单核苷酸多态性的研究进展.国外遗传学分册. 2000, 23(1): 4-8.
    姚丽贤,李国良,何兆桓等.连续施用鸡粪对菜心产量和重金属含量的影响. 2007, 28(5): 1113-1120.
    衣纯真,付桂平,张福锁等.施用钾肥(KCl)的土壤对作物吸收积累镉的影响.中国农业大学学报. 1996, 1(5): 79-84.
    于辉.水稻(Oriza sativa L.)对重金属镉胁迫响应的品种间差异及机理研究.中山大学博士学位论文, 2006.
    张宝悦,王激清,刘社平等.重金属镉污染对蔬菜的影响及防治对策.长江蔬菜. 2006, 3: 34-36.
    张思仲.人类基因组的单核苷酸多态性及其医学应用.中华医学遗传学杂志. 1999, 16(2): 119-122.
    张晓岭. NPK肥料对土壤中Cd、Pb形态变化及吸附解吸的影响.华中农业大学硕士论文, 2003.
    张亚丽,沈其荣,姜洋.有机肥料对镉污染土壤的改良效应.土壤学报. 2001, 38(2): 212-218.
    张玉秀,于飞,张媛雅等.植物对重金属镉的吸收转运和累积机制.中国农业生态学报. 2008, 16(5): 1317-1321.
    赵小虎,王富华,张冲等.南方菜地重金属污染状况及蔬菜安全生产调控措施. 2007, 3: 91-94.
    赵中秋,朱永官,蔡运龙.镉在土壤-植物系统中的迁移转化及其影响因素.生态环境. 2005, 14(2): 282-286.
    郑绍建,胡霭堂.淹水对污染土壤镉形态转化的影响.环境科学学报. 1995, 15: 2-4.周延清.生物遗传标记与应用.北京:化学工业出版社, 2008.
    周轶慧.苋菜对重金属Cd、Pb积累的基因型差异及其机理研究.中山大学博士学位论文, 2010.
    朱永官,陈保冬,林爱军等.珠江三角洲地区土壤重金属污染控制与修复研究的若干思考.环境科学学报, 2005, 25(12): 1575-1579.
    Ae N, Arao T. Utilization of rice plants for phytoremediation in heavy metal polluted soils. Farming Jpn 2002, 36: 16-21.
    Angle JS, Baker AJM, Whiting SN, et al. Soil moisture effects on uptake of metals by Thlaspi, Alyssum, and Berkheya. Plant Soil. 2003, 256: 325-332.
    Arao T, Ae N. Genotypic variations in cadmium levels of rice grain. Soil Sci Plant Nutr, 2003, 49: 473-479.
    Arao T, Ishikawa S. Genotypic differences in cadmium concentration and distribution of soybeans and rice. JARQ-Jpn Agr. Res. Q. 2006, 40: 21-30.
    Athur E, Crews H, Morgan C. Optimizing plant genetic strategies for minimizing environmental concentration in the food chain. Int. Phytoremediat. 2000, 2: 1-21.
    Bernal MP, McGrath SP. Effects of pH and heavy metal concentrations in solution culture on the proton release, growth and elemental composition of Alyssum murale and Raphanus sativus L. Plant Soil. 1994, 166: 83-92.
    Bolan NS, Adriano DC, Naidu R. Role of phosphorus in (im)mobilization and bioavailability of heavy metals in the soil-plant system. Rev. Environ. Contam. Toxicol. 2003, 177: 1-44.
    Cataldo DA, Garland TR, Wildung RE. Cadmium uptake kinetics in intact soybean plants. Plant Physiol. 1983, 73: 844-848.
    Chan DY, Hale BA. Differential accumulation of Cd in durum wheat cultivars: uptake and retranslocation as sources of variation. J. Exp. Bot. 2004, 55: 2571-2579
    Chen SB, Zhu YG, Ma YB. The effect of grain size of rock phosphate amendment on metal immobilization in contaminated soils. J. Hazard. Mater. 2006a, B134: 74-79.
    Clarke JM, Leisle D, Kopytko GL. Inheritance of cadmium concentration in five durum wheat crosses. Crop Sci. 1997, 37: 1722-1726.
    Collins FS, Guyer MS, Chakravarti A. Variations on a theme: cataloging human DNA sequence variation. Science. 1997, 278: 1580-1581.
    CRCSLM and CSIRO. Managing cadmium in potatoes for quality produce (2nd edition). Compiled by Cooperative research center for soil & land management and CSIRO land and water (ISBN 1 876162 120-6), 1999.
    Deniau AX, Pieper B, Ten Bookum WM, et al. QTL analysis of cadmium and zinc accumulation in the heavy metal hyperaccumulator Thlaspi caerulescens. Theor Appl Genet. 2006, 113: 907-920.
    Elegala AM, Aly OM, Elsikhry EM. Effect of certain soil amendments on the availability of Fe, Mn, Zn and Cu to sorghum plants grown in sandy soil. Egyptian Journal of Soil Science. 1990, 30: 301-312.
    Florijn PJ. Nelemans JA, Van Beusichem ML. Evaluation of structural and physiological plant characteristics in relation to the distribution of cadmium in maize inbred lines. Plant Soil. 1993, 154: 103-109.Fukuda N, Hokura A, Kitajima N, et al. Micro X-ray fluorescence imaging and micro X-ray absorption spectroscopy of cadmium hyper-accumulating plant, Arabidopsis halleri ssp. gemmifera, using high-energy synchrotron radiation. J. Anal. Atom. Spectrom. 2008, 23: 1068-1075.
    Gasic K, Korban SS. Expression of Arabidopsis phytochelatin synthase in Indian mustard (Brassica juncea) plants enhances tolerance for Cd and Zn. Planta, 2007, 225: 1277-1285.
    Grant CA, Bailey LD, Therrien MC. Effect of N, P, and KCl fertilizers on grain yield and Cd concentration of malting barley. Fertilizer Research, 1996, 45: 153-161.
    Grant CA, Clarke JM, Duguid S, et al. Selection and breeding of plant cultivars to minimize cadmium accumulation. Sci. Total Environ., 2008, 390: 301-310.
    Guadalupe de R, Jose R, Peralta V, et al. Cadmium uptake and translocation in tumbleweed (Salsola kali), a potential Cd-hyperaccumulator desert plant species: ICP/OES and XAS studies. Chemosphere, 2004, 55: 1159-1168.
    HalushkaM K, Fan J B, Bent ley K, et al. Patterns of single nucleotide polymorphisms in candidate genes for blood-pressure homeostasis. Nat. Genet. 1999, 22: 239- 247.
    Harris NS, Taylor GJ. Cadmium uptake and translocation in seedlings of near isogenic lines of durum wheat that differ in grain cadmium accumulation. BMC Plant Biol. 2004, 4: 4.
    Hayashi K, Hashimoto N, Daigen M, et al. Development of PCR-based SNP markers for rice blast resistance genes at the Piz locus. Theor. Appl. Genet. 2004, 108: 1212-1220.
    Hayden MJ, Tabone TL, Nguyen TM, et al. An informative set of SNP markers for molecular characterisation of Australian barley germplasm. Crop & Pasture Science. 2010, 61: 70-83.
    He JY, Zhu C, Ren YF, et al. Genotypic variation in grain cadmium concentration of lowland rice. J. Plant Nutr. Soil Sci. 2006, 169: 711-716.
    Hirschi KD, Korenkov VD, Wilganowski NL, et al. Expression of Arabidopsis CAX2 in tobacco altered metal accumulation and increased manganese tolerance. Plant Physiol. 2000, 124: 125-134.
    Huang BF, Xin JL, Yang ZY, et al. Suppression subtractive hybridization (SSH)-based method for estimating Cd-induced differences in gene expression at cultivar level and indentification of genes induced by Cd in two water spinach cultivars. J. Agric. Food Chem. 2009, 57: 8950-8962.
    Ishikawa S, Ae N, Sugiyama M, et al. Genotypic variation in shoot cadmium concentration in rice and soybean in soils with different levels of cadmium contamination. Soil Sci. Plant Nutr. 2005, 51: 101-108.
    Iskander IK, Adriano DC. Remediation of soils contaminated with metals A review of current practices in the USA. In: Remediation of Soils Contaminated with metals, Iskandar A, Adriano DC (Eds.). Science Review, Northwood, UK, pp. 1-16. 1997.
    Jegadeesan S, Yu K, Poysa V, et al. Mapping and validation of simple sequence repeat markers linked to a major gene controlling seed cadmium accumulation in soybean [Glycine max (L.) Merr]. Theor. Appl. Genet. 2010, 121: 283-294.
    Jones DL, Darrah PR, Kochian VL. Critical evaluation of organic acid mediated iron dissolution in the rhizosphere and its potential role in root iron uptake. Plant Soil. 1996, 180: 57-66Kao MH. The evaluation of sawdust swine waste compost on the soil ecosystem, pollution and vegetable production. Water Sci. Technol. 1992, 27: 123-131.
    Kim DY, Bovet L, Maeshima M, et al. The ABC transporter AtPDR8 is a cadmium extrusion pump conferring heavy metal resistance. The Plant Journal. 2007, 50: 207-218.
    Knox RE, Clarke JM, Houshmand S, et al. Chromosomal location of the low grain cadmium concentration trait in durum wheat. In: Pogna NE, Romano M, Pogna EA, Galterio G, editors. Proceedings of the Tenth Inernational Wheat Genetics Symposium, 1-6 September 2003. S.I.M.I., RomeItaly: Paestum; 2003. pp. 977-979.
    Kodera H, Nishioka H, Muramatsu Y, et al. Distribution of lead in lead-accumulating pteridophyte Blechnum niponicum, measured by synchrotron radiation micro X-ray fluorescence. Anal. Sci. 2008, 24: 1545-1549.
    Kr?mer U. Cadmium for all metals-plants with an unusual appetite. New Phytol. 2000, 145: 1-5.
    Kruglyak L. The use of a genetic map of biallelic markers in linkage studies. Nature Genet. 1997, 17: 21-24.
    Küpper H, Zhao FJ, McGrath SP. Cellular compartmentation of zinc in leaves of the hyperaccumulator Thlaspi caerulescens. Plant Physiol. 1999, 119: 305-311.
    Kuramata M, Masuya S, Takahashi Y, et al. Novel Cysteine-rich peptides from Digitaria ciliaris and Oryza sativa enhance tolerance to cadmium by limiting its cellular accumulation. Plant Cell Physiol. 2009, 50: 106-117.
    Kwok PY, Deng Q, Zakeri H, et al. Increasing the inpormation content of STS-based genome maps: identifying polymorphisms in mapped STSs. Genomics. 1996, 31: 123-126.
    Lasat MM, Baker AJM, Kochian LV. Physiological characterization of root Zn2+ absorption and translocation to shoots in Zn hyperaccumulator and non-accumulator species of Thlaspi. Plant Physiol. 1996, 112: 1715-1722.
    Lee S, Kim Y, Lee Y, et al. Rice P1B-type heavy-metal ATPase, OsHMA9, is a metal efflux protein. Plant Physiol. 2007, 145: 831-842.
    Li JC, Guo JB, Xu WZ, et al. RNA interference-mediated silencing of phytochelatin synthase genes reduce cadmium accumulation in rice seeds. J. Integr. Plant Biol. 2007, 49: 1032-1037.
    Li YM, Chaney RL, Schneiter AA, et al. Genotypic variation in kernel cadmium concentration in sunflower germplasm under varying soil conditions. Crop Sci. 1995, 35:137-141.
    Liu W, Li PJ, Qi XM, et al. DNA changes in barley (Hordeum vulgare) seedlings induced by cadmium pollution using RAPD analysis. Chemosphere, 2005, 61: 158-167.
    Hedley MJ, Nye PH, White RE. Plant-induced changes in the rhizosphere of rape (Brassica napus var. Emerald) seedlings. II. Origin of the pH change. New Phytol. 1982, 91: 31-44.
    Ma JF, Ueno D, Zhao FJ, et al. Subcellular localisation of Cd and Zn in the leaves of a Cd-hyperaccumulating ecotype of Thlaspi caerulescens. Planta. 2004, 220: 731-736.
    Maclean AJ. Cadmium in different plant species and its availability in soils as influenced by organic-matter and additions of lime, P, Cd and Zn. Can. J. Soil Sci. 1976, 56: 129-138.
    McLaughlin MJ, Parker DR, Clarke JM. Metals and micronutrients-food safety issues. Field Crop Res. 1999, 60: 143-163.
    Mulllikin JC, Hunt SE, Cole CG, et al. An SNP map of human chromosome 22. Nature. 2000: 516-520.
    Panwar BS, Singh JP, Laura RD. Cadmium uptake by cowpea and mungbean as affected by Cd and P application. Water, Air Soil Poll. 1999, 112: 163-169.
    Penner GA, Clarke J, Bezte LJ, et al. Identification of RAPD markers linked to a gene governing cadmium uptake in durum wheat. Genome. 1995, 38: 543-547.
    Tanhuanp?? P, Kalendar R, Schulman AH, et al. A major gene for grain cadmium accumulation in oat (Avena sativa L.). Genome. 2007, 50: 588-594.
    Pomponi M, Censi V, Di Girolamo V, et al. Overexpression of Arabidopsis phytochelatin synthase in tobacco plants enhances Cd2+ tolerance and accumulation but not translocation to the shoot. Planta. 2006, 223: 180-190.
    Ponomarenko JV, Merkulova TI, Vasiliev GV, et al. rSNP-Guide, database system for analysis of transcription factor binding to target sequences: application to SNPs and site-directed mutation. Nucleic Acids Res. 2001, 29: 312-316.
    Qi XQ, Bakht S, Devos KM, et al. A general method for genotyping of single nucleotide polymorphism(SNP). Nucleic Acids Res. 2001, 29: e116
    Rider MJ, Taylor SL, Tobe VO, et al. Automating the identification of DNA variation using quality-based fluorescence re-sequencing: analysis of human mitochondrial genome. Nucleic Acids Res. 1998, 26: 967-973.
    Rostoks N, Mudie S, Cardle L, et al. Genome-wide SNP discovery and linkage analysis in barley based on genes responsive to abiotic stress. Mol. Gen. Genomics. 2005, 274: 515-527. Salt DE, Prince RC, Pickering IJ, et al. Mechanism of cadmium mobility and accumulation in Indian mustard.
    Plant Physiol. 1995, 109: 1427-1433. Salt DE. Mechanisms of cadmium mobility and accumulation in Indian mustard. Plant Physiol. 1995, 109: 1427-1433.
    Schaaf G, Schikora A, Haberle J, et al. A putative function for the Arabidopsis Fe-phytosiderophore transporter homolog AtYSL2 in Fe and Zn homeostasis. Plant Cell Physiol. 2005, 46: 762-774.
    Selvam A, Wong JWC. Cadmium uptake potential of Brassica napus cocropped with Brassica parachinensis and Zea mays. J. Hazard. Mater. 2009, 167: 170-178.
    Senden MHMN, Wolterbeek HTh. Effect of citric acid on the transport of cadmium through xylem vessels of excised tomato stem-leaf systems. Acta. Bot. Neerl. 1990, 39: 297-303.
    Shen L X, Basilion J P, Stanton JrV P, et al. Single-nucleotide polymorphisms can cause different structural folds of mRNA. Proc. Natl. Acad. Sci. USA.1999, 96: 7871-7876.
    Song WY, Martinoia E, Lee J, et al. A novel family of cys-rich membrane proteins mediates cadmium resistance in Arabidopsis. Plant Physio. 2004, 135: 1027-1039.
    Sparrow LA, Saladini AA, Johnstone J. Field studies of Cd in potatoes (Solanum tuberosum L.): III. Response of cv. Russet Burbank to sources of banded potassium. Aust. J. Agr. Res. 1994, 45: 243-249.
    Stolt JP, Sneller FEC, Bryngelsson T, et al. Phytochelatin and cadmium accumulation in wheat. Environ. Exp. Bot. 2003, 49: 21-28
    Stolt P, Asp H, Hultin S. Genetic variation in wheat cadmium accumulation on soils with different cadmium concentrations. J. Agron. Crop Sci. 2006, 192: 201-208.
    Su DC, Huang HZ. The phytoremediation potential of oilseed rape (B. juncea) as a hyperaccumulator for cadmium contaminated soil. China Environ. Sci., 2002, 22: 48-51
    Tezuka K, Miyadate H, Katou K, et al. A single recessive gene controls cadmium translocation in the cadmium hyperaccumulating rice cultivar Cho-Ko-Koku. Theor. Appl. Genet. 2010, 120: 1175-1182.
    Thomine S, Lelièvre F, Debarbieux E, et al. AtNRAMP3, a multispecific vacuolar metal transporter involved in plant responses to iron deficiency. Plant J. 2003, 34: 685-695.
    Thompson ES, Pick FR, Bendell-Young LI. The accumulation of cadmium by the yellow pond lily, Nuphar variegatum, in Ontario Peatlands. Arch. Environ. Contam. Toxicol. 1997, 32: 161-165.
    Wang J, Yuan J, Yang Z, et al. Variation in cadmium accumulation among 30 cultivars and cadmium subcellular distribution in 2 selected cultivars of water spinach (Ipomoea aquatica Forsk.). J. Agric. Food Chem. 2009, 57: 8942-8949.
    Wang JL, Fang W, Yang ZY, et al. Inter- and Intra-specific Variations of Cd Accumulation of 13 leafy vegetable species Grown in Cd Contaminated Soils. J. Agr. Food Chem. 2007, 55: 9118-9123
    Wei ZG, Wong JWC, Zhao HY, et al. Separation and determination of heavy metals associated with low molecular weight chelators in xylem saps of Indian Mustard (Brassica Juncea) by size exclusion chromatography and atomic absorption spectrometry. Biol. Trace. Elem. Res. 2007, 118: 146-158.
    Whiting S, Leake J, Mcgrath S, et al. Hyperaccumulation of Zn by Thlaspi caerulescens Can Ameliorate Zn Toxicity in the Rhizosphere of Cocropped Thlaspi arvense. Environ. Sci. Technol. 2001, 35: 3237-3241.
    Willaert G, Verloo M. Effects of various nitrogen fertilizers on the chemical and biological activity of major and trace elements in a cadmium contaminated soil. Pedologie. 1992, 42: 83-91.
    Williams CH, David DJ. The accumulation in soil of cadmium residues from phosphate fertilizers and their effect on the cadmium content of plants. Soil Sci. 1976, 121: 86-93.
    Wójcik M, Vangronsveld J, D’Haen J, et al. Cadmium tolerance in Thlaspi caerulescens II. Localization of cadmium in Thlaspi caerulescens. Environ. Exp. Bot. 2005, 53: 163-171.
    Wu QL, Hei H, Wong JWC, et al. Co-cropping for phytoseparation of zinc and potassium from sewage sludge. Chemosphere. 2007, 68: 1954-1960.
    Xie RJ, Mackenzie AF. Mechanisms of pH decrement in three temperate soils treated with phosphate. Soil Sci. 1990, 150: 602-612.
    Xiong LM, Lu RK. Influence of phosphate on transformation and plant uptake of cadmium in Cd-amended soils. Pedosphere. 1991, 1: 63-72.
    Yoon MS, Song QJ, Choi IY, et al. BARCSoySNP23: a panel of 23 selected SNPs for soybean cultivar identification. Theor. Appl. Genet. 2007, 114: 885-899.
    Yu H, Wang, JL, Fang W, et al. Cadmium accumulation in different rice cultivars and screening for pollutionsafe cultivars of rice. Sci. Total Environ. 2006, 370: 302-309.
    Zaurov DE, Perdomo P, Raskin I. Optimizing aoil fertility and pH to maximize cadmium removed by Indian Mustard from contamicated soils. J. Plant Nutr. 1999, 22: 977-986.
    Zhao ZQ, Zhu YG, Li HY, et al. Effect s of forms and rat es of potassium fertilizers on cadmium uptake by two cultivars of spring wheat ( Triti cum aestivum L. ). Environ. Int. 2003, 29: 973-978.
    Zhu Y, Yu H, Wang JL, et al. Heavy metal accumulations of 24 asparagus bean cultivars grown in soil contaminated with Cd alone and with multiple metals (Cd, Pb, and Zn). J. Agric. Food Chem. 2007, 55: 1045- 1052.
    柯文山,陈建军,黄邦全等.十字花科芸薹属5种植物对Pb的吸收和富集.湖北大学学报. 2004, 26(3): 236-238.
    刘颖茹,陈同斌,黄泽春等.野外条件下土壤砷浓度对蜈蚣草砷富集能力的影响.环境科学. 2005, 26(5): 181-186.
    鲁如坤.土壤农业化学分析方法.北京:中国农业科技出版社, 2000.
    王冬卿.甘蓝型油菜(Brassica napus L.)品种间及品种内Cd积累差异研究,中山大学硕士学位论文, 2007.
    王俊丽.叶用蔬菜对Cd胁迫响应的种间和品种间差异及其机理研究.中山大学博士学位论文, 2006.
    王松良,郑金贵.芸苔属蔬菜的Cd富集特性及其修复土壤Cd污染的潜力.福建农林大学学报(自然科学版). 2004, 33(1): 94-99.
    吴启堂,陈卢,王广寿等.化肥种类对不同品种菜心吸收积累Cd的影响.应用生态学报. 1996, 1: 103-106.
    于辉.水稻(Oriza sativa L.)对重金属镉胁迫响应的品种间差异及机理研究.中山大学博士学位论文, 2006.
    Amacher MC. Nickel, cadmium, and lead. In Methods of Soil Analysis, Part 3-Chemical Methods. SSSA Book Series 5 (Soil Science Society of America/American Society of Agronomy), 2001, pp739-768. Madison, WI.
    Baker AJM, Brooks RR. Terrestrial higher plants which hyperaccumulate metallic elements: A review of their distribution, ecology and phytochemistry. Biodiscovery, 1989, 1: 81-126.
    Cui YJ, Zhu YG, Zhai RH, et al. Transfer of metals from soil to vegetables in an area near a smelter in Nanning, China. Environ. Int. 2004, 30: 785-791.
    Florijn PJ, Nelemans JA, Vanbeusichem ML. Cadmium uptake be lettuce varieties. Neth. J. Agr. Sci. 1991, 39: 103-114.
    Gong YL, Yuan JG, Yang ZY, et al. Cadmium and lead accumulations by typical cultivars of water spinach under different soil conditions. Fresen. Environ. Bull. 2010, 19: 190-197.
    Grant CA, Clarke JM, Duguid S, et al. Selection and breeding of plant cultivars to minimize cadmium accumulation. Sci. Total Environ. 2008, 390: 301-310.
    Lindsay WL, Norvell WA. Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Sci. Sco. Am. J. 1978, 42: 421-428.
    McLaughlin MJ, Tiller KG, Smart MK. Speciation of cadmium in soil solutions of saline/sodic soils and relationships with cadmium concentrations in potato tubers (Solanum tuberosum L.). Augt. J. Soil Res. 1997, 35: 183-198.
    Miller JF, Green CE, Li YM. Registration of Three Low Cadmium (HA 448, HA 449, and RHA 450) Confection Sunflower Genetic Stocks. Crop Sci. 2006, 46: 489-490.
    Penner GA, Clarke J, Bezte LJ, et al. Identification of RAPD markers linked to a gene governing cadmium uptake in durum wheat. Genome. 1995, 38: 543-547.
    Salt DE, Prince RC, Pickering IJ, et al. Mechanism of cadmium mobility and accumulation in Indian mustard. Plant Physiol. 1995, 109: 1427-1433.
    Su DC, Huang HZ. The phytoremediation potential of oilseed rape (B. juncea) as a hyperaccumulator for cadmium contaminated soil. China Environ. Sci. 2002, 22: 48-51
    Thomas GM, Harrison HC. Genetic line effects on parameters influencing cadmium concentration in lettuce (Lactuca sativa L.). J. Plant Nutr. 1991, 14: 953-962.
    Wang G, Su MY, Chen YH, et al. Transfer characteristics of cadmium and lead from soil to the edible parts of six vegetable species in southeastern China. Environ. Pollut. 2006, 144: 127-135.
    Wang J, Yuan J, Yang Z, et al. Variation in cadmium accumulation among 30 cultivars and cadmium subcellular distribution in 2 selected cultivars of water spinach (Ipomoea aquatica Forsk.). J. Agric. Food Chem. 2009, 57: 8942-8949.
    Wang JL, Fang W, Yang ZY, et al. Inter- and intraspecific variations of cadmium accumulation of 13 leafy vegetable species in a greenhouse experiment. J. Agric. Food Chem. 2007, 55: 9118-9123.
    Wong SC, Li XD, Zhang G, et al. Heavy metals in agricultural soils of Pearl River Delta, South China. Environ. Pollut. 2002, 119: 33-44.
    Xin JL, Huang BF, Yang ZY, et al. Responses of different water spinach cultivars and their hybrid to Cd, Pb and Cd-Pb exposures. J. Hazard. Mater. 2010, 17: 468-476.
    Zheng RL, Li HF, Jiang RF, et al. Cadmium accumulation in the edible parts of different cultivars of radish, Raphanus sativus L., and carrot, Daucus carota var. sativa, grown in a Cd-contaminated soil. Bull. Environ. Contam. Toxicol. 2008, 81: 75-79.
    Zhu Y, Yu H, Wang JL, et al. Heavy metal accumulations of 24 asparagus bean cultivars grown in soil contaminated with cd alone and with multiple metals (Cd, Pb, and Zn). J. Agric. Food Chem. 2007, 55: 1045-1052.
    龚玉莲.蕹菜(Ipomoea aquatica Forsk.)镉积累典型品种的根际研究.中山大学博士学位论文, 2009.
    李媛,崔岩山,陈晓晨等.几种含硫肥料对油菜和三叶鬼针草吸收铅镉的影响.中国科学院研究生院学报. 2009, 26(5): 621-626.
    武淑华,韩爱民,蔡继红等.蔬菜中重金属含量与土壤质量的关系.长江蔬菜. 2002, (学术专刊):41-43.
    辛俊亮.蕹菜(Ipomoea aquatica Forsk.)品种对镉铅胁迫的响应及镉含量性状的遗传分析研究.中山大学博士学位论文, 2010.
    杨金凤,卜玉山,郭小燕等.土壤外源镉、铅污染对油菜生长的研究.陕西农业科学研究. 2005, 3: 25-28.
    赵勇,李红娟,孙治强.土壤、蔬菜Cd污染相关性分析与土壤污染阈限值研究.农业工程学报. 2006, 22(7): 149-153.
    杨志新,刘树庆.土壤重金属复合污染对油菜生长的影响.河北农业大学学报. 2000, 23(3): 27-30.
    周东美,王玉军,仓龙等.土壤及土壤-植物系统中复合污染的研究进展.环境污染治理技术与设备. 2004, 5(10): 1-8.
    周轶慧.苋菜对重金属Cd、Pb积累的基因型差异及其机理研究.中山大学博士学位论文, 2010.
    Amacher MC. Nickel, cadmium, and lead. In Methods of Soil Analysis, Part 3-Chemical Methods. SSSA Book Series 5 (Soil Science Society of America/American Society of Agronomy), 2001, pp739-768. Madison, WI. An YJ, Kim YM, Kwon TI, et al. Combined effect of copper, cadmium, and lead upon cucumis sativus growth and bioaccumulation. Sci. Total Environ. 2004, 326: 85-93.
    Cui YJ, Zhu YG, Zhai RH, et al. Transfer of metals from soil to vegetables in an area near a smelter in Nanning, China. Environ. Int. 2004, 30: 785-791.
    Dahmani, Muller H, Valorta F, et al. Strategies of heavy metal uptake by three plant species growing near a metal smelter. Environ. Pollut. 2000, 109: 231-238.
    Foy CD, White MC. The physiology of metal toxicology in plants. Ann. Rev. Plant physiol. 1978, 29: 511-566.
    Liu JN, Zhou QX, Sun T, et al. Growth responses of three ornamental plants to Cd and Cd-Pb stress and their metal accumulation characteristics, J. Hazard. Mater. 2007, 151: 261-267.
    Jones DL, Darrah PR, Kochian VL. Critical evaluation of organic acid mediated iron dissolution in the rhizosphere and its potential role iron uptake. Plant Soil. 1996, 180: 57-66.
    Lin Q, Chen YX, Chen HM, et al. Chemical behavior of Cd in rice rhizosphere. Chemosphere. 2003, 50: 755-761.
    Lindsay WL, Norvell WA. Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Soil Sci. Sco. Am. J. 1978, 42: 421-428.
    Morel JL, Mench M, Guckert A. Measurement of Pb, Cu and Cd binding with mucilage exudates from Maize (Zea mays L.) roots. Biol. Fertil. Soils. 1986, 2: 29-34.
    Serrano S, Garrido F, Campbell CG, García-González. Competitive sorption of cadmium and lead in acid soils of central spain. Geoderma. 2005, 124: 91-104.
    Su DC, Huang HZ. The phytoremediation potential of oilseed rape (B. juncea) as a hyperaccumulator for cadmium contaminated soil. China Environ. Sci. 2002, 22(1): 48-51.
    Tomsett AB, Thurman DA. Molecular biology metal tolerances of plants. Plant Cell Environ. 1988, 11: 383-390.
    Uhercikova E, Hajduk J. Heavy metals As and Se contents in the soils and Urtica dioica plants on the monitoring areas of the Danube water engineering work. Ecol. Bratislava. 1998, 17: 62-78.
    Wang HY, Stuanes OA, Heavy metal pollution in air-water-soil-plant system of Zhuzhou city, Hunan province, China. Water Air Soil Poll. 2003, 147: 79-107.
    Xin JL, Huang BF, Yang ZY, et al. Responses of different water spinach cultivars and their hybrid to Cd, Pb and Cd-Pb exposures. J. Hazard. Mater. 2010, 17: 468-476.
    Zhu Y, Yu H, Wang JL, et al. Heavy metal accumulations of 24 asparagus bean cultivars grown in soil contaminated with cd alone and with multiple metals (Cd, Pb, and Zn). J. Agric. Food Chem. 2007, 55: 1045-1052.
    曾翔.水稻镉积累和耐性机理及其品种间差异研究.湖南农业大学博士学位论文, 2006.
    程旺大,姚海根,张国平等.镉胁迫对水稻生长和营养代谢的影响.中国农业科学. 2005, 38(3): 528-537.
    龚玉莲.蕹菜(Ipomoea aquatica Forsk.)镉积累典型品种的根际研究.中山大学博士学位论文, 2009.
    黄白飞.蕹菜(Ipomoea aquatica Forsk.)镉、铅积累过程的生物化学和分子生物学机理研究.中山大学博士学位论文, 2010.
    李坤权,刘建国,陆小龙等.水稻不同品种对镉吸收及分配的差异.农业环境科学学报. 2003, 22(5): 529-532.
    李正文.镉处理下不同水稻品种对两种土壤中铅、镉的吸收及其生育期动态.中山大学博士论文, 2006.
    刘亮,王桂萍,沈振国等.镉胁迫下磷供应对芥菜生长和镉吸收的影响.土壤通报. 2008, 39(6): 1429-1434.
    刘晓云,刘速.短生植物重量的动态变化及其分析.植物生态学报. 1996, 20(2): 177-183.
    马朝红,曾德生.土壤中镉对水稻生长的影响.湖北农业科学, 1992, 2: 26-30.
    王激清.高积累镉油菜品种的筛选及其吸收积累镉特征研究.中国农业大学硕士学位论文, 2003.
    王凯荣,龚慧群.两种基因型水稻对环境镉吸收与再分配差异性比较研究.农业环境保护. 1996, 15(4): 145-149.
    辛俊亮.蕹菜(Ipomoea aquatica Forsk.)品种对镉铅胁迫的响应及镉含量性状的遗传分析研究.中山大学博士学位论文, 2010.
    原海燕.鸢尾属(Iris L.)4种植物镉(Cd)积累、耐性机理及影响因子研究.南京农业大学硕士论文, 2006.
    张峰,上官铁梁,张丽霞.四种早春植物生物量的动态研究.植物研究. 2001, 21(3):477-480.
    张玉秀,于飞,张媛雅等.植物对重金属镉的吸收转运和积累机制.中国生态农业学报. 2008, 16(5): 1317-1321.
    Barazani O, Dudai N, Khadka UR, et al. Cadmium accumulation in Allium schoenoprasum L. grown in an aqueous medium. Chemosphere. 2004, 57: 1213-1218.
    Bolan NS, Adriano DC, Mani PA, et al. Immobilization and phytoavailability of cadmium in variable charge soils. II. Effect of lime addition. Plant Soil. 2003, 251: 187-198.
    Cieglifiski G, Van Rees KC J, Huang PM, et al. Cadmium uptake and bioaccumulation in selected cultivars of durum wheat and flax as affected by soil type. Plant Soil. 1996, 182: 115-124.
    Dheri GS, Brar MS, Malhi SS. Influence of phosphorus application on growth and cadmium uptake of spinach in two cadmium-contaminated soils. J. Plant Nutr. Soil Sci. 2007, 170: 495-499. Gong, YL, Yuan JG, Yang ZY, et al. Cadmium and lead accumulations by typical cultivars of water spinach under different soil conditions. Fresen. Environ. Bull. 2010, 19: 190-197.
    Grant CA, Clarke JM, Duguid S, et al. Selection and breeding of plant cultivars to minimize cadmium accumulation. Sci. Total Environ. 2008, 390: 301-310.
    Hart JJ, Welch RM, Norvell WA, et al. Characterization of cadmium binding, uptake, and translocation in intact seedlings of bread and durum wheat cultivars. Plant physiol. 1998, 116:1413-1420.
    Ishikawa S, Ae N, Sugiyama M, et al. Genotypic variation in shoot cadmium concentration in rice and soybean in soils with different levels of cadmium contamination. Soil Sci. Plant Nutr. 2005, 51: 101-108.
    Li YM, Chaney RL, Schneiter AA, et al. Genotypic variation in kernel cadmium concentration in sunflower germplasm under varying soil conditions. Crop Sci. 1995, 35:137-141.
    Loneragan JF, Grunes DL, Welch RM, et al. Phosphorus accumulation and toxicity in leaves in relation to zinc supply. Soil Sci. Soc. Am. J. 1982, 46: 345-352.
    Romer W, Keller H. Variability of Cu, Zn and Cd content of spinach cultivars depending on P nutrition. Gartenbauwissenschaft, 2002, 67: 255-264.
    Stolt P, Asp H, Hultin S. Genetic variation in wheat cadmium accumulation on soils with different cadmium concentrations. J. Agron. Crop Sci. 2006, 192:201-208.
    Wang J, Yuan J, Yang Z, et al. Variation in cadmium accumulation among 30 cultivars and cadmium subcellular distribution in 2 selected cultivars of water spinach (Ipomoea aquatica Forsk.). J. Agric. Food Chem. 2009, 57: 8942-8949.
    Yanai J, Zhao FJ, McGrath SP, et al. Effect of soil characteristics on Cd uptake by the hyperaccumulator Thlaspi caerulescens. Environ. Pollut. 2006, 139: 167-175.
    Zhu Y, Yu H, Wang JL, et al. Heavy metal accumulations of 24 asparagus bean cultivars grown in soil contaminated with Cd alone and with multiple metals (Cd, Pb, and Zn). J. Agric. Food Chem. 2007, 55: 1045-1052.
    鲍士旦.土壤农化分析.中国农业出版社. 2005.
    陈世宝,朱永官,杨俊诚.土壤-植物系统中磷对重金属生物有效性的影响机制.环境污染治理技术与设备. 2003, 4(8):1-7.
    崔妍,丁永生,公维民等.土壤中重金属化学形态与植物吸收的关系.大连海事大学学报. 2005, 31(2): 59-63.
    何文寿.宁夏不同基因型小麦磷营养的差异.作物学报. 2004, 30(2): 131-137.
    李刚华,丁艳锋,杨文祥等.江苏省主要土壤的磷肥指数及适宜磷肥用量. 2005, 36(6): 896-898.
    李继云,李振声,王培田等.有效利用土壤磷元素的作物育种技术.中国科学(B辑). 1995, 25: 41-47.
    林海建,张志明,高世斌等.玉米耐低磷研究现状及磷高效育种策略的探讨.中国农学通报. 2008, 24(1): 181-185.
    刘慧,刘景福,刘武定.不同磷营养油菜品种根系形态及生理特征差异研究.植物营养与肥料学报. 1999, 5(1): 40-45.
    刘建中.利用植物自身潜力提高土壤中磷的生物有效性.生态农业研究. 1994, 2: 16-23.
    刘亮,王桂萍,沈振国等.镉胁迫下磷供应对芥菜生长和镉吸收的影响.土壤通报. 2008, 39(6): 1429-1434.
    罗承辉,廖柏寒.磷对镉胁迫下黄豆生理生化特性的影响.湖南农业大学学报. 2005, 31(4): 431-433.
    罗绍春,董秋红,张祥喜等.耐低磷油菜品种的初步筛选.江西农业学报. 1999, 11(4): 69-72.
    明凤,米国华,张福锁等.水稻对低磷反应的基因型差异及其生理适应机制的初步研究.应用与环境生物学报. 2000, 6(2): 138-141.
    年海,郭志华,余让才等.不同来源大豆品种耐低磷能力的评价.大豆科学. 1998, 17(2): 108-114.
    乔亚科,李桂兰.作物耐低磷机制及耐低磷育种研究进展.河北科技师范学院学报. 2007, 23(1): 67-73.
    孙建云,王桂萍,沈振国.不同基因型甘蓝对镉胁迫的响应.南京农业大学学报. 2005, 28(4): 40-44.
    汤翠凤,徐福荣,余腾琼等.水稻耐低磷种质的初步筛选.分子植物育种. 2003, 3(5): 711-715.
    熊礼明.施肥与植物的重金属吸收.农业环境保护. 1993, 12(5): 217-222.
    杨志敏,郑绍建,胡霭堂.不同磷水平和介质pH对玉米和小麦镉积累的影响.南京农业大学学报. 1999, 22(1): 45-50.
    杨志敏,郑绍健,胡霭堂.不同磷水平下植物体内镉的积累、化学结合形态及生理特性.应用与环境生物学报. 2000, 6(2): 121-126.
    Bolan NS, Adriano DC, Mani PA, et al. Immobilization and phytoavailability of cadmium in variable charge soils. II. Effect of lime addition. Plant Soil. 2003a, 251: 187-198.
    Bolan NS, Adriano DC, NaiduR. Role of phosphorus in (im)mobilization and bioavailability of heavy metals in the soil-plant system. Rev. Environ. Contam. Toxicol. 2003b, 177: 1-44.
    Boland MDA, Posner AM, Quirk JP. Zinc adsorption by goethite in the absence and presence of phosphate. Aust. J. Soil Res. 1977, 15: 279-286.
    Chen SB, Zhu YG, Ma YB. The effect of grain size of rock phosphate amendment on metal immobilization in contaminated soils. J. Hazard. Mater. 2006, B134: 74-79.
    Dheri GS, Brar MS, Malhi SS. Influence of phosphorus application on growth and cadmium uptake of spinach in two cadmium-contaminated soils. J. Plant Nutr. Soil Sci. 2007, 170: 495-499.
    Grant CA, Bailey LD. Effects of phosphorus and zinc fertilizer management on cadmium accumulation in flaxseed. J. Sci. Food Agric. 1997, 73: 307-314.
    Grant CA, Clarke JM, Duguid S, et al. Selection and breeding of plant cultivars to minimize cadmium accumulation. Sci. Total Environ. 2008, 390: 301-310.
    Hart JJ, Welch RM, Norvell WA, et al. Characterization of cadmium binding, uptake, and translocation in intact seedlings of bread and durum wheat cultivars. Plant physiol. 1998, 116: 1413-1420.
    Hegeman CE, Grabau EA. A novel phytase with sequence similarity to purple acid phosphatases is expressed in cotyledons of germinating soybean seedlings. Plant Physiol. 2001, 126: 1598-1608.
    Jiang HM, Yang JC, Zhang JF. Effects of external phosphorus on the cell ultrastructure and the chlorophyll content of maize under cadmium and zinc stress. Environ. Pollut. 2007, 147: 750-756.
    Liu HJ, Zhang JL, Christie P, et al. Influence of external zinc phosphorus supply on Cd uptake by rice (Oryza sativa L.) seedlings with root surface iron plaque. Plant soil. 2007, 300: 105-115.
    Loneragan JF, Grunes DL, Welch RM, et al. Phosphorus accumulation and toxicity in leaves in relation to zinc supply. Soil Sci. Soc. Am. J. 1982, 46: 345-352.
    Schachtman DP, Reid RJ, Ayling SM. Phosphorus uptake by plants: from soil to cell. Plant physiol. 1998, 116: 447-453.
    Silva AE, Gabelman WH, Coors JG. Inheritance studies of low-phosphorus stress using RFLP. Maize Genetics Cooperation News Letter. 1990, 64: 80-81.
    Tessier A, Campbell PGC, Bisson M. Sequential extraction procedure for the speciation of particulate trace metals. Anal. Chem. 1979, 51:844-851.
    Theodorou ME, Plaxton WC. Metabolic adaptations of plant respiration to nutritional phosphate deprivation. Plant Physiol. 1993, 101: 339-344.
    Yu ZG, Zhou QX. Growth responses and cadmium accumulation of Mirabilis jalapa L. under interaction between cadmium and phosphorus. J. Hazard. Mater. 2009, 167: 38-43.
    Zwonitzer JC, Pierzynski GM, Hettiarachchi GM. Effects of phosphorus additions on lead, cadmium, and zinc bioavailabilities in a metal-contaminated soil. Water Air Soil Pollut. 2003, 143: 193-209.
    鲍士旦.土壤农化分析.中国农业出版社. 2005.
    龚玉莲.蕹菜(Ipomoea aquatica Forsk.)镉积累典型品种的根际研究.中山大学博士学位论文, 2009.
    黑亮,吴启堂,龙新宪等.东南景天和玉米套种对Zn污染污泥的处理效应.环境科学. 2007, 28(4): 852-858.
    黄白飞.蕹菜(Ipomoea aquatica Forsk.)镉、铅积累过程的生物化学和分子生物学机理研究.中山大学博士学位论文, 2010.
    蒋成爱,吴启堂,吴顺辉等.东南景天与不同植物混植对土壤重金属吸收的影响.中国环境科学. 2009, 29(9): 985-990.
    李凝玉,李志安,丁永祯等.不同作物与玉米间作对玉米吸收积累镉的影响.应用生态学报. 2008, 19(6): 1369-1373.
    刘天学,王振河,董朋飞等.玉米间作系统的生理生态效应研究进展.玉米科学. 2007, 15(5): 114-116.
    王艳红,龙新宪,刘彦洪等.两种生态型东南景天套种对其生长和吸收土壤中Zn的影响.华南农业大学学报, 2007, 28(3): 6-10.
    Agegnehu G, Ghizaw A, Sinebo W. Yield performance and land-use efficiency of barley and fababean mixed cropping in Ethiopian highlands. Europ. J. Agronomy. 2006, 25: 202-207.
    Clemens S. Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie, 2006, 88: 1707-1719.
    Daellenbach GC, Kerridge PC, Wolfe MS, et al. Plant productivityin cassava-based mixed cropping systems in Colombian hillside farms. Agr. Ecosyst. Environ. 2005, 105: 595-614.
    Gove B, Hutchison JJ, Young SD, et al. Uptake of metals by plants sharing a rhizosphere with the hyperaccumulator Thlaspi caerulescences. Int. J. Phytoremediat. 2002, 4: 267-281.
    Hart JJ, Welch RM, Norvell WA, et al. Characterization of cadmium binding, uptake, and translocation in intact seedlings of bread and durum wheat cultivars. Plant physiol. 1998, 116: 1413-1420.
    Su D, Xing J, Jiao W, et al. Cadmium uptake and speciation chages in the rhizosphere of cadmium accumulator and non-accumulator oilseed rape varieties. J. Environ. Sci.-China. 2009, 21: 1125-1128.
    Sugiyama M, Ae N, Arao T. Role of roots in differences in seed cadmium concentration among soybean cultivars-proof by grafting experiment. Plant Soil. 2007, 295: 1-11.
    Whiting S, Leake J, Mcgrath S, et al. Hyperaccumulation of Zn by Thlaspi caerulescens Can Ameliorate Zn Toxicity in the Rhizosphere of Cocropped Thlaspi arvense. Environ. Sci. Technol. 2001, 35: 3237-3241.
    Wu QL, Hei H, Wong JWC, et al. Co-cropping for phytoseparation of zinc and potassium from sewage sludge. Chemosphere. 2007, 68: 1954-1960.
    Wu QT, Wei ZB, Yang YO. Phytoextraction of metal-contaminated soil by Sedum alfredii H: Effects of chelator and co-planting. Water Air Soil Pollut. 2007, 180: 131-139.
    Zhu Y, Yu H, Wang JL, et al. Heavy metal accumulations of 24 asparagus bean cultivars grown in soil contaminated with Cd alone and with multiple metals (Cd, Pb, and Zn). J. Agric. Food Chem. 2007, 55: 1045-1052.
    陈世宝,朱永官,杨俊诚.土壤-植物系统中磷对重金属生物有效性的影响机制.环境污染治理技术与设备. 2003, 4(8): 1-7.
    杨居荣,鲍子平,张素芹.镉和铅在植物细胞中分布与结合形态.中国环境科学. 1993, 13(4): 263-268.
    周轶慧.苋菜对重金属Cd、Pb积累的基因型差异及其机理研究.中山大学博士学位论文, 2010.
    Bolan NS, Adriano DC. NaiduR. Role of phosphorus in (im)mobilization and bioavailability of heavy metals in the soil-plant system. Rev. Environ. Contam. Toxicol. 2003, 177: 1-44.
    Chen SB, Zhu YG, Ma YB. The effect of grain size of rock phosphate amendment on metal immobilization in contaminated soils. J. Hazard. Mater. 2006, B134: 74-79.
    Clemens S. Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie. 2006, 88: 1707-1719.
    Dheri GS, Brar MS, Malhi SS. Influence of phosphorus application on growth and cadmium uptake of spinach in two cadmium-contaminated soils. J. Plant Nutr. Soil Sci. 2007, 170: 495-499.
    Gong JM, Lee DA, Schroeder JI. Long-distance root-to-shoot transport of phytochelatins and cadmium in Arabidopsis. PNAS. 2003, 100: 10118-10123.
    Grant CA, Bailey LD. Effects of phosphorus and zinc fertilizer management on cadmium accumulation in flaxseed. J. Sci. Food Agric. 1997, 73: 307-314.
    Hart JJ, Welch RM, Norvell WA, et al. Characterization of cadmium binding, uptake, and translocation in intact seedlings of bread and durum wheat cultivars. Plant physiol. 1998, 116: 1413-1420.
    Jiang HM, Yang JC, Zhang JF. Effects of external phosphorus on the cell ultrastructure and the chlorophyll content of maize under cadmium and zinc stress. Environ. Pollut. 2007, 147: 750-756.
    Salt DE, Prince RC, Pickering IJ, et al. Mechanisms of cadmium mobility and accumulation in Indian mustard. Plant Physiol. 1995, 109: 1427-1433.
    Sela M, Tel-Or E, Fritz E, et al. Localization and toxic effects of cadmium, copper, and uranium in Azolla. Plant Physiol. 1988, 88: 30-36.
    Sterrett SB, Chaney RL, Gifford CH, et al. Influence of fertilizer and sewage sludge compost on yield and heavy metal accumulation by lettuce grown in urban soils. Environ. Geochem. Hlth. 1996, 18: 135-142.
    Ueno D, Iwashita T, Zhao FJ, et al. Characterization of Cd translocation and identification of the Cd form in xylem sap of the Cd-hyperaccumulator Arabidopsis halleri. Plant cell physiol. 2008, 49: 540-548.
    Wang JL, Yuan JG, Yang ZY, et al. Variation in cadmium accumulation among 30 cultivars and cadmium subcellular distribution in 2 selected cultivars of water spinach (Ipomoea aquatica Forsk.). J. Agric. Food Chem. 2009, 57: 8942-8949.
    Wang X, Liu YG, Zeng GM, et al. Subcellular distribution and chemical forms of cadmium in Bechmeria nivea (L.) Gaud. Environ. Exp. Bot. 2008, 62: 389-395.
    Wei ZG, Wong JW, Hong FS, et al. Determination of inorganic and organic anions in xylem saps of two contrasting oilseed rape (Brassica juncea L.) varieties: roles of anions in long-distance transport of cadmium. Microche. J. 2007, 86: 53-59.
    Wu FB, Dong J, Qian QQ, et al. Subcellular distribution and chemical form of Cd and Cd-Zn interaction in different barley genotypes. Chemosphere. 2005, 60: 1437-1446.
    Zhang SJ, Hu F, Li HX. Effects of earthworm mucus and amino acids on cadmium subcellular distribution and chemical forms in tomato seedlings. Bioresource Technol. 2009, 100: 4041-4046.
    郝岗平,吴忠义,陈茂盛等.拟南芥CBF4基因位点的单核苷酸多态性(SNP)变化与抗旱表型的相应性. 农业生物技术学报. 2004, 12(2): 122-131.
    王建义.小叶杨抗逆相关基因的克隆及单核苷酸多态性分析.内蒙古农业大学硕士学位论文, 2008.
    王丽.应用RAPD技术进行菜心(Brassica campestris L. ssp.chinensis var.utilis Tsenet lee)种质遗传多样性的研究.西南大学硕士学位论文, 2006.
    辛俊亮.蕹菜(Ipomoea aquatica Forsk.)品种对镉铅胁迫的响应及镉含量性状的遗传分析研究.中山大学博士学位论文, 2010.
    张阁,黄原.基因组水平的插入和缺失变异研究进展.生命科学. 2010, 22(9): 896-900.
    张洪映,毛新国,景蕊莲等.小麦TaPK7基因单核苷酸多态性与抗旱性的关系.作物学报. 2008, 34(9): 1537-1543.
    Batley J, Mogg R, Edwards D, et al. A high-throughput SNuPE assay for genotyping SNPs in the flanking regions of Zea mays sequence tagged simple sequence repeats. Mol. Breed. 2003, 11: 111-120.
    Carine G, Christelle B, Domenica M, et al. Nucleotide diversity of the ZmPox3 maize peroxidase gene: Relationships between a MITE insertion in exon2 and variation in forage maize digestibility. BMC Genetics. 2004, 5: 1-11.
    Chaux ND, Messer PW, Arndt PF. DNA indels in coding regions reveal selective constraints on protein evolution in the human lineage. BMC Evol. Biol. 2007, 7: 191.
    Ching A, Caldwell KS, Jung M, et al. SNP frequency, haplotype structure and linkage disequilibrium in elite maize inbred lines. BMC Genetics. 2002, 3: 1-14.
    Fan YH, Wang WJ, Ma GJ, et al. Patterns of insertion and deletion in mammalian genomes. Curr. Genomics. 2007, 8(6): 370-378.
    McLaughlin MJ, Tiller KG, Smart MK. Speciation of cadmium in soil solutions of saline/sodic soils and relationship with cadmium concentrations in potato tubers (Solanum tuberosum L.). Aust. J. Soil Res. 1997, 35: 183-198.
    Mills RF, Francini A, Ferreira da Rocha P, et al. The plant P1B-type ATPase AtHMA4 transports Zn and Cd and plays a role in detoxification of transition metals supplied at elevated levels. FEBS Letters. 2005, 579: 783-791.
    Song WY, Martinoia E, Lee J, et al. A novel family of cys-rich membrane proteins mediates cadmium resistance in Arabidopsis. Plant Physio. 2004, 135: 1027-1039.
    Thomine S, Lelièvre F, Debarbieux E, et al. AtNRAMP3, a multispecific vacuolar metal transporter involved in plant responses to iron deficiency. The Plant Journal. 2003, 34: 685-695.
    Verret F, Gravot A, Auroy P, et al. Overexpression of AtHMA4 enhances root-to-shoot translocation of zinc and cadmium and plant metal tolerance. FEBS Letters. 2004, 576: 306-312.
    Zhu YL, Song QJ, Hyten DL, et al. Single-Nucleotide Polymorphisms in Soybean. Genetics. 2003, 163: 1123-1134.
    陈志良,仇荣亮,张军书等.重金属污染土壤的修复技术.环境保护. 2002(6): 21-23.
    龚玉莲.蕹菜(Ipomoea aquatica Forsk.)镉积累典型品种的根际研究.中山大学博士学位论文, 2009.
    胡宁静,李泽琴,黄朋等.我国部分市郊农田的重金属污染与防治途径.矿物岩石地球化学通报. 2003, 22(3): 251-254.
    柳李旺,侯喜林,龚义勤等.分子标记技术在蔬菜作物品种鉴定与纯度检测中的应用.分子植物育种. 2004, 2(4): 563-568.
    王艳红,龙新宪,刘彦洪等.两种生态型东南景天套种对其生长和吸收土壤中Zn的影响.华南农业大学学报, 2007, 28(3): 6-10.
    辛俊亮.蕹菜(Ipomoea aquatica Forsk.)品种对镉铅胁迫的响应及镉含量性状的遗传分析研究.中山大学博士学位论文, 2010.
    赵小虎,王富华,张冲等.南方菜地重金属污染状况及蔬菜安全生产调控措施. 2007, 3: 91-94.
    周轶慧.苋菜对重金属Cd、Pb积累的基因型差异及其机理研究.中山大学博士学位论文, 2010.
    Bolan NS, Adriano DC, Naidu R. Role of phosphorus in (im)mobilization and bioavailability of heavy metalsin the soil-plant system. Rev. Environ. Contam. Toxicol. 2003, 177: 1-44.
    Clarke JM, Leisle D, Kopytko GL. Inheritance of cadmium concentration in five durum wheat crosses. Crop Sci. 1997, 37: 1722-1726.
    Florijn PJ, Nelemans JA, Vanbeusichem ML. Cadmium uptake be lettuce varieties. Neth. J. Agr. Sci.1991, 39: 103-114.
    Grant CA, Clarke JM, Duguid S, et al. Selection and breeding of plant cultivars to minimize cadmium accumulation. Sci. Total Environ. 2008, 390: 301-310.
    Penner G A, Clarke J, Bezte L J, et al. Identification of RAPD markers linked to a gene governing cadmium uptake in durum wheat. Genome. 1995, 38: 543-547.
    Sugiyama M, Ae N, Arao T. Role of roots in differences in seed cadmium concentration among soybean cultivars-proof by grafting experiment. Plant Soil. 2007, 295: 1-11.
    Wang J, Yuan J, Yang Z, et al. Variation in cadmium accumulation among 30 cultivars and cadmium subcellular distribution in 2 selected cultivars of water spinach (Ipomoea aquatica Forsk.). J. Agric. Food Chem. 2009, 57: 8942-8949.
    Wang JL, Fang W, Yang ZY, et al. Inter- and intraspecific variations of cadmium accumulation of 13 leafy vegetable species in a greenhouse experiment. J. Agric. Food Chem. 2007, 55: 9118-9123.
    Wu QL, Hei H, Wong JWC, et al. Co-cropping for phytoseparation of zinc and potassium from sewage sludge. Chemosphere. 2007, 68: 1954-1960.
    Xin JL, Huang BF, Yang ZY, et al. Responses of different water spinach cultivars and their hybrid to Cd, Pb and Cd-Pb exposures. J. Hazard. Mater. 2010, 17: 468-476.
    Zhu Y, Yu H, Wang JL, et al. Heavy metal accumulations of 24 asparagus bean cultivars grown in soil contaminated with Cd alone and with multiple metals (Cd, Pb, and Zn). J. Agric. Food Chem. 2007, 55: 1045-1052.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700