用户名: 密码: 验证码:
猪源乳酸杆菌的筛选及其对仔猪肠道黏膜免疫影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本试验从健康仔猪十二指肠黏膜分离筛选到一株唾液乳酸杆菌(L. sarlivariusB1),体外试验结果表明L. sarlivarius B1产酸能力及与上皮细胞粘附能力均较强。采用新生仔猪为对象,研究L. sarlivarius B1对仔猪黏膜免疫的影响及其作用机制,并以大肠杆菌E. coli k88为指示菌感染仔猪,进一步研究L. sarlivarius B1抵抗大肠杆菌E. coli k88感染的影响。
     1.猪源乳酸杆菌的分离与鉴定
     首先从四种不同品种的30日龄仔猪(长白猪、山东莱芜黑猪、杜洛克猪、贵州巴马小香猪)十二指肠黏膜分离到36株乳酸杆菌,然后对36株乳酸杆菌体外产乳酸、在Caco-2细胞表面的粘附力以及抗生素敏感性进行测定。从中筛选出10株产酸能力和粘附力强的的乳酸杆菌,最后通过PCR-DGGE图谱技术对10株纯菌分离株和四个品种猪的十二指肠黏膜乳酸杆菌进行对比,分析所分离的乳酸杆菌在仔猪十二指肠黏膜分布情况,最后选取其中的4株菌进行16S rRNA分子鉴定。结果表明:36株乳酸杆菌产酸性能力和粘附力存在一定的差别,10株产酸能力强的乳酸杆菌与上皮细胞的粘附能力均比参考菌株L.brevis1.2028和L. acidophilus(ATCC4356)强,16S rRNA基因序列分析显示,所测4株乳酸杆菌均与唾液乳酸杆唾液亚种(Lactobacillus salivarius subsp. salivarius)同源性高达98%,部分序列已被Genbank收录,登录号为GQ303717和GQ303718。选取产酸能力与粘附力最强的L. sarlivarius B1为益生菌候选菌株。
     2. L. salivarius B1对仔猪小肠发育的影响
     应用筛选出的L. sarlivarius B1饲喂新生仔猪,研究L. sarlivarius B1对仔猪生产性能和小肠发育的影响,试验选择6窝初生重、胎次相近的新生仔猪为研究对象,分成乳酸杆菌组、对照组和商品日粮组。乳酸杆菌组分别于仔猪0、7、11、26日龄灌喂L. salivarius B1(菌液离心后用蔗糖溶液调至活菌数为5×109cfu/m1),对照组则饲喂同体积的蔗糖溶液,乳酸杆菌组和对照组仔猪均从7日龄开始饲喂无抗开食料,商品日粮组则饲喂商品仔猪料。28日龄称重后每窝随机选择2头仔猪宰杀,随后取小肠固定,制作组织切片、染色。测定肠绒毛高度和肠道上皮内淋巴细胞和IgA分泌细胞数量。试验结果显示:L. salivarius B1能够显著地提高仔猪小肠IEL数量(p<0.05)和IgA分泌细胞的面积(p<0.01);L. salivarius B1还能提高仔猪日增重(p<0.05)和小肠绒毛高度(p<0.05)
     3. L. salivarius B1在仔猪肠道的定植情况及其对肠道菌群的影响
     L. salivarius B1饲喂新生仔猪后能够促进小肠发育和增加肠道免疫细胞数量。为进一步研究L. salivarius B1在体内的作用机制,本试验对L. salivarius B1饲喂后在仔猪体内的定植及对肠道菌群组成的影响进行了研究。给新生仔猪饲喂L. salivarius B1后分别于7、14、21日龄采取仔猪新鲜粪便,28日龄每窝随机挑选2头(每组4头)仔猪宰杀,取肠黏膜。采用DGGE方法分析L. salivarius B1在体内的定植情况,利用Real-time PCR技术对肠黏膜中L. salivarius数量进行分析;用传统的活菌计数方法对几种主要的肠道菌计数。结果表明:L. salivarius能够在仔猪哺乳后期自然出现;DGGE图谱显示饲喂L. salivarius B1的7日龄仔猪粪便中出现该菌株相应的条带;在饲喂L. salivarius B1的28日龄仔猪肠黏膜中,L. salivarius,总数显著高于其它组(p<0.05);7日龄的仔猪粪便和28日龄仔猪肠黏膜中双歧杆菌数量为乳酸杆菌组明显高于对照组(p<0.05);但对大肠杆菌和肠球菌等肠道菌数量没有明显的影响。本试验结果说明L. salivarius B1饲喂新生仔猪后能够有效地定植于仔猪体内,并且能够增加哺乳前期仔猪粪便和十二指肠局部黏膜双歧杆菌的数量。
     4. L. salivarius B1早期定植对仔猪肠道β-防御素2和细胞因子分泌的影响
     新生仔猪肠道细胞能够分泌抗菌肽参与天然免疫反应,β-防御素(pBD-2)是抗菌肽中重要的一种,在仔猪先天性免疫中起着非常重要的作用。给新生仔猪饲喂L. salivarius B1后于7、14、21、28日龄采取仔猪唾液,28日龄每窝随机挑选2头(每组4头)仔猪宰杀取黏膜。应用Real-time PCR方法检测肠黏膜中pBD-2及细胞因子IL-1p、TNF-α和IL-6基因的表达水平,用ELISA方法对不同日龄仔猪唾液中的pBD-2含量进行测定。结果显示:L. salivarius B1早期定植能使十二指肠黏膜pBD-2基因表达水平及含量显著升高(p<0.01);仔猪唾液中pBD-2的含量随日龄有不同程度的增加,其中在14,28日龄时乳酸杆菌组仔猪唾液中的pBD-2含量极显著增加(p<0.05)。L. salivarius B1早期定植还对回肠IL-6基因表达有明显的促进作用(p<0.05)。本试验的结果表明L. salivarius B1早期定植能够促进肠黏膜细胞功能基因的表达,提高小肠局部黏膜免疫的防御水平。
     5. L. salivarius B1早期定植对肠道TLR表达的影响
     Toll样受体(TLRs)是一类主要表达于天然免疫细胞表面的模式识别受体,通过识别与结合相应的配体启动宿主天然抗感染免疫。目前,研究发现哺乳动物体内存在12种TLRs, TLR2主要对革兰氏阳性细菌细胞壁成分进行识别,而TLR9主要识别细菌DNA中非甲基化的CpG基序。本试验主要从基因和蛋白水平研究L.salivariusB1对仔猪小肠TLR2和TLR9表达水平的影响。给新生仔猪饲喂L. salivarius B1后,28日龄每组随机挑选4头仔猪宰杀取肠黏膜,分别应用Real-time PCR方法和Western-Blot方法测定十二指肠和回肠中TLR2和TLR9的基因表达水平和蛋白表达水平。试验结果显示:L.salivariusB1能够显著地增强十二指肠和回肠中的TLR2的基因和蛋白表达(p<0.05),而对TLR9表达基因和蛋白水平均无明显的影响。
     6. L. salivarius B1对仔猪抵抗E. coli K88感染的影响
     为进一步探导L. salivarius B1定植后对肠道病原菌的抗感染作用,本试验研究了L. salivarius B1对仔猪抵抗E. coli K88感染的影响。对前期试验中三组仔猪宰杀后余下的仔猪28日龄断奶后的腹泻情况观察一周,35日龄时所有仔猪接种相同剂量的大肠杆菌菌液(E. coli K88,活菌数为108cfu/ml,接种量为2 mL/只),观察仔猪对E. coli K88感染的抵抗能力,并对仔猪肠黏膜受损情况及细胞因子IL-6、TNF-a和IL-1p基因表达进行测定。结果表明:早期接种L. salivarius B1的仔猪腹泻指数明显低于对照组(p<0.05)且康复较快;肠黏膜的IL-61比未接种L.salivarius B1的仔猪高(p<0.05),而炎性因子TNF-α则较低(p<0.05);回肠肠绒毛受损程度也较轻。说明早期L. salivarius B1勺定植提高了仔猪天然免疫功能,增强仔猪断奶期对病原菌感染的抵抗力,有助于仔猪健康生长。
In this study, L. sarlivarius B1 was isolated from the intestinal mucosa of a healthy piglet. It was confirmed to possess excellent probiotic properties, such as high lactic acid production and strong adhesion to Caco-2 cells in vitro. The neonatal piglet was used to investigate the effect on functions of mucosal immune and the mechanism of L. sarlivarius B1 in piglets. Furthermore, E. coli k88 infection model was used to study the resistance of L. sarlivarius B1 on infection of intestinal pathogen.
     1. Isolation and indentification of dominant porcine lactobacillus
     Some probiotic lactobacilli are known to confer health benefits to host by modulating its immune functions. It has a close relationship between the probiotics properties and its adhesion on the surface of cell. In this study,36 lactobacillus strains was isolated from duodenum mucosa of 30 day-old piglets from four different pig breeds (Landrace piglets, Laiwu black piglets, Duroc piglets and mini piglets of Guizhou).10 strains were selected from 36 lactobacillus strains basing on their lactic acid production, adhesion properties on Caco-2 cell and antimicrobial susceptibility in vitro. The bands of 10 strains and mucosal bacteria from four pig breeds in DGGE profiles were compared. Four lactobacillus strains were molecular indentified by 16S rRNA technology. The results showed that L. salivarius was the predominant group in the duodenum of piglets, so it is a potential candidate probiotic for piglets. The lactic acid production was different among L. sarlivarius strains. L. sarlivarius B1 and L. sarlivarius XI showed strong ability in lactic acid production and adhesion. Analysis of 16S rRNA gene showed that the strains were all related closely to Lactobacillus salivarius subsp. salivarius (similarity> 98%). Some of the gene sequences have been deposited in the GenBank database under accession numbers:GQ303717 and GQ303718.
     2. Effect of L. sarlivarius B1 on development of small intestine of piglets
     This study was to investigate the effects of L. sarlivarius B1 on the performance and development of small intestine in piglets. Six litter neonatal piglets, which average birth, weigh and parity were similar, were divided into three groups: experimental groups, control and commercial diet groups. Each piglet in the experimental group received 1 ml of L. salivarius B1 preparation (diluted to 5×109 cfu/ml-1 with sucrose solution) orally on day 0,2 ml on day 7,3 ml on day 11 and 5 ml on day 26. Each piglet in the control group received equivalent volumes of sucrose solution. The piglets in experimental and control groups were fed diet without carrying antibacterial, commercial diet group was fed commercial diet. On day 28, the litter weight of each litter was recorded, and then two piglets from each litter were sacrificed. The duodenum, jejunum and ileum segments were collected and placed in Bouin's fixative, then histological examination for analyzing villous height, the number of IELs and IgA producing cells. Results show that the daily weight gain and villous height of piglets was increased by L. sarlivarius B1 (p<0.05). The number of IELs were also significantly increased (P<0.05), and similar results were observed in the area of the IgA-producing cells (P<0.05). The results demonstrate that L. salivarius B1 is beneficial for the performance of piglets and development of small intestine.
     3. The colonization of L. salivarius B1 on intestinal tract and its effect on the intestinal microflora
     L. salivarius B1 has showed the probiotics properties in newborn piglets, improving the performance and intestinal morphology. A further study on the mechanism of L. salivarius B1 in vivo was performed. The aim of this study was to investigate the colonization of L. salivarius B1 in piglets and its effect on the composition of the intestinal flora. The fresh feces of four piglets from each group were collected on day 7,14, and 21. On day 28, two piglets per litter (four piglets per group) were selected randomly and sacrificed, the mucosa of duodenum, jejunum and ileum were collected. DGGE was used to check the colonization of L. salivarius B1 in vivo; the number of L. salivarius in mucosa samples was detected by Real-time PCR. Identification and enumeration of intestinal microorganisms was used by traditional method. The results showed that:L. salivarius occurs naturally at late lactation of piglets. The faces of 7 day-old piglets in experimental groups showed the band of L. salivarius in DGGE profile, but no band appeared in the other groups; the number of L. salivarius of mucosa samples in experimental groups was significant higher than that in control group(p<0.05). For the number of three major intestinal bacteria, only the bifidobacterial count in the feces of the piglets on day 7 and intestinal mucosa on day 28 changed, the number in experimental group was higher than control group (p <0.05). The results show that L. salivarius B1 can colonize in the intestinal tract of piglets after administration and increase bifidobacterium count in faces at early breast-feeding and duodenal mucosa on day 28, but no significant effect was observed on the number of E. coli and Enterococcus
     4. Effect on the secretion ofβ-defensins and cytokine by early colonization of L. salivarius B1
     An innate immune response of neonatal piglets is the secretion of antimicrobial peptides (AMPs). AMPs known as defensins play an important role in the innate immune response of the intestine. Some investigations have demonstrated that Lactobacillus can induce enterocyte to produceβ-defensin. In this study, the secretion of pBD-2 and cytokine influenced by L. salivarius B1 were studied. On day 7,14,21, and 28, saliva of two piglets from each litter were collected. On day 28, two piglets per litter (four piglets per group) were selected randomly and sacrificed, the mucosa of duodenum and ileum were collected. The secretion of pBD-2 and cytokines (IL-1β, TNF-a and IL-6) were measured. The results showed that the gene expression and contents of pBD-2 in duodenal mucosa was increased significantly by L. salivarius B1 (p<0.01). The pBD-2 levels in saliva were increased in different degree after the mucosa exposure to L. salivarius B1, the pBD-2 level in saliva on day 14,28 in experimental group was significant higher than control group (p<0.05); otherwise, the expressed of IL-6 gene in ileum was promoted by L. salivarius B1. It concluded that the early colonization of L. salivarius B1 can promote the expression of functional genes in intestinal immunocompetent cells, and to improve the defense of intestinal mucosal immune in local.
     5. Effect on the expression of TLRs in intestine by early colonization of L. salivarius B1
     L. salivarius is one of resident bacteria in healthy piglets. In theory, L. salivarius B1 was recognized via innate immunity mechanisms when it came into the intestine of piglet which immune systems was immature. TLRs are a group of pattern recognition receptors (PRRs) that expressed on the surface of immunocompetent cells. 12 TLRs have been described in mammals, TLR2 recognizes a variety of components on the cell wall of microbial, TLR9 recognizes bacterial DNA containing CpG motifs. The aim of the present study was to investigate the effects of L. salivarius B1 on the expression of TLR. On day 28, the piglets were sacrificed and their intestinal mucosa samples were immediately collected for extraction of total RNA and protein. The expression of TLR2 and TLR9 gene was detected by the method of Real-time PCR, and the expression of TLR2 and TLR9 protein were determined by Western-Blot. The results showed that the similar results were obtained for the same parts of the sample both using the method of Real-time PCR in gene level and Western-Blot in protein level. L. salivarius B1 can significantly enhance the expression of TLR2 in duodenum and ileum at the gene and protein levels (p<0.05), while no obvious different was observed in the expression of TLR9.
     6. Effect of L. salivarius B1 on resistance to E. coli challenged piglets
     L. salivarius B1 can colonize in intestinal tract of piglets and improve the intestinal innate immune function of piglets. To study the role of anti-infective of L. salivarius B1 to pathogens, diarrhea of piglets in three groups were investigated during a week post-weaning. Piglets was inoculated with E. coli K88 while 35 days old, the diarrhea resistance to infection of E. coli K88 were investigated at weaning. The damage of intestinal mucosa by E. coli K88 and the expression of cytokines IL-6, TNF-a and IL-1βgene were determined. The results showed that the diarrhea index of piglets in experimental group was significant lower than other groups during the stage of weaning (p<0.05). The piglets administration with L. salivarius B1 showed stronger inhibitory on the infection of E. coli K88, i.e. diarrhea index was significantly decreased and piglets faster recovery; the expression of IL-6 gene was higher than that of other two groups (p<0.05), while the inflammatory factor TNF-a was lower than that of control group (p<0.05); damage of intestinal villus was slighter than that of in control group. It can be concluded that early administration of L. salivarius B1 might facilitate health of piglets and promote intestinal natural immune responses and resistance to pathogen infection.
引文
[1]张刚,乳酸细菌:基础、技术和应用[M].化学工业出版社,2007
    [2]郭兴华,益生乳酸细菌:分子生物学及生物技术[M].科学出版社,2008
    [3]Zhang, X, Q. Yang. Effect of compound mucosal immune adjuvant on mucosal and systemic immune responses in chicken orally vaccinated with attenuated Newcastle-disease vaccine[J]. Vaccine,2007,25(17):3254-3262
    [4]Wells, J.M, A. Mercenier. Mucosal delivery of therapeutic and prophylactic molecules using lactic acid bacteria[J]. Nat Rev Microbiol,2008,6(5):349-62
    [5]Sara, M, U.B. Sleytr. S-Layer proteins[J]. J Bacteriol,2000,182(4):859-868
    [6]Sleytr, U.B, M. Sara. Bacterial and archaeal S-layer proteins:structure-function relationships and their biotechnological applications[J]. Trends Biotechnol,1997,15(1):20-26
    [7]Boot HJ, Kolen CP, van Noort JM, et al. S-layer protein of Lactobacillus acidophilus ATCC 4356:purification, expression in Escherichia coli, and nucleotide sequence of the corresponding gene[J]. J Bacteriol,1993,175(19):6089-6096
    [8]Jakava-Viljanen M, Avall-Jaaskelainen S, Messner P, et al. Isolation of three new surface layer protein genes (slp) from Lactobacillus brevis ATCC 14869 and characterization of the change in their expression under aerated and anaerobic conditions[J]. J Bacteriol,2002, 184(24):6786-6795
    [9]Sillanpaa J, Martinez B, Antikainen J, et al. Characterization of the collagen-binding S-layer protein CbsA of Lactobacillus crispatus[J]. J Bacteriol,2000,182(22):6440-6450
    [10]Vidgren G, Palva I, Pakkanen R, et al. S-layer protein gene of Lactobacillus brevis:cloning by polymerase chain reaction and determination of the nucleotide sequence[J]. J Bacteriol, 1992,174(22):7419-7427
    [11]Hynonen U, Avall-Jaaskelainen S, Palva A. Characterization and separate activities of the two promoters of the Lactobacillus brevis S-layer protein gene[J]. Appl Microbiol Biotechnol, 2010,87(2):657-668
    [12]Rojas M, Ascencio F, Conway PL. Purification and characterization of a surface protein from Lactobacillus fermentum 104R that binds to porcine small intestinal mucus and gastric mucin[J]. Appl Environ Microbiol,2002,68(5):2330-2336
    [13]Aleljung P, Shen W, Rozalska B, et al. Purification of collagen-binding proteins of Lactobacillus reuteri NCIB 11951[J]. Curr Microbiol,1994,28(4):231-236
    [14]Chauviere G, Coconnier MH, Kerneis S, et al. Adhesion of human Lactobacillus acidophilus strain LB to human enterocyte-like Caco-2 cells [J]. J Gen Microbiol,1992,138(8): 1689-1696
    [15]Granato D, Perotti F, Masserey I, et al. Cell surface-associated lipoteichoic acid acts as an adhesion factor for attachment of Lactobacillus johnsonii Lal to human enterocyte-like Caco-2 cells [J]. Appl Environ Microbiol,1999,65(3):1071-1077
    [16]Walter J, Loach DM, Alqumber M, et al. D-alanyl ester depletion of teichoic acids in Lactobacillus reuteri 100-23 results in impaired colonization of the mouse gastrointestinal tract [J]. Environ Microbiol,2007,9(7):1750-1760
    [17]Saarela M, Mogensen G, Fonden R, et al. Probiotic bacteria:safety, functional and technological properties [J]. J Biotechnol,2000,84(3):197-215
    [18]Rinkinen M, Westermarck E, Salminen S. Absence of host specificity for in vitro adhesion of probiotic lactic acid bacteria to intestinal mucus [J]. Vet Microbiol,2003,97(1-2):55-61
    [19]范小兵,周丛,杭晓敏.昂立植物乳杆菌粘附肠上皮细胞的研究[J].中国微生态学杂志,2004,16(6):353-355
    [20]Avall-Jaaskelainen S, Lindholm A, Palva A. Surface display of the receptor-binding region of the Lactobacillus brevis S-layer protein in Lactococcus lactis provides nonadhesive lactococci with the ability to adhere to intestinal epithelial cells [J]. Appl Environ Microbiol, 2003,69(4):2230-2236
    [21]Resta-Lenert S, Barrett KE. Live probiotics protect intestinal epithelial cells from the effects of infection with enteroinvasive Escherichia coli (EIEC) [J]. Gut,2003,52(7):988-997
    [22]Bernet-Camard MF, Lievin V, Brassart D, et al. The human Lactobacillus acidophilus strain LA1 secretes a nonbacteriocin antibacterial substance(s) active in vitro and in vivo [J]. Appl Environ Microbiol,1997,63(7):2747-2753
    [23]Ogawa M, Shimizu K, Nomoto K, et al. Inhibition of in vitro growth of Shiga toxin-producing Escherichia coli O157:H7 by probiotic Lactobacillus strains due to production of lactic acid [J]. Int J Food Microbiol,2001,68(1-2):135-140
    [24]Golowczyc MA, Mobili P, Garrote GL, et al. Protective action of Lactobacillus kefir carrying S-layer protein against Salmonella enterica serovar Enteritidis [J]. Int J Food Microbiol,2007, 118(3):264-273
    [25]Tiwari SK, Srivastava S. Purification and characterization of plantaricin LR14:a novel bacteriocin produced by Lactobacillus plantarum LR/14 [J]. Appl Microbiol Biotechnol,2008, 79(5):759-767
    [26]Friis LM, Keelan M, Taylor DE. Campylobacter jejuni drives MyD88-independent interleukin-6 secretion via Toll-like receptor 2 [J]. Infect Immun,2009,77(4):1553-1560
    [27]Rescigno M, Urbano M, Valzasina B, et al. Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria [J]. Nat Immunol,2001,2(4):361-367
    [28]Niess JH, Brand S, Gu X, Landsman L, et al. CX3CR1-mediated dendritic cell access to the intestinal lumen and bacterial clearance [J]. Science,2005,307(5707):254-258
    [29]Banchereau J, Briere F, Caux C, et al. Immunobiology of dendritic cells [J]. Annu Rev Immunol,2000,18:767-811
    [30]Steinman RM, Hawiger D, Nussenzweig MC. Tolerogenic dendritic cells [J]. Annu Rev Immunol,2003,21:685-711
    [31]Peng Y, Martin DA, Kenkel J, et al. Innate and adaptive immune response to apoptotic cells [J]. J Autoimmun,2007,29(4):303-309
    [32]Mohamadzadeh M, Klaenhammer TR. Specific Lactobacillus species differentially activate Toll-like receptors and downstream signals in dendritic cells [J]. Expert Rev Vaccines,2008, 7(8):1155-1164
    [33]Mowat AM. Anatomical basis of tolerance and immunity to intestinal antigens [J]. Nat Rev Immunol,2003,3(4):331-341
    [34]Bilsborough J, Viney JL. Gastrointestinal dendritic cells play a role in immunity, tolerance, and disease [J]. Gastroenterology,2004,127(1):300-309
    [35]O'Mahony L, O'Callaghan L, McCarthy J, et al. Differential cytokine response from dendritic cells to commensal and pathogenic bacteria in different lymphoid compartments in humans [J]. Am J Physiol Gastrointest Liver Physiol,2006,290(4):839-845
    [36]Fink LN, Zeuthen LH, Christensen HR, et al. Human antigen-presenting cells respond differently to gut-derived probiotic bacteria but mediate similar strain-dependent NK and T cell activation [J]. FEMS Immunol Med Microbiol,2007,51(3):535-546
    [37]Hart AL, Lammers K, Brigidi P, et al. Modulation of human dendritic cell phenotype and function by probiotic bacteria [J]. Gut,2004,53(11):1602-1609
    [38]Gill HS, Rutherfurd KJ, Prasad J, et al. Enhancement of natural and acquired immunity by Lactobacillus rhamnosus (HN001), Lactobacillus acidophilus (HN017) and Bifidobacterium lactis (HN019) [J]. Br J Nutr,2000,83(2):167-176
    [39]Haller D, Serrant P, Peruisseau G, et al. IL-10 producing CD141ow monocytes inhibit lymphocyte-dependent activation of intestinal epithelial cells by commensal bacteria [J]. Microbiol Immunol,2002,46(3):195-205
    [40]Marin ML, Tejada-Simon MV, Lee JH, et al. Stimulation of cytokine production in clonal macrophage and T-cell models by Streptococcus thermophilus:comparison with Bifidobacterium sp. and Lactobacillus bulgaricus [J]. J Food Prot,1998,61(7):859-864
    [41]Haller D, Serrant P, Granato D, et al. Activation of human NK cells by staphylococci and lactobacilli requires cell contact-dependent costimulation by autologous monocytes. Clin Diagn Lab Immunol,2002,9(3):649-657
    [42]Ogawa T, Asai Y, Tamai R, et al. Natural killer cell activities of synbiotic Lactobacillus casei ssp. casei in conjunction with dextran [J]. Clin Exp Immunol,2006,143(1):103-109
    [43]von der Weid T, Bulliard C, Schiffrin EJ. Induction by a lactic acid bacterium of a population of CD4(+) T cells with low proliferative capacity that produce transforming growth factor beta and interleukin-10 [J]. Clin Diagn Lab Immunol,2001,8(4):695-701
    [44]Carol M, Borruel N, Antolin M, et al. Modulation of apoptosis in intestinal lymphocytes by a probiotic bacteria in Crohn's disease [J]. J Leukoc Biol,2006,79(5):917-922
    [45]Sheil B, McCarthy J, O'Mahony L, et al. Is the mucosal route of administration essential for probiotic function? Subcutaneous administration is associated with attenuation of murine colitis and arthritis [J]. Gut,2004,53(5):694-700
    [46]Konstantinov SR, Smidt H, de Vos WM, et al. S layer protein A of Lactobacillus acidophilus NCFM regulates immature dendritic cell and T cell functions [J]. Proc Natl Acad Sci U S A, 2008,105(49):19474-194749
    [47]Pessi T, Sutas Y, Hurme M, et al. Interleukin-10 generation in atopic children following oral Lactobacillus rhamnosus GG [J]. Clin Exp Allergy,2000,30(12):1804-1808
    [48]Zhang L, Xu YQ, Liu HY, et al. Evaluation of Lactobacillus rhamnosus GG using an Escherichia coli K88 model of piglet diarrhoea:Effects on diarrhoea incidence, faecal microflora and immune responses [J]. Vet Microbiol,2009,141(1-2):142-148
    [49]Grangette C, Muller-Alouf H, Geoffroy M, et al. Protection against tetanus toxin after intragastric administration of two recombinant lactic acid bacteria:impact of strain viability and in vivo persistence [J]. Vaccine,2002,20(27-28):3304-3309
    [50]Hanniffy SB, Carter AT, Hitchin E, et al. Mucosal delivery of a pneumococcal vaccine using Lactococcus lactis affords protection against respiratory infection [J]. J Infect Dis,2007, 195(2):185-193
    [51]Oliveira ML, Areas AP, Campos IB, et al. Induction of systemic and mucosal immune response and decrease in Streptococcus pneumoniae colonization by nasal inoculation of mice with recombinant lactic acid bacteria expressing pneumococcal surface antigen A [J]. Microbes Infect,2006,8(4):1016-1024
    [52]Liu X, Lagenaur LA, Simpson DA, et al. Engineered vaginal lactobacillus strain for mucosal delivery of the human immunodeficiency virus inhibitor cyanovirin-N [J]. Antimicrob Agents Chemother,2006,50(10):3250-3259
    [53]Alvarez B, Revilla C, Domenech N, et al. Expression of toll-like receptor 2 (TLR2) in porcine leukocyte subsets and tissues [J]. Vet Res,2008.39(2):p.13.
    [54]Akira S, Takeda K. Toll-like receptor signalling [J]. Nat Rev Immunol,2004,4(7):499-511
    [55]Bautista-Garfias CR, Gomez MB, Aguilar BR, et al. The treatment of mice with Lactobacillus casei induces protection against Babesia microti infection [J]. Parasitol Res, 2005,97(6):472-477
    [1]Bailey M. The mucosal immune system:recent developments and future directions in the pig [J]. Dev Comp Immunol,2009,33(3):375-83.
    [2]Macpherson AJ, Uhr T. Induction of protective IgA by intestinal dendritic cells carrying commensal bacteria [J]. Science,2004,303(5664):1662-1665
    [3]龚非力,医学免疫学(第二版)[M].北京:科学出版社,2004
    [4]Brandtzaeg, P. Mucosal immunity:induction, dissemination, and effector functions [J]. Scand J Immunol,2009.70(6):p.505-15.
    [5]Wittig BM, Zeitz M. The gut as an organ of immunology [J]. Int J Colorectal Dis,2003,18(3):181-187
    [6]Rothkotter HJ, Zimmermann HJ, Pabst R. Size of jejunal Peyer's patches and migration of lymphocyte subsets in pigs after resection or transposition of the continuous ileal Peyer's patch [J]. Scand J Immunol,1990,31(2):191-197
    [7]Pabst R, Rothkotter HJ. Postnatal development of lymphocyte subsets in different compartments of the small intestine of piglets [J]. Vet Immunol Immunopathol,1999, 72(1-2):167-173
    [8]Andersen JK, Takamatsu H, Oura CA, et al. Systematic characterization of porcine ileal Peyer's patch, I. apoptosis-sensitive immature B cells are the predominant cell type [J]. Immunology,1999,98(4):612-621
    [9]Burkey TE, Skjolaas KA, Minton JE. Board-invited review:porcine mucosal immunity of the gastrointestinal tract [J]. J Anim Sci,2009,87(4):1493-1501
    [10]Pabst R, Geist M, Rothkotter HJ, et al. Postnatal development and lymphocyte production of jejunal and ileal Peyer's patches in normal and gnotobiotic pigs [J]. Immunology,1988, 64(3):539-544
    [11]Makala LH, Kamada T, Nishikawa Y, et al. Ontogeny of pig discrete Peyer's patches: distribution and morphometric analysis [J]. Pathobiology,2000,68(6):275-282
    [12]Neutra MR, Mantis NJ, Kraehenbuhl JP. Collaboration of epithelial cells with organized mucosal lymphoid tissues [J]. Nat Immunol,2001,2(11):1004-1009
    [13]Gewirtz AT, Madara JL. Periscope, up! Monitoring microbes in the intestine [J]. Nat Immunol,2001,2(4):288-290
    [14]Mach J, Hshieh T, Hsieh D, et al. Development of intestinal M cells [J]. Immunol Rev,2005, 206:177-189
    [15]Gebert A, Rothkotter HJ, Pabst R. Cytokeratin 18 is an M-cell marker in porcine Peyer's patches [J]. Cell Tissue Res,1994,276:213-221
    [16]Tohno M, Shimosato T, Moue M, et al. Toll-like receptor 2 and 9 are expressed and functional in gut-associated lymphoid tissues of presuckling newborn swine [J]. Vet Res, 2006,37(6):791-812
    [17]Tohno M, Shimosato T, Kitazawa H, et al. Toll-like receptor 2 is expressed on the intestinal M cells in swine [J]. Biochem Biophys Res Commun,2005,330(2):547-554
    [18]Hayday A, Theodoridis E, Ramsburg E, et al. Intraepithelial lymphocytes:exploring the Third Way in immunology [J]. Nat Immunol,2001,2(11):997-1003
    [19]Gebert A, Rothkotter HJ, Pabst R. M cells in Peyer's patches of the intestine [J]. Int Rev Cytol,1996,167:91-159
    [20]Bucy RP, Chen CL, Cihak J, et al. Avian T cells expressing gamma delta receptors localize in the splenic sinusoids and the intestinal epithelium [J]. J Immunol,1988,141(7): 2200-2205
    [21]Goodman T, Lefrancois L. Expression of the gamma-delta T-cell receptor on intestinal CD8+ intraepithelial lymphocytes [J]. Nature,1988,333(6176):855-858
    [20]Cheroutre, H. Starting at the beginning:new perspectives on the biology of mucosal T cells [J]. Annu Rev Immunol,2004,22:217-246
    [22]Cepek KL, Shaw SK, Parker CM, et al. Adhesion between epithelial cells and T lymphocytes mediated by E-cadherin and the alpha E beta 7 integrin [J]. Nature,1994, 372(6502):190-193
    [23]Stokes CR, Bailey M, Wilson AD. Immunology of the porcine gastrointestinal tract [J]. Vet Immunol Immunopathol,1994,43(1-3):143-150
    [24]Vega-Lopez MA, Telemo E, Bailey M, et al. Immune cell distribution in the small intestine of the pig:immunohistological evidence for an organized compartmentalization in the lamina propria [J]. Vet Immunol Immunopathol,1993,37(1):49-60
    [25]Bailey M, Plunkett FJ, Rothkotter HJ, et al. Regulation of mucosal immune responses in effector sites [J]. Proc Nutr Soc,2001,60(4):427-435
    [26]Bailey M, Hall L, Bland PW, et al. Production of cytokines by lymphocytes from spleen, mesenteric lymph node and intestinal lamina propria of pigs [J]. Immunology,1994,82(4): 577-583
    [27]Harriman GR, Hornqvist E, Lycke NY. Antigen-specific and polyclonal CD4+ lamina propria T-cell lines:phenotypic and functional characterization [J]. Immunology,1992, 75(1):66-73
    [28]Kaser T, Gerner W, Hammer SE, et al. Phenotypic and functional characterisation of porcine CD4(+)CD25(high) regulatory T cells [J]. Vet Immunol Immunopathol,2008,122(1-2): 153-158
    [29]Kelly D, King T, Aminov R. Importance of microbial colonization of the gut in early life to the development of immunity [J]. Mutat Res,2007,622(1-2):58-69
    [30]Barman NN, Bianchi AT, Zwart RJ, et al. Jejunal and ileal Peyer's patches in pigs differ in their postnatal development [J]. Anat Embryol (Berl),1997,195(1):41-50
    [31]Rothkotter HJ, Ulbrich H, Pabst R. The postnatal development of gut lamina propria lymphocytes:number, proliferation, and T and B cell subsets in conventional and germ-free pigs [J]. Pediatr Res,1991,29(3):237-242
    [32]Butler JE, Weber P, Sinkora M, et al. Antibody repertoire development in fetal and neonatal piglets. VIII. Colonization is required for newborn piglets to make serum antibodies to T-dependent and type 2 T-independent antigens [J]. J Immunol,2002,169(12):6822-6830
    [33]Cukrowska B, Kozakova H, Rehakova Z, et al. Specific antibody and immunoglobulin responses after intestinal colonization of germ-free piglets with non-pathogenic Escherichia coli 086 [J]. Immunobiology,2001,204(4):425-433
    [34]Rescigno M, Urbano M, Valzasina B, et al. Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria [J]. Nat Immunol,2001,2(4): 361-367
    [35]Niess JH, Brand S, Gu X, et al. CX3CR1-mediated dendritic cell access to the intestinal lumen and bacterial clearance [J]. Science,2005,307(5707):254-258
    [36]Niess JH, Reinecker HC. Lamina propria dendritic cells in the physiology and pathology of the gastrointestinal tract [J]. Curr Opin Gastroenterol,2005,21(6):687-691
    [37]Mestecky J, Michael L, Strober W, et al. Mucosal Immunology, Two-Volume Set [M], Third Editio.2005.
    [38]Macpherson AJ, Hunziker L, McCoy K, et al. IgA responses in the intestinal mucosa against pathogenic and non-pathogenic microorganisms [J]. Microbes Infect,2001,3(12): 1021-1035
    [39]Salmon H, Berri M, Gerdts V, et al. Humoral and cellular factors of maternal immunity in swine [J]. Dev Comp Immunol,2009,33(3):384-393
    [40]Ishii KJ, Coban C, Akira S. Manifold mechanisms of Toll-like receptor-ligand recognition [J]. J Clin Immunol,2005,25(6):511-521
    [41]郭兴华,益生乳酸细菌:分子生物学及生物技术[M].科学出版社,2008.
    [42]Bouskra D, Brezillon C, Berard M, et al. Lymphoid tissue genesis induced by commensals through NOD1 regulates intestinal homeostasis [J]. Nature,2008,456(7221):507-510
    [43]Blander JM, Medzhitov R. Toll-dependent selection of microbial antigens for presentation by dendritic cells [J]. Nature,2006,440(7085):808-812
    [44]Uenishi H, Shinkai H. Porcine Toll-like receptors:the front line of pathogen monitoring and possible implications for disease resistance [J]. Dev Comp Immunol,2009,33(3):353-361
    [45]Kumar H, Kawai T, Akira S. Toll-like receptors and innate immunity [J]. Biochem Biophys Res Commun,2009,388(4):621-625
    [46]Werling D, Jungi TW. TOLL-like receptors linking innate and adaptive immune response [J]. Vet Immunol Immunopathol,2003,91(1):1-12
    [47]Turin L, Riva F. Toll-like receptor family in domestic animal species [J]. Crit Rev Immunol, 2008,28(6):513-538
    [48]Veldhuizen EJ, Rijnders M, Claassen EA, et al. Porcine beta-defensin 2 displays broad antimicrobial activity against pathogenic intestinal bacteria [J]. Mol Immunol,2008,45(2): 386-394
    [49]Ouellette AJ. Defensin-mediated innate immunity in the small intestine [J]. Best Pract Res Clin Gastroenterol,2004,18(2):405-419
    [50]Ganz T. Defensins:antimicrobial peptides of innate immunity [J]. Nat Rev Immunol,2003, 3(9):710-720
    [51]Mahida YR, Cunliffe RN. Defensins and mucosal protection [J]. Novartis Found Symp, 2004,263:71-77
    [52]Wehkamp J, Stange EF. A new look at Crohn's disease:breakdown of the mucosal antibacterial defense [J]. Ann N Y Acad Sci,2006,1072:321-331
    [53]Veldhuizen EJ, van Dijk A, Tersteeg MH, et al. Expression of beta-defensins pBD-1 and pBD-2 along the small intestinal tract of the pig:lack of upregulation in vivo upon Salmonella typhimurium infection [J]. Mol Immunol,2007,44(4):276-283
    [54]Veldhuizen EJ, Hendriks HG, Hogenkamp A, et al. Differential regulation of porcine beta-defensins 1 and 2 upon Salmonella infection in the intestinal epithelial cell line IPI-2I [J]. Vet Immunol Immunopathol,2006,114(1-2):94-102
    [55]Schlee M, Harder J, Koten B, et al. Probiotic lactobacilli and VSL#3 induce enterocyte beta-defensin 2 [J]. Clin Exp Immunol,2008,151(3):528-535
    [56]Zhu L, Li M, Li X, et al. Distinct expression patterns of genes associated with muscle growth and adipose deposition in tibetan pigs:a possible adaptive mechanism for high altitude conditions [J]. High Alt Med Biol,2009,10(1):45-55
    [57]Chen J, Qi S, Guo R, et al. Different messenger RNA expression for the antimicrobial peptides beta-defensins between Meishan and crossbred pigs [J]. Mol Biol Rep.2010,37(3): 1633-1639
    [58]Nishimoto N. Interleukin-6 as a therapeutic target in candidate inflammatory diseases [J]. Clin Pharmacol Ther.2010,87(4):483-487
    [59]Bauer E, Williams BA, Smidt H, et al. Influence of the gastrointestinal microbiota on development of the immune system in young animals [J]. Curr Issues Intest Microbiol,2006, 7(2):35-51
    [60]Bailey M, Haverson K. The postnatal development of the mucosal immune system and mucosal tolerance in domestic animals [J]. Vet Res,2006,37(3):443-453
    [61]Vega-Lopez MA, Bailey M, Telemo E, et al. Effect of early weaning on the development of immune cells in the pig small intestine [J]. Vet Immunol Immunopathol,1995,44(3-4): 319-327
    [62]Bianchi AT, Scholten JW, Moonen Leusen BH, et al. Development of the natural response of immunoglobulin secreting cells in the pig as a function of organ, age and housing [J]. Dev Comp Immunol,1999,23(6):511-520
    [1]Ley RE, Peterson DA, Gordon JI. Ecological and evolutionary forces shaping microbial diversity in the human intestine [J]. Cell,2006,124(4):837-848.
    [2]Qin J, Li R, Raes J, et al. A human gut microbial gene catalogue established by metagenomic sequencing [J]. Nature,2010,464(7285):59-65.
    [3]Artis, D..Epithelial-cell recognition of commensal bacteria and maintenance of immune homeostasis in the gut[J]. Nat Rev Immunol,2008,8(6):411-420.
    [4]Delcenserie, Martel D, Lamoureux M, et al. Immunomodulatory effects of probiotics in the intestinal tract[J]. Curr Issues Mol Biol,2008,10(1-2):37-54.
    [5]何明清,程安春.动物微生态学[M].四川:四川科学技术出版社,2004.
    [6]郭本恒.益生菌[M].北京:化学工业出版社,2004.
    [7]Tannock, G.W., R. Fuller, et al. Lactobacillus succession in the piglet digestive tract demonstrated by plasmid profiling[J]. Appl Environ Microbiol,1990,56(5):1310-1316.
    [8]Moura P., Simoes F, Girio F, et al. PCR monitoring of Lactobacillus and Bifidobacterium dynamics in fermentations by piglet intestinal microbiota[J]. Basic Microbiol,2007,47(2): 148-57.
    [9]Shornikova AV, Casas IA, Isolauri E, et al. Lactobacillus reuteri as a therapeutic agent in acute diarrhea in young children[J]. Pediatr Gastroenterol Nutr,1997,24(4):399-404.
    [10]徐义刚,崔.,葛俊伟.猪瘟病毒T细胞表位E290多肽与猪细小病毒VP2蛋白在干酪乳杆菌中的共表达及免疫小鼠特异性抗体的测定[J].微生物学报,2007,47(4):667-672.
    [11]Katouli M, Lund A, Wallgren P, et al. Metabolic fingerprinting and fermentative capacity of the intestinal flora of pigs during pre-and post-weaning periods [J]. Appl Microbiol, 1997,83(2):147-54.
    [12]苏勇.16SrRNA基因分子技术研究仔猪胃肠道菌群区系变化[D].博士学位论文,2007.
    [13]Jensen B B. The impact of feed additives on the microbial ecology of the gut in young pigs[J]. Journal of Animal and Feed Sciences,1998,7:45-64.
    [14]Zabielski R., MM Godlewski, P Guilloteau, et al.Control of development of gastrointestinal system in neonates[J]. Physiol Pharmacol,2008,59 (11):35-54.
    [15]Conway P L. Function and regulation of the gastrointestinal microbiota of the pig[J]. Gastrointestinal Microbiology,1994,2:231-240.
    [16]Inoue R, Tsukahara T, Nakanishi N,et al.Development of the intestinal microbiota in the piglet[J]. Gen Appl Microbiol,2005,51 (4):257-265.
    [17]Zoetendal EG, AD Akkermans, W M De Vos.Temperature gradient gel electrophoresis analysis of 16S rRNA from human fecal samples reveals stable and host-specific communities of active bacteria[J]. Appl Environ Microbiol,1998,64(10):3854-3859.
    [18]Vos EGZADLAWMA-vVJAGMdVWMd.The Host Genotype Affects the Bacterial Community in the Human Gastronintestinal Tract[J]. Microbial Ecology in Health and Disease,2001,13(3):129-134.
    [19]Mathew AG, Sutton AL, Scheidt AB, et al. Effect of galactan on selected microbial populations and pH and volatile fatty acids in the ileum of the weanling pig[J]. Anim Sci, 1993,71(6):1503-1509.
    [20]Konstantinov SR, Awati AA, Williams BA, et al.Post-natal development of the porcine microbiota composition and activities[J]. Environ Microbiol,2006,8(7):1191-1199.
    [21]朱伟云,姚文,毛胜勇.变性梯度凝胶电泳法研究断奶仔猪粪样细菌区系变化[J].微生物学报,2003,43(4):504-507.
    [22]朱伟云,毛胜勇,姚.16S rDNA技术研究新生腹泻仔猪粪样细菌区系的多样性变化[J].微生物学报,2006,46(1):150-153.
    [23]Su Y, Yao W, Perez-Gutierrez ON, et al.16S ribosomal RNA-based methods to monitor changes in the hindgut bacterial community of piglets after oral administration of Lactobacillus sobrius S1[J]. Anaerobe,2008,14(2):78-86.
    [24]Fuhrman JA, K McCallum, AA Davis. Novel major archaebacterial group from marine plankton[J]. Nature,1992,356(6365):148-149.
    [25]Bernet MF, Brassart D, Neeser JR,et al. Lactobacillus acidophilus LA 1 binds to cultured human intestinal cell lines and inhibits cell attachment and cell invasion by enterovirulent bacteria[J]. Gut,1994,35(4):483-489.
    [26]Hooper LV, Xu J, Falk PG, et al. A molecular sensor that allows a gut commensal to control its nutrient foundation in a competitive ecosystem[J]. Proc Natl Acad Sci U S A,1999,96(17): 9833-9838.
    [27]Chauviere G, Coconnier MH, Kerneis S, et al.Adhesion of human Lactobacillus acidophilus strain LB to human enterocyte-like Caco-2 cells[J]. Gen Microbiol,1992,138 (8): 1689-1696.
    [28]Brook I. Bacterial interference [J]. Crit Rev Microbiol,1999,25(3):155-1572.
    [29]Lievin V, Peiffer I, Hudault S, et al. Bifidobacterium strains from resident infant human gastrointestinal microflora exert antimicrobial activity[J]. Gut,2000,47(5):646-652.
    [30]Mazmanian SK, Liu CH, Tzianabos AO, et al. An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system[J]. Cell,2005,122(1):107-118.
    [31]Pitcher MC, ER Beatty, JH Cummings. The contribution of sulphate reducing bacteria and 5-aminosalicylic acid to faecal sulphide in patients with ulcerative colitis[J]. Gut,2000,46(1): 64-72.
    [32]Butler JE, Sun J, Weber P, et al.Antibody repertoire development in fetal and newborn piglets, III. Colonization of the gastrointestinal tract selectively diversifies the preimmune repertoire in mucosal lymphoid tissues[J]. Immunology,2000,100(1):119-130.
    [33]Umesaki Y, Setoyama H, Matsumoto S,et al. Expansion of alpha beta T-cell receptor-bearing intestinal intraepithelial lymphocytes after microbial colonization in germ-free mice and its independence from thymus[J]. Immunology,1993,79(1):32-37.
    [34]Pryde SE, Duncan SH, Hold GL, et al. The microbiology of butyrate formation in the human colon[J]. FEMS Microbiol Lett,2002,217(2):133-139.
    [35]Siavoshian S, Segain JP, Kornprobst M,et al. Butyrate and trichostatin A effects on the proliferation/differentiation of human intestinal epithelial cells:induction of cyclin D3 and p21 expression[J]. Gut,2000,46(4):507-514.
    [36]Alam M, T Midtvedt, A Uribe. Differential cell kinetics in the ileum and colon of germfree rats[J]. Scand J Gastroenterol,1994,29(5):445-451.
    [37]Hooper LV, Xu J, Falk PG, et al.Molecular analysis of commensal host-microbial relationships in the intestine [J]. Science,2001,291(5505):881-884.
    [38]Umesaki Y, Setoyama H, Matsumoto S,et al. Segmented filamentous bacteria are indigenous intestinal bacteria that activate intraepithelial lymphocytes and induce MHC class Ⅱ molecules and fucosyl asialo GM1 glycolipids on the small intestinal epithelial cells in the ex-germ-free mouse[J]. Microbiol Immunol,1995,39(8):555-562.
    [39]Stappenbeck TS, LV Hooper, JI Gordon. Developmental regulation of intestinal angiogenesis by indigenous microbes via Paneth cells[J]. Proc Natl Acad Sci U S A, 2002,99(24):15451-15455.
    [40]Kirjavainen PV, Apostolou E, Salminen SJ, et al. New aspects of probiotics--a novel approach in the management of food allergy[J]. Allergy,1999,54(9):909-915.
    [41]Miettinen MJ, Vuopio-Varkila, K Varkila. Production of human tumor necrosis factor alpha, interleukin-6, and interleukin-10 is induced by lactic acid bacteria[J]. Infect Immun,1996, 64(12):5403-5405.
    [42]de Waard R, Garssen J, Snel J, et al. Enhanced antigen-specific delayed-type hypersensitivity and immunoglobulin G2b responses after oral administration of viable Lactobacillus casei YIT9029 in Wistar and Brown Norway rats [J]. Clin Diagn Lab Immunol,2001,8(4):762-767.
    [43]Freudenberg MA, Salomao R, Sing A,et al. Reconciling the concepts of endotoxin sensitization and tolerance[J]. Prog Clin Biol Res,1998,397:261-268.
    [44]Henderson B WM, McNab R, Lax AJ. Cellular microbiology[J]. Chichester:Wiley,1999.
    [45]Dziarski R. Recognition of bacterial peptidoglycan by the innate immune system[J]. Cell Mol Life Sci,2003,60(9):1793-1804.
    [46]Lebeer S, J Vanderleyden, SC De Keersmaecker. Host interactions of probiotic bacterial surface molecules:comparison with commensals and pathogens [J]. Nat Rev Microbiol, 2010,8(3):171-184.
    [47]Pool-Zobel BL, Neudecker C, Domizlaff I,et al. Lactobacillus-and bifidobacterium-mediated antigenotoxicity in the colon of rats[J]. Nutr Cancer,1996,26(3):365-380.
    [48]Singh J, Rivenson A, Tomita M, et al. Bifidobacterium longum, a lactic acid-producing intestinal bacterium inhibits colon cancer and modulates the intermediate biomarkers of colon carcinogenesis[J]. Carcinogenesis,1997,18(4):833-841.
    [49]Parracho HM, Bingham MO, Gibson GR, et al. Differences between the gut microflora of children with autistic spectrum disorders and that of healthy children[J]. J Med Microbiol, 2005,54(10):987-991.
    [50]Kuhn R, Lohler J, Rennick D, et al. Interleukin-10-deficient mice develop chronic enterocolitis[J]. Cell,1993,75(2):263-274.
    [51]Backhed F, Manchester JK, Semenkovich CF,et al. The gut microbiota as an environmental factor that regulates fat storage[J]. Proc Natl Acad Sci U S A,2004,101(44):15718-15723.
    [52]Yadav H, S Jain, PR Sinha. Antidiabetic effect of probiotic dahi containing Lactobacillus acidophilus and Lactobacillus casei in high fructose fed rats[J]. Nutrition,2007,23(1):62-68.
    [53]You T, Yang R, Lyles MF, et al. Abdominal adipose tissue cytokine gene expression: relationship to obesity and metabolic risk factors[J]. Am J Physiol Endocrinol Metab,2005, 288(4):741-747.
    [1]Borchers AT, Selmi C, Meyers FJ, et al. Probiotics and immunity [J]. J Gastroenterol,2009,44(1): 26-46
    [2]West NP, Pyne DB, Peake JM, et al. Probiotics, immunity and exercise:a review [J]. Exerc Immunol Rev,2009,15:107-126
    [3]Williams NT. Probiotics[J]. Am J Health Syst Pharm.2010,67(6):449-458
    [4]Wang A, Yu H, Gao X, et al. Influence of Lactobacillus fermentum 15007 on the intestinal and systemic immune responses of healthy and E. coli challenged piglets [J]. Antonie Van Leeuwenhoek,2009,96(1):89-98
    [5]De Angelis M, Siragusa S, Caputo L, et al. Survival and persistence of Lactobacillus plantarum 4.1 and Lactobacillus reuteri 3S7 in the gastrointestinal tract of pigs[J]. Vet Microbiol,2007, 123(1-3):133-144
    [6]Zhang L, Xu YQ, Liu HY, et al. Evaluation of Lactobacillus rhamnosus GG using an Escherichia coli K88 model of piglet diarrhoea:Effects on diarrhoea incidence, faecal microflora and immune responses [J]. Vet Microbiol,2009,141(1-2):142-148
    [7]Delcenserie V, Martel D, Lamoureux M, et al. Immunomodulatory effects of probiotics in the intestinal tract [J]. Curr Issues Mol Biol,2008,10(1-2):37-54
    [8]Collado MC, Isolauri E, Salminen S, et al. The impact of probiotic on gut health [J]. Curr Drug Metab,2009,10(1):68-78
    [9]Byun R, Nadkarni MA, Chhour KL, et al. Quantitative analysis of diverse Lactobacillus species present in advanced dental caries [J]. J Clin Microbiol,2004,42(7):3128-3136
    [10]Hynonen U, Westerlund-Wikstrom B, Palva A, et al. Identification by flagellum display of an epithelial cell-and fibronectin-binding function in the S1pA surface protein of Lactobacillus brevis [J]. J Bacteriol,2002,184(12):3360-3367
    [11]Zhang M, Liu B, Zhang Y, et al. Structural shifts of mucosa-associated lactobacilli and Clostridium leptum subgroup in patients with ulcerative colitis [J]. J Clin Microbiol,2007,45(2): 496-500
    [12]Su Y, Yao W, Perez-Gutierrez ON, et al.16S ribosomal RNA-based methods to monitor changes in the hindgut bacterial community of piglets after oral administration of Lactobacillus sobrius S1 [J]. Anaerobe,2008,14(2):78-86
    [13]Muyzer G, de Waal EC, Uitterlinden AG Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA [J]. Appl Environ Microbiol,1993,59(3):695-700
    [14]Harrow SA, Ravindran V, Butler RC, et al. Real-time quantitative PCR measurement of ileal Lactobacillus salivarius populations from broiler chickens to determine the influence of farming practices [J]. Appl Environ Microbiol,2007,73(22):7123-7127
    [15]Jaspers E, Overmann J. Ecological significance of microdiversity:identical 16S rRNA gene sequences can be found in bacteria with highly divergent genomes and ecophysiologies [J]. Appl Environ Microbiol,2004,70(8):4831-4839
    [16]Nubel U, Engelen B, Felske A, et al. Sequence heterogeneities of genes encoding 16S rRNAs in Paenibacillus polymyxa detected by temperature gradient gel electrophoresis [J]. J Bacteriol,1996, 178(19):5636-5643
    [17]Cocolin L, Manzano M, Cantoni C, et al. Denaturing gradient gel electrophoresis analysis of the 16S rRNA gene V1 region to monitor dynamic changes in the bacterial population during fermentation of Italian sausages [J]. Appl Environ Microbiol,2001,67(11):5113-5121
    [18]刘墨,王长文,周海柱,等.乳酸杆菌的研究进展[J].吉林医药学院学报,2010,31(4):236-238
    [19]Neish AS. Microbes in gastrointestinal health and disease [J]. Gastroenterology,2009,136(1): 65-80
    [20]孙进,乐国伟,施用晖,等.植物乳杆菌粘附大鼠肠液及机制的研究[J].微生物学杂志,2006,26(2):19-21
    [21]朱珊珊,崔雯,任晓明.乳酸杆菌粘附作用的研究进展[J].中国畜牧兽医,2009,36(7):219-220
    [22]Chauviere G, Coconnier MH, Kerneis S, et al. Adhesion of human Lactobacillus acidophilus strain LB to human enterocyte-like Caco-2 cells [J]. J Gen Microbiol,1992,138 (8):1689-1696
    [23]周敏,朱京慈,尹华华.乳酸杆菌临床应用的研究进展[J].中国微生态学杂志,2009,21(12):1132-1135
    [24]马青山,余占桥,张日俊.乳酸杆菌制剂及其在维护断奶仔猪肠道健康中的应用[J].饲料工 业,2010,31(15):9-12
    [25]Macpherson AJ. IgA adaptation to the presence of commensal bacteria in the intestine [J]. Curr Top Microbiol Immunol,2006,308:117-136
    [26]Langlands SJ, Hopkins MJ, Coleman N, et al. Prebiotic carbohydrates modify the mucosa associated microflora of the human large bowel [J]. Gut,2004,53(11):1610-1616
    [27]Pryde SE, Richardson AJ, Stewart CS, et al. Molecular analysis of the microbial diversity present in the colonic wall, colonic lumen, and cecal lumen of a pig [J]. Appl Environ Microbiol,1999, 65(12):5372-5377
    [28]Zoetendal EG, von Wright A, Vilpponen-Salmela T, et al. Mucosa-associated bacteria in the human gastrointestinal tract are uniformly distributed along the colon and differ from the community recovered from feces [J]. Appl Environ Microbiol,2002,68(7):3401-3407
    [29]沈霞芬,家畜组织学与胚胎学[M].北京:中国农业出版社,2007.
    [30]Johnson-Henry KC, Hagen KE, Gordonpour M, et al. Surface-layer protein extracts from Lactobacillus helveticus inhibit enterohaemorrhagic Escherichia coli O157:H7 adhesion to epithelial cells [J]. Cell Microbiol,2007,9(2):356-367
    [31]Boyanova L, Stephanova-Kondratenko M, Mitov 1. Anti-Helicobacter pylori activity of Lactobacillus delbrueckii subsp. bulgaricus strains:preliminary report [J]. Lett Appl Microbiol, 2009,48(5):579-584
    [32]Ryan KA, O'Hara AM, van Pijkeren JP, et al. Lactobacillus salivarius modulates cytokine induction and virulence factor gene expression in Helicobacter pylori [J]. J Med Microbiol,2009, 58(8):996-1005
    [33]Dalloul RA, Lillehoj HS, Shellem TA, et al. Enhanced mucosal immunity against Eimeria acervulina in broilers fed a Lactobacillus-based probiotic [J]. Poult Sci,2003,82(1):62-66
    [34]黄沧海,谯仕彦,李德发,等.益生乳酸杆菌抑制大肠杆菌的研究[J].中国畜牧杂志,2003,39(6):67-74
    [35]Midolo PD, Lambert JR, Hull R, et al. In vitro inhibition of Helicobacter pylori NCTC 11637 by organic acids and lactic acid bacteria [J]. J Appl Bacteriol,1995,79(4):475-479
    [36]Mathur S, Singh R. Antibiotic resistance in food lactic acid bacteria--a review [J]. Int J Food Microbiol,2005,105(3):281-295
    [37]Milazzo I, Speciale A, Musumeci R, et al. Identification and antibiotic susceptibility of bacterial isolates from probiotic products available in Italy [J]. New Microbiol,2006,29(4):281-291
    [38]Zhou JS, Pillidge CJ, Gopal PK, et al. Antibiotic susceptibility profiles of new probiotic Lactobacillus and Bifidobacterium strains [J]. Int J Food Microbiol,2005,98(2):211-217
    [39]Temmerman R, Pot B, Huys G, et al. Identification and antibiotic susceptibility of bacterial isolates from probiotic products [J]. Int J Food Microbiol,2003,81(1):1-10
    [40]Korhonen JM, Sclivagnotis Y, von Wright A. Characterization of dominant cultivable lactobacilli and their antibiotic resistance profiles from faecal samples of weaning piglets [J]. J Appl Microbiol,2007,103(6):2496-2503
    [41]Walsh MC, Gardiner GE, Hart OM, et al. Predominance of a bacteriocin-producing Lactobacillus salivarius component of a five-strain probiotic in the porcine ileum and effects on host immune phenotype [J]. FEMS Microbiol Ecol,2008,64(2):317-327
    [42]Peran L, Camuesco D, Comalada M, et al. Preventative effects of a probiotic, Lactobacillus salivarius ssp. salivarius, in the TNBS model of rat colitis [J]. World J Gastroenterol,2005,11(33): 5185-5192
    [43]Neville BA, O'Toole PW. Probiotic properties of Lactobacillus salivarius and closely related Lactobacillus species [J]. Future Microbiol,2010,5(5):759-774
    [1]Pagnini C, Saeed R, Bamias G, et al. Probiotics promote gut health through stimulation of epithelial innate immunity [J]. Proc Natl Acad Sci U S A,107(1):454-459
    [2]Bernardeau M, Vernoux JP, Henri-Dubernet S, et al. Safety assessment of dairy microorganisms:the Lactobacillus genus [J]. Int J Food Microbiol,2008,126(3):278-285
    [3]Su Y, Yao W, Perez-Gutierrez ON, et al.16S ribosomal RNA-based methods to monitor changes in the hindgut bacterial community of piglets after oral administration of Lactobacillus sobrius S1[J]. Anaerobe,2008,14(2):78-86
    [4]Wang A, Yu H, Gao X, et al. Influence of Lactobacillus fermentum I5007 on the intestinal and systemic immune responses of healthy and E. coli challenged piglets [J]. Antonie Van Leeuwenhoek,2009,96(1):89-98
    [5]Casey PG, Gardiner GE, Casey G, et al. A five-strain probiotic combination reduces pathogen shedding and alleviates disease signs in pigs challenged with Salmonella enterica Serovar Typhimurium [J]. Appl Environ Microbiol,2007,73(6):1858-1863
    [6]de LeBlanc Ade M, Castillo NA, Perdigon G. Anti-infective mechanisms induced by a probiotic Lactobacillus strain against Salmonella enterica serovar Typhimurium infection [J]. Int J Food Microbiol.2010,138(3):223-231
    [7]Yamada Y, Uemura H, Nakaya H, et al. Production of hydroxy fatty acid (10-hydroxy-12(Z)-octadecenoic acid) by Lactobacillus plantarum from linoleic acid and its cardiac effects to guinea pig papillary muscles [J]. Biochem Biophys Res Commun,1996, 226(2):391-395
    [8]Plumed-Ferrer C, Kivela I, Hyvonen P, et al. Survival, growth and persistence under farm conditions of a Lactobacillus plantarum strain inoculated into liquid pig feed [J]. J Appl Microbiol,2005,99(4):851-858
    [9]von Aulock MH, Holzapfel WH. Frequency and occurrence of Lactobacillus acidophilus in the gut of the pig, as indicated by its presence in the faeces [J]. Onderstepoort J Vet Res,1987, 54(4):581-583
    [10]Shida K, Takahashi R, Iwadate E, et al. Lactobacillus casei strain Shirota suppresses serum immunoglobulin E and immunoglobulin G1 responses and systemic anaphylaxis in a food allergy model [J]. Clin Exp Allergy,2002,32(4):563-570
    [11]Seo BJ, Mun MR, J RK, et al. Bile tolerant Lactobacillus reuteri isolated from pig feces inhibits enteric bacterial pathogens and porcine rotavirus [J].Vet Res Commun,2010,34(4): 323-333
    [12]Lee DY, Seo YS, Rayamajhi N, et al. Isolation, characterization, and evaluation of wild isolates of Lactobacillus reuteri from pig feces [J]. J Microbiol,2009,47(6):663-672
    [13]Maldonado J, Lara-Villoslada F, Sierra S, et al. Safety and tolerance of the human milk probiotic strain Lactobacillus salivarius CECT5713 in 6-month-old children [J]. Nutrition, 2009,278-288
    [14]Ryan KA, O'Hara AM, van Pijkeren JP, et al. Lactobacillus salivarius modulates cytokine induction and virulence factor gene expression in Helicobacter pylori [J]. J Med Microbiol, 2009,58(Pt 8):996-1005
    [15]M Mackie RI, Sghir A, Gaskins HR. Developmental microbial ecology of the neonatal gastrointestinal tract [J]. Am J Clin Nutr,1999,69(5):1035S-1045S
    [16]Berg RD. The indigenous gastrointestinal microflora [J].Trends Microbiol,1996,4(11): 430-435
    [17]Simpson JM, McCracken VJ, White BA, et al. Application of denaturant gradient gel electrophoresis for the analysis of the porcine gastrointestinal microbiota [J]. J Microbiol Methods,1999,36(3):167-179
    [18]张柏林,秦贵信,孙泽威,等.仔猪胃肠道微生物菌群定植规律及其功能的研究进展[J].中国畜牧杂志,2009,45(19):66-68
    [19]Inman CF, Haverson K, Konstantinov SR, et al. Rearing environment affects development of the immune system in neonates [J]. Clin Exp Immunol,2010,160(3):431-439
    [20]刘胜兵,杨倩,姜平.猪繁殖与呼吸综合征弱毒苗阴道免疫对母猪子宫IgA和IgG分泌细胞的影响[J].南京农业大学学报,2005,28:90-93
    [21]杨倩,毛卫华.鸡和猪分泌型免疫球蛋白A结构蛋白的比较[J].畜牧与兽医,2003,35:5-7
    [22]Saarela M, Mogensen G, Fonden R, et al. Probiotic bacteria:safety, functional and technological properties [J]. J Biotechnol,2000,84(3):197-215
    [23]张天鸿.益生菌产品活菌数与保健效果关系之研究[J].现代食品科技,2005,21(4):7-13
    [24]Ruemmele FM, Bier D, Marteau P, et al. Clinical evidence for immunomodulatory effects of probiotic bacteria [J]. J Pediatr Gastroenterol Nutr,2009,48(2):126-141
    [25]Islam MA, Yun CH, Choi YJ, et al. Microencapsulation of live probiotic bacteria [J]. J Microbiol Biotechnol,2010,20(10):1367-1377
    [26]Kalavathy R, Abdullah N, Jalaludin S, et al. Effects of Lactobacillus cultures on growth performance, abdominal fat deposition, serum lipids and weight of organs of broiler chickens [J]. Br Poult Sci,2003,44(1):139-144
    [27]孙建广,张石磊,谯仕彦,等.发酵乳酸杆菌对生长肥育猪生长性能和肉品质的影响[J].动物营养学报,2010,22(01):132-138
    [28]Pieper R, Janczyk P, Urubschurov V, et al. Effect of a single oral administration of Lactobacillus plantarum DSMZ 8862/8866 before and at the time point of weaning on intestinal microbial communities in piglets [J]. Int J Food Microbiol,2009,130(3):227-232
    [29]Konstantinov SR, Smidt H, Akkermans AD, et al. Feeding of Lactobacillus sobrius reduces Escherichia coli F4 levels in the gut and promotes growth of infected piglets [J]. FEMS Microbiol Ecol,2008,66(3):599-607
    [30]Conroy ME, Shi HN, Walker WA. The long-term health effects of neonatal microbial flora [J]. Curr Opin Allergy Clin Immunol,2009,9(3):197-201
    [31]Hayday A TE, Ramsburg E. Intraepithelial lymphocytes:exploring the Third Way in immunology [J]. Nat Immunol,2001,11(2):997-1003
    [32]Jiri Mestecky, J.B., Michael E. Lamm, Mucosal immunology(third Edition)[M].2006.
    [33]GK S. Intraepithelial lymphocytes and the immune system [J]. Adv Immunol,1995 (58): 297-343
    [34]Hayday A, Theodoridis E, Ramsburg E, et al. Intraepithelial lymphocytes:exploring the Third Way in immunology [J]. Nat Immunol,2001,2(11):997-1003
    [35]Scharek L, Altherr BJ, Tolke C, et al. Influence of the probiotic Bacillus cereus var. toyoi on the intestinal immunity of piglets [J]. Vet Immunol Immunopathol,2007,120(3-4):136-147
    [36]Tsuji M, Suzuki K, Kinoshita K, et al. Dynamic interactions between bacteria and immune cells leading to intestinal IgA synthesis [J]. Semin Immunol,2008,20(1):59-66
    [37]Brandtzaeg P. Molecular and cellular aspects of the secretory immunoglobulin system [J]. APMIS,1995,103(1):1-19
    [38]Macpherson AJ, Uhr T. Induction of protective IgA by intestinal dendritic cells carrying commensal bacteria [J]. Science,2004,303(5664):1662-1665
    [1]Wang A, Yu H, Gao X, et al. Influence of Lactobacillus fermentum 15007 on the intestinal and systemic immune responses of healthy and E. coli challenged piglets [J]. Antonie Van Leeuwenhoek,2009,96(1):89-98
    [2]Zhang L, Xu YQ, Liu HY, et al. Evaluation of Lactobacillus rhamnosus GG using an Escherichia coli K88 model of piglet diarrhoea:Effects on diarrhoea incidence, faecal microflora and immune responses [J]. Vet Microbiol,2009,141(1-2):142-148
    [3]Borchers AT, Selmi C, Meyers FJ, et al. Probiotics and immunity [J]. J Gastroenterol,2009, 44(1):26-46
    [4]Mackie RI, Sghir A, Gaskins HR. Developmental microbial ecology of the neonatal gastrointestinal tract [J]. Am J Clin Nutr,1999,69(5):1035S-1045S
    [5]Berg RD. The indigenous gastrointestinal microflora [J]. Trends Microbiol,1996,4(11): 430-435
    [6]Simpson JM, McCracken VJ, White BA, et al. Application of denaturant gradient gel electrophoresis for the analysis of the porcine gastrointestinal microbiota [J]. J Microbiol Methods,1999,36(3):167-179
    [7]张柏林,秦贵信,孙泽威,等.仔猪胃肠道微生物菌群定植规律及其功能的研究进展[J].中国畜牧杂志,2009,45(19):66-68
    [8]Ohashi Y, Ushida K. Health-beneficial effects of probiotics:Its mode of action [J]. Anim Sci J, 2009,80(4):361-371
    [9]Inman CF, Haverson K, Konstantinov SR, et al. Rearing environment affects development of the immune system in neonates [J]. Clin Exp Immunol,2010,160(3):431-439
    [10]Zhang M, Liu B, Zhang Y, et al. Structural shifts of mucosa-associated lactobacilli and Clostridium leptum subgroup in patients with ulcerative colitis [J]. J Clin Microbiol,2007, 45(2):496-500
    [11]Su Y, Yao W, Perez-Gutierrez ON, et al.16S ribosomal RNA-based methods to monitor changes in the hindgut bacterial community of piglets after oral administration of Lactobacillus sobrius S1 [J]. Anaerobe,2008,14(2):78-86
    [12]Nubel U, Engelen B, Felske A, et al. Sequence heterogeneities of genes encoding 16S rRNAs in Paenibacillus polymyxa detected by temperature gradient gel electrophoresis [J]. J Bacteriol,1996,178(19):5636-5643
    [13]Harrow SA, Ravindran V, Butler RC, et al. Real-time quantitative PCR measurement of ileal Lactobacillus salivarius populations from broiler chickens to determine the influence of farming practices [J]. Appl Environ Microbiol,2007,73(22):7123-7127
    [14]West NP, Pyne DB, Peake JM, et al. Probiotics, immunity and exercise:a review [J]. Exerc Immunol Rev,2009,15:107-126
    [15]Collado MC, Isolauri E, Salminen S, et al. The impact of probiotic on gut health [J]. Curr Drug Metab,2009,10(1):68-78
    [16]Butler JE, Lager KM, Splichal I, et al. The piglet as a model for B cell and immune system development [J]. Vet Immunol Immunopathol,2009,128(1-3):147-170
    [17]Butler JE, Weber P, Sinkora M, et al. Antibody repertoire development in fetal and neonatal piglets. VIII. Colonization is required for newborn piglets to make serum antibodies to T-dependent and type 2 T-independent antigens [J]. J Immunol,2002,169(12):6822-6830
    [18]Ogawa M, Shimizu K, Nomoto K, et al. Inhibition of in vitro growth of Shiga toxin-producing Escherichia coli O157:H7 by probiotic Lactobacillus strains due to production of lactic acid [J]. Int J Food Microbiol,2001,68(1-2):135-140
    [19]Resta-Lenert S, Barrett KE. Live probiotics protect intestinal epithelial cells from the effects of infection with enteroinvasive Escherichia coli (EIEC) [J]. Gut,2003.52(7):988-997
    [20]Katouli M, Lund A, Wallgren P, et al. Metabolic fingerprinting and fermentative capacity of the intestinal flora of pigs during pre-and post-weaning periods [J]. J Appl Microbiol,1997, 83(2):147-154
    [21]何明清.动物微生态学[M].成都:四川科学技术出版社,2004.
    [22]Mestecky J, Michael L, Strober W,et al. Mucosal Immunology [M], Two-Volume Set, Third Editio.2005.
    [23]Takahashi S, Egawa Y, Simojo N, et al. Oral administration of Lactobacillus plantarum strain Lq80 to weaning piglets stimulates the growth of indigenous lactobacilli to modify the lactobacillal population [J]. J Gen Appl Microbiol,2007,53(6):325-332
    [24]Ross GRG, C.Oliszewski, R.de Holgado, et al. Effects of probiotic administration in swine [J]. J Biosci Bioeng,109(6):545-549
    [25]倪学勤,曹希亮,曾东,等.猪源约氏乳酸杆菌JJB3和枯草芽孢杆菌JS01对仔猪肠道分泌型免疫球蛋白A和菌群的影响[J].动物营养学报,2008,20(3):275-280
    [26]赵桂英,马黎,周斌,等.双歧杆菌对仔猪生长性能的影响[J].饲料工业,2007,28(1):39-41
    [27]孟祥晨,霍贵成.双歧杆菌对仔猪小肠黏液糖蛋白的粘附研究[J].中国乳品工业,2004,32(9):11-15
    [28]赵桂英,曾昭文,常华,等.不同剂量的双歧杆菌对断奶仔猪IgG、IgA、IgM水平的影响[M].黑龙江畜牧兽医,2007,(5):42-43.
    [1]Artis D. Epithelial-cell recognition of commensal bacteria and maintenance of immune homeostasis in the gut [J]. Nat Rev Immunol,2008,8(6):411-420
    [2]Ohland CL, Macnaughton WK. Probiotic bacteria and intestinal epithelial barrier function[J]. Am J Physiol Gastrointest Liver Physiol,2010, Mar 18
    [3]Casey PG, Gardiner GE, Casey G, et al. A five-strain probiotic combination reduces pathogen shedding and alleviates disease signs in pigs challenged with Salmonella enterica Serovar Typhimurium[J]. Appl Environ Microbiol,2007,73(6):1858-1863
    [4]Walsh MC, Gardiner GE, Hart OM, et al. Predominance of a bacteriocin-producing Lactobacillus salivarius component of a five-strain probiotic in the porcine ileum and effects on host immune phenotype[J]. FEMS Microbiol Ecol,2008,64(2):317-327
    [5]Wang A, Yu H, Gao X, et al. Influence of Lactobacillus fermentum 15007 on the intestinal and systemic immune responses of healthy and E. coli challenged piglets[J]. Antonie Van Leeuwenhoek,2009,96(1):89-98
    [6]Butler JE, Weber P, Sinkora M, et al. Antibody repertoire development in fetal and neonatal piglets. VIII. Colonization is required for newborn piglets to make serum antibodies to T-dependent and type 2 T-independent antigens[J]. Immunol,2002,169(12):6822-6830
    [7]Pagnini C, Saeed R, Bamias G, et al. Probiotics promote gut health through stimulation of epithelial innate immunity[J]. Proc Natl Acad Sci U S A,2010,107(1):454-459
    [8]Butler JE, Lager KM, Splichal I, et al. The piglet as a model for B cell and immune system development[J]. Vet Immunol Immunopathol,2009,128(1-3):147-150
    [9]McGee DW, Beagley KW, Aicher WK, et al. Transforming growth factor-beta enhances interleukin-6 secretion by intestinal epithelial cells[J]. Immunology,1992,77(1):7-12
    [10]Schuerer-Maly CC, Eckmann L, Kagnoff MF, et al. Colonic epithelial cell lines as a source of interleukin-8:stimulation by inflammatory cytokines and bacterial lipopolysaccharide[J]. Immunology,1994,81(1):85-91
    [11]Amit-Romach E, Uni Z, Reifen R. Multistep mechanism of probiotic bacterium, the effect on innate immune system[J]. Mol Nutr Food Res,2010,54(2):277-284
    [12]Miettinen M, Vuopio-Varkila J, Varkila K. Production of human tumor necrosis factor alpha, interleukin-6, and interleukin-10 is induced by lactic acid bacteria[J]. Infect Immun,1996, 64(12):5403-5405
    [13]Dogi CA, Galdeano CM, Perdigon G. Gut immune stimulation by non pathogenic Gram(+) and Gram(-) bacteria[J]. Comparison with a probiotic strain. Cytokine,2008,41(3):223-231
    [14]Sang Y, Blecha F. Porcine host defense peptides:expanding repertoire and functions[J]. Dev Comp Immunol,2009,33(3):334-343
    [15]Mestecky J, Michael L, Strober W, et al. Mucosal Immunology [M],2005.
    16. Delcenserie V, Martel D, Lamoureux M, et al. Immunomodulatory effects of probiotics in the intestinal tract[J]. Curr Issues Mol Biol,2008,10(1-2):37-54
    [17]Linde A, Ross CR, Davis EG, et al. Innate immunity and host defense peptides in veterinary medicine[J]. Vet Intern Med,2008,22(2):247-265
    [18]Su Y, Yao W, Perez-Gutierrez ON, et al.16S ribosomal RNA-based methods to monitor changes in the hindgut bacterial community of piglets after oral administration of Lactobacillus sobrius S1[J]. Anaerobe,2008,14(2):78-86
    [19]Pieper R, Janczyk P, Urubschurov V, et al., Effect of a single oral administration of Lactobacillus plantarum DSMZ 8862/8866 before and at the time point of weaning on intestinal microbial communities in piglets[J]. Int J Food Microbiol,2009,130(3):227-322
    [20]de LeBlanc Ade M, Castillo NA, Perdigon G. Anti-infective mechanisms induced by a probiotic Lactobacillus strain against Salmonella enterica serovar Typhimurium infection[J]. Int J Food Microbiol,2010,138(3):223-231
    [21]West, N.P., et al. Probiotics, immunity and exercise:a review[J]. Exerc Immunol Rev,2009, 15:107-126
    [22]Collado MC, Isolauri E, Salminen S, et al. The impact of probiotic on gut health[J]. Curr Drug Metab,2009,10(1):68-78
    [23]龚非力.医学免疫学(第二版)[M].北京:科学出版社,2003
    [24]Sang Y, Patil AA, Zhang G, et al. Bioinformatic and expression analysis of novel porcine beta-defensins[M]. Mamm Genome,2006,17(4):332-339
    [25]Chen J, Qi S, Guo R, et al. Different messenger RNA expression for the antimicrobial peptides beta-defensins between Meishan and crossbred pigs[J]. Mol Biol Rep,2010,37(3): 1633-1639.
    [26]Sharina Qi JC, Rongfu Guo,Bing Yu, et al. β-defensins gene expression in tissues of the crossbred and Tibetan pigs[J]. Livestock Science,2009.123:161-168
    [27]Veldhuizen EJ, Hendriks HG, Hogenkamp A, et al., Differential regulation of porcine beta-defensins 1 and 2 upon Salmonella infection in the intestinal epithelial cell line IPI-2I[J]. Vet Immunol Immunopathol,2006,114(1-2):94-102
    [28]Veldhuizen EJ, Rijnders M, Claassen EA, et al. Porcine beta-defensin 2 displays broad antimicrobial activity against pathogenic intestinal bacteria[J]. Mol Immunol,2008,45(2): 386-394
    [29]Dharmani P, Chadee K. Biologic therapies against inflammatory bowel disease:a dysregulated immune system and the cross talk with gastrointestinal mucosa hold the key[J]. Curr Mol Pharmacol,2008,1(3):195-212
    [30]Nishimoto N. Interleukin-6 as a therapeutic target in candidate inflammatory diseases[J]. Clin Pharmacol Ther,2010,87(4):483-487
    [31]Nicaise P, Gleizes A, Forestier F, et al. Influence of intestinal bacterial flora on cytokine (IL-1, IL-6 and TNF-alpha) production by mouse peritoneal macrophages[J]. Eur Cytokine Netw, 1993,4(2):133-138
    [32]Weber AW, P.Kracht, M. Interleukin-1 (IL-1) pathway[J]. Sci Signal,2010,3(105):18-20
    [33]Keita AV, Soderholm JD. The intestinal barrier and its regulation by neuroimmune factors[J]. Neurogastroenterol Motil,2010,22(7):718-733
    [34]Yin L, Chino T, Horst OV, et al. Differential and coordinated expression of defensins and cytokines by gingival epithelial cells and dendritic cells in response to oral bacteria[J]. BMC Immunol,2010,11:37
    [1]龚非力.医学免疫学(第二版)[M].北京:科学出版社,2004
    [2]Kumar H, Kawai T, Akira S. Toll-like receptors and innate immunity[J]. Biochem Biophys Res Commun,2009,388(4):621-625
    [3]Kaisho T, Akira S.Toll-like receptor function and signaling[J]. Allergy Clin Immunol,2006, 117(5):979-987
    [4]Akira S, Takeda K.Toll-like receptor signalling[J]. Nat Rev Immunol,2004,4(7):499-511
    [5]Modlin RL.Mammalian toll-like receptors[J]. Ann Allergy Asthma Immunol,2002,88(6): 543-547
    [6]Matsuguchi T, Takagi A, Matsuzaki T, et al. Lipoteichoic acids from Lactobacillus strains elicit strong tumor necrosis factor alpha-inducing activities in macrophages through Toll-like receptor 2[J]. Clin Diagn Lab Immunol,2003,10(2):259-266
    [7]Zeng RZ, Kim HG, Kim NR, et al. Protein expression changes in human monocytic THP-1 cells treated with lipoteichoic acid from Lactobacillus plantarum and Staphylococcus aureus[J]. Mol Cells,2010,29(6):135-150
    [8]Deng JC, Moore TA, Newstead MW, et al. CpG oligodeoxynucleotides stimulate protective innate immunity against pulmonary Klebsiella infection[J]. Immunol,2004,173(8): 5148-5155
    [9]Rees DG, Gates AJ, Green M, et al. CpG-DNA protects against a lethal orthopoxvirus infection in a murine model[J]. Antiviral Res,2005,65(2):87-95
    [10]Kitazawa H, Harata T, Uemura J, et al. Phosphate group requirement for mitogenic activation of lymphocytes by an extracellular phosphopolysaccharide from Lactobacillus delbrueckii ssp. Bulgaricus[J]. Int J Food Microbiol,1998.40(3):169-175
    [11]Iliev ID, Kitazawa H, Shimosato T, et al. Strong immunostimulation in murine immune cells by Lactobacillus rhamnosus GG DNA containing novel oligodeoxynucleotide pattern[J]. Cell Microbiol,2005,7(3):403-414
    [12]Kitazawa H, Ueha S, Itoh S, et al. AT oligonucleotides inducing B lymphocyte activation exist in probiotic Lactobacillus gasseri[J]. Int J Food Microbiol,2001,65(3):149-162
    [13]Lebeer S, Vanderleyden J, De Keersmaecker SC.De Keersmaecker, Host interactions of probiotic bacterial surface molecules:comparison with commensals and pathogens[J]. Nat Rev Microbiol,2010,8(3):171-84
    [14]Furrie E, Macfarlane S, Thomson G, et al. Toll-like receptors-2,-3 and-4 expression patterns on human colon and their regulation by mucosal-associated bacteria[J]. Immunology,2005, 115(4):565-574
    [15]Borchers AT, Selmi C, Meyers FJ, et al. Probiotics and immunity[J]. Gastroenterol,2009, 44(1):26-46
    [16]Lavelle EC, Murphy C, O'Neill LA, et al. The role of TLRs, NLRs, and RLRs in mucosal innate immunity and homeostasis[J]. Mucosal Immunol,2010,3(1):17-28
    [17]Alvarez B, Revilla C, Domenech N, et al. Expression of toll-like receptor 2 (TLR2) in porcine leukocyte subsets and tissues[J]. Vet Res,2008,39(2):13
    [18]Tohno M, Shimosato T, Moue M, et al. Toll-like receptor 2 and 9 are expressed and functional in gut-associated lymphoid tissues of presuckling newborn swine[J]. Vet Res,2006,37(6): 791-812
    [19]Tohno M, Shimosato T, Kitazawa H, et al. Toll-like receptor 2 is expressed on the intestinal M cells in swine[J]. Biochem Biophys Res Commun,2005,330(2):547-554.
    20] Shimosato T, Tohno M, Kitazawa H, et al. Toll-like receptor 9 is expressed on follicle-associated epithelia containing M cells in swine Peyer's patches[J]. Immunol Lett, 2005,98(1):83-89
    [21]Turin L, Riva F. Toll-like receptor family in domestic animal species[J]. Crit Rev Immunol, 2008,28(6):513-538
    [22]Cammarota M, De Rosa M, Stellavato A, et al. In vitro evaluation of Lactobacillus plantarum DSMZ 12028 as a probiotic:emphasis on innate immunity[J]. Int J Food Microbiol,2009, 135(2):90-98
    [23]Shida K, Kiyoshima-Shibata J, Kaji R, et al. Peptidoglycan from lactobacilli inhibits interleukin-12 production by macrophages induced by Lactobacillus casei through Toll-like receptor 2-dependent and independent mechanisms [J]. Immunology,2009,128(1):858-869
    [24]Mohamadzadeh M, Klaenhammer TR. Specific Lactobacillus species differentially activate Toll-like receptors and downstream signals in dendritic cells[J]. Expert Rev Vaccines,2008, 7(8):1155-1164
    [25]Kotzamanidis C, Kourelis A, Litopoulou-Tzanetaki E, et al. Evaluation of adhesion capacity, cell surface traits and immunomodulatory activity of presumptive probiotic Lactobacillus strains[J]. Int J Food Microbiol,2010,140(2-3):154-163
    [26]Hoffmann M, Rath E, Holzlwimmer G, et al., Lactobacillus reuteri 100-23 transiently activates intestinal epithelial cells of mice that have a complex microbiota during early stages of colonization[J].Nutr,2008,138(9):1684-1691
    [27]Asong J, Wolfert MA, Maiti KK, et al. Binding and Cellular Activation Studies Reveal That Toll-like Receptor 2 Can Differentially Recognize Peptidoglycan from Gram-positive and Gram-negative Bacteria[J]. Biol Chem,2009,284(13):8643-8653
    [28]Shimosato T, Kitazawa H, Katoh S, et al. Swine Toll-like receptor 9(1) recognizes CpG motifs of human cell stimulant[J]. Biochim Biophys Acta,2003,1627(1):56-61
    [29]Shimosato T, Kitazawa H, Katoh S, et al. Augmentation of T(H)-1 type response by immunoactive AT oligonucleotide from lactic acid bacteria via Toll-like receptor 9 signaling[J]. Biochem Biophys Res Commun,2005,326(4):782-787
    [30]Liu F, Li G, Wen K, Bui T, Cao D, et al. Porcine small intestinal epithelial cell line (IPEC-J2) of rotavirus infection as a new model for the study of innate immune responses to rotaviruses and probiotics[J]. Viral Immunol,2010,23(2):135-149
    [31]Zeng RZK, HG Kim, NR Lee, et al. Protein expression changes in human monocytic THP-1 cells treated with lipoteichoic acid from Lactobacillus plantarum and Staphylococcus aureus[J]. Mol Cells,2010,29(6):585-594
    [32]Wen K, Azevedo MS, Gonzalez A, et al.Toll-like receptor and innate cytokine responses induced by lactobacilli colonization and human rotavirus infection in gnotobiotic pigs[J]. Vet Immunol Immunopathol,2009,127(3-4):304-315
    [1]蔡宝祥主编.家畜传染病学(第四版)[M].北京:中国农业出版社,2003:46-52
    [2]陆承平主编.兽医微生物学(第四版)[M].北京:中国农业出版社,2007:97-107
    [3]Bengmark S, Gil A. Bioecological and nutritional control of disease:prebiotics, probiotics and synbiotics[J]. Nutr Hosp,2006,21(2):72-84
    [4]Isolauri E, Kirjavainen PV, Salminen S. Probiotics:a role in the treatment of intestinal infection and inflammation[J]. Gut,2002,50(3):54-59
    [5]Corthesy B, Gaskins HR, Mercenier A. Cross-talk between probiotic bacteria and the host immune system[J]. Nutr,2007,137(3):781-790
    [6]Blum S, Schiffrin EJ. Schiffrin, Intestinal microflora and homeostasis of the mucosal immune response:implications for probiotic bacteria[J]. Curr Issues Intest Microbiol,2003,4(2): 53-60
    [7]Sheil B, Shanahan F, O'Mahony L. O'Mahony, Probiotic effects on inflammatory bowel disease[J]. Nutr,2007,137(3):819-824
    [8]Sartor RB. Probiotic therapy of intestinal inflammation and infections[J]. Curr Opin Gastroenterol,2005,21(1):44-50
    [9]de Vrese M, Marteau PR.Marteau, Probiotics and prebiotics:effects on diarrhea[J]. Nutr,2007, 137(2):803-811
    [10]Parassol N, Freitas M, Thoreux K, et al. Lactobacillus casei DN-114 001 inhibits the increase in paracellular permeability of enteropathogenic Escherichia coli-infected T84 cells[J]. Res Microbiol,2005,156(2):256-262
    [11]Burkey TE, Skjolaas KA, Dritz SS, et al. Expression of Toll-like receptors, interleukin 8, macrophage migration inhibitory factor, and osteopontin in tissues from pigs challenged with Salmonella enterica serovar Typhimurium or serovar Choleraesuis[J]. Vet Immunol Immunopathol,2007,115(3-4):309-319
    [12]Nandakumar NS, Pugazhendhi S, Ramakrishna BS.Effects of enteropathogenic bacteria & lactobacilli on chemokine secretion & Toll like receptor gene expression in two human colonic epithelial cell lines[J]. Indian J Med Res,2009,130(2):170-178
    [13]Wen K, Azevedo MS, Gonzalez A, et al. Toll-like receptor and innate cytokine responses induced by lactobacilli colonization and human rotavirus infection in gnotobiotic pigs[J]. Vet Immunol Immunopathol,2009,127(3-4):304-315
    [14]任立成,赵志虎,刘传暄,等.大肠杆菌热稳定肠毒素与霍乱毒素B亚单位融合蛋白免疫原性的评价[J].生物技术通讯,2003,14(5):369-371
    [15]倪学勤,曹希亮,曾东,等.猪源约氏乳酸杆菌JJB3和枯草芽孢杆菌JS01对仔猪肠道分泌型免疫球蛋白A和菌群的影响[J].动物营养学报,2008,20(3):275-280
    [16]袁万哲,何孔旺,陆承平,等.产肠毒素性大肠杆菌主要毒力因子的研究进展[J].动物医学进展,2005,26(2):6-9
    [17]王国芳,韩,聂尚丹,等.大蒜水提物对小鼠腹泻治疗作用的实验研究[M].济宁医学院学报,2009,32(4):244-245
    [18]杨俊,张中伟,秦环龙.乳酸菌对肠上皮细胞侵袭性大肠杆菌损伤的保护作用[J].世界华人消化杂志,2008,16(30):3394-3399
    [19]李志刚,杨宝兰,徐进.乳酸菌对肠出血性大肠杆菌0157:H7抑制作用的研究[J].中国食品卫生杂志,2003,15(4):298-301
    [20]Roselli M, Finamore A, Britti MS, et al. The novel porcine Lactobacillus sobrius strain protects intestinal cells from enterotoxigenic Escherichia coli K88 infection and prevents membrane barrier damage[J]. Nutr,2007,137(12):2709-2716
    [21]沈通一,张明,张鹏,等.植物乳酸杆菌CGMCC NO.1258表层粘附蛋白同致病性大肠埃希菌竞争粘附肠上皮细胞的研究[J].中国微生态学杂志,2009,21(5):403-406
    [22]Roselli M, Finamore A, Britti MS, et al. Probiotic bacteria Bifidobacterium animalis MB5 and Lactobacillus rhamnosus GG protect intestinal Caco-2 cells from the inflammation-associated response induced by enterotoxigenic Escherichia coli K88[J]. Br J Nutr,2006,95(6): 1177-1184
    [23]Donato KA, Gareau MG, Wang YJ, et al. Lactobacillus rhamnosus GG attenuates interferon-{gamma} and tumour necrosis factor-alpha-induced barrier dysfunction and pro-inflammatory signalling[J]. Microbiology,2010,156(11):3288-3297
    [24]Zhang L, Xu YQ, Liu HY,et al. Evaluation of Lactobacillus rhamnosus GG using an Escherichia coli K88 model of piglet diarrhoea:Effects on diarrhoea incidence, faecal microflora and immune responses[J]. Vet Microbiol,2009,141(1-2):142-148
    [25]Willing BP, Van Kessel AG. Intestinal microbiota differentially affect brush border enzyme activity and gene expression in the neonatal gnotobiotic pig[J]. J Anim Physiol Anim Nutr (Berl),2009,93(5):586-595
    [26]Konstantinov SR, Smidt H, Akkermans AD, et al. Feeding of Lactobacillus sobrius reduces Escherichia coli F4 levels in the gut and promotes growth of infected piglets [J]. FEMS Microbiol Ecol,2008,66(3):599-607
    [27]Devriendt B, Verdonck F, Summerfield A, et al. Targeting of Escherichia coli F4 fimbriae to Fcgamma receptors enhances the maturation of porcine dendritic cells[J]. Vet Immunol Immunopathol,2009,135(3-4):188-198
    [28]Gonzalez AM, Azevedo MS, Jung K, et al. Innate immune responses to human rotavirus in the neonatal gnotobiotic piglet disease model[J]. Immunology,2010,131(2):242-256.
    [29]Pavlova B, Volf J, Alexa P, et al. Cytokine mRNA expression in porcine cell lines stimulated by enterotoxigenic Escherichia coli[J]. Vet Microbiol,2008,132(1-2):105-110
    [30]Kruse R, Essen-Gustavsson B, Fossum C,et al. Blood concentrations of the cytokines IL-1beta, IL-6, IL-10, TNF-alpha and IFN-gamma during experimentally induced swine dysentery[J]. Acta Vet Scand,2008,50:32
    [31]Sato A, Hashiguchi M, Toda E, et al. CD11b+ Peyer's patch dendritic cells secrete IL-6 and induce IgA secretion from naive B cells[J]. Immunol,2003,171(7):3684-3690
    [32]Mora JR, Iwata M, Eksteen B, et al. Generation of gut-homing IgA-secreting B cells by intestinal dendritic cells[J]. Science,2006,314(5802):1157-1160
    [33]Zhang L, Xu YQ, Liu HY, et al. Evaluation of Lactobacillus rhamnosus GG using an Escherichia coli K88 model of piglet diarrhoea:Effects on diarrhoea incidence, faecal microflora and immune responses[J]. Vet Microbiol,2009,141(1-2):142-148
    [34]Shirkey TW, Siggers RH, Goldade BG, et al. Effects of commensal bacteria on intestinal morphology and expression of proinflammatory cytokines in the gnotobiotic pig[J]. Exp Biol Med (Maywood),2006,231(8):1333-1345

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700