用户名: 密码: 验证码:
松辽平原沙地榆树林生态学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
榆树林是松辽平原沙地上发育的顶级植物群落,按其建群种划分出蒙古黄榆(Ulmus. macrocarpa var. mongolica )林,家榆(Ulmus pumila )林和刺榆(Hemipelea davidii )林,构成森林草原景观,具有独特的群落种类构成和生态过程,对于维持区域生态平衡乃至东北草原区生态环境质量均具有重要作用。目前本区榆树林生态系统退化严重,群落更新不良,分布范围不断缩小,亟需开展榆树林种群和群落生态学基础研究。本文应用典型样地定位法对三种榆树林种群特征(不同年龄枝条的叶构件、枝条构件和刺构件、果实构件数量特征,种子雨散布特征)和群落特征(乔木层和草本层种类构成及其数量特征)进行野外调查,应用变异系数表征各构件可塑性,应用数学模型模拟种子雨动态、应用重要值和物种多样性指数等表征群落结构,通过以上方法揭示三种榆树林种群和群落结构与动态。本研究具有重要的理论和实践意义,可在一定程度上开拓种群和群落研究的新途径,并可为松辽平原沙地榆树林管理和生态恢复提供科学依据和技术支撑。
     1刺榆林生态学研究
     1)刺榆林种群生态学研究
     刺榆不同年龄枝条的构件数量性状变异程度不尽相同,总体变化规律为:刺榆不同年龄枝条构件的生物量变异程度大于构件数变异程度,而且一龄枝和二龄枝变异程度要普遍高于三龄枝的。表明外界因素对刺榆构件生物量(尤其枝条生物量)影响比较大,而对构件数影响较小。回归分析结果表明刺榆一龄枝和二龄枝的生物量、构件数均与总生物量具有极好的回归关系,并且一龄枝和二龄枝的决定系数总体上高于三龄枝的。因此在刺榆林天然更新中一龄枝和二龄枝对种群和群落的贡献高于三龄枝,是种群更新和拓展能力的体现。相关分析结果表明刺榆一龄枝和二龄枝各构件均表现为同速生长,具有极好的相关性,三龄枝除刺构件外,其他各构件也表现为同速生长。
     2)刺榆林种子雨及种子散布格局
     刺榆林下和林缘的种子雨沉降的数量特征和孤立单株及林缘的种子散布格局结果表明,刺榆的种子雨密度平均以林下最大(13732.5±3106.2粒·m~(-2)),孤立单株以东南样带最多(5449.4±1429.3粒·m~(-2)),并显著地高于其他方向,以西北最少(650.2±631.6粒·m~(-2)),并显著地少于其他方向;林缘以东(4583.4±1341.0粒·m~(-2))和南(3744.4±2673.4粒·m~(-2))样带显著地高于西(1410.0±1499.3粒·m~(-2))和北(902.7±802.5粒·m~(-2))样带。孤立单株和林缘不同方向种子雨密度的变异普遍较大,其变异系数为25.7-106.3%。刺榆具有风播植物远离种子源的种子散布特性。8个样带在单位面积和累积面积上远离种子源的种子散布格局均具有多样性,包括直线、幂、指数、二次抛物线和对数函数。
     3)刺榆林群落生态学研究
     刺榆林不存在灌木层;其乔木层可划分为2个亚层,上、下层高度分别为4.05-7.86和2.05-3.20 m;林下共有32种草本植物,隶属13科27属,以禾本科、豆科和菊科为主;研究区有11个植被分布区型,其中,蒙古-东北-兴安-华北分布区型种类最多(34.38%),其次为东北-华北分布区型(12.5%)。在3个水分生态类型中,中生植物最多,占59.37%,中旱生类型和旱生类型分别占25%和15.63%。在6个生活型中,地面芽植物最多(31.25%),具有温带草原的典型生活型特征。刺榆林草本层物种多样性与乔木层的发育程度有关,乔木层郁闭度的降低将导致草本层生态优势度增加,群落均匀度和物种多样性下降。群落生产力与功能群内的物种数之间无明显相关关系,而与功能群内的个体数表现出显著的正相关关系(p<0.05)。
     4)放牧干扰对刺榆林物种多样性的影响
     随着放牧强度的增加,刺榆林生活型构成发生显著变化,轻度干扰和中度干扰阶段均以多年生丛生禾草地上芽植物占优势,重度干扰阶段以一年生植物占优势。从物种多样性的变化趋势看,以轻度干扰阶段的物种丰富度、均匀度和多样性均最高,尤其丰富度的差异显著(p<0.05)。随干扰程度的增加,群落物种丰富度、均匀度和多样性均显著的单调降低,表现出种类明显减少、群落结构简单化和旱生化的趋势。
     2蒙古黄榆林生态学研究
     1)蒙古黄榆林种群生态学研究
     蒙古黄榆不同年龄枝条的构件数量性状变异程度差异较大,总体变化规律为:蒙古黄榆各构件的构件数变异程度大于生物量变异程度,而且一龄枝和二龄枝变异程度要普遍低于三龄枝的,这一点与刺榆林变化趋势相反,表明外界因素对刺榆构件数影响比较大,而对构件生物量影响较小。这可能与物种自身生物学特性有关。从回归分析结果看,不同年龄枝条的生物量、构件数均与总生物量的回归方程决定系数总体上表现为一龄枝<二龄枝<三龄枝,这与变异系数在各龄枝条间的分布状况较一致,反映出蒙古黄榆一龄枝和二龄枝在空间拓展和种群更新能力上的弱化。从相关分析结果看,不同年龄枝条的各构件均表现为同速生长,各构件数量与生物量之间具有极好的相关性,反映出各构件在资源利用上的同步性。
     2)蒙古黄榆林群落生态学研究
     蒙古黄榆林郁闭度一般在40-60%之间,高度5.83-9.33米,胸径0.13-0.19m,枝下高2.16-2.63m,株距3.72m-8.16m。蒙古黄榆林下草本植物总共出现47种,隶属21科39属,以禾本科、豆科和菊科植物最多。在分布区型结构上,总计13种分布区型,以华北-东北-兴安-蒙古分布区型种类最多,具有四种分布区型相汇聚的特征。水分生态类型以中生植物最多,但中旱生及旱生种类亦丰富,具有明显的适应干旱生境的水分特点。生活型以一年生植物最多,其次地面芽植物。蒙古黄榆群落生产力与物种丰富度之间并不存在必然的联系,而生产力与植物个体数具有显著的正相关关系。
     3家榆林生态学研究
     1)家榆林种群生态学研究
     家榆不同年龄枝条的构件数量性状变异程度总体变化规律为:家榆各构件的生物量变异程度大于构件数变异程度,而且一龄枝和二龄枝变异程度要普遍低于三龄枝的,这一点与蒙古黄榆林变化趋势相同,表明外界因素对家榆构件数影响比较大,而对构件生物量影响较小。从回归分析结果看,家榆不同年龄枝条的生物量、构件数均与总生物量的回归方程决定系数总体上表现为一龄枝的低于二龄枝和三龄枝的,反映出家榆一龄枝各构件受环境因素和人为干扰程度较大,其空间拓展能力受到影响,不利于种群更新和群落结构的维持。从相关分析结果看,家榆不同年龄枝条的各构件亦表现为同速生长,各构件数量与生物量之间均具有极好的相关性,反映出各构件在资源利用上的同步性。
     2)家榆林群落生态学研究
     家榆林群落结构比较简单,常无灌木层,仅乔木层和草本层,林下草本无温带森林的典型种,而是由草原种构成,一般物种丰富度较高,常见种类糙隐子草、沙地委陵菜、羊草等草原种,个别地段亦伴生山杏、叶底珠灌丛。从群落生态类型结构组成和分布区型结构组成看,与1981年李建东等调查结果相比,现时群落地面芽植物和隐芽植物发育均受到严重干扰,一年生植物大量增加。湿生植物消失,旱生和中旱生植物比例也显著减少。在分布区型结构上,以蒙古-兴安-华北-东北分布区型为主,具有4个分布区型相汇聚的特点,但类型数已严重减少。此外在物种多样性变化上,三个家榆样地间物种多样性相差不大,表明家榆林受人为干扰严重,使群落物种组成表现出同质化的趋势,从而使群落结构趋同。
The elm woods ecosystem was the clamix community type in sandy land in Songliao Plain and could be divided into Hemipelea davidii woods、Ulmus pumila woods and U. macrocarpa var. mongolica woods based on the construted species. The ecosystem had a unique species and ecological process which constitute the forest-steppe landscape and played an important role maintaining regional ecological balance as well as the quality of northeastern grassland ecological environment. At present, the elm woods had degraded seriously such as the community regeneration slowly, the distribution area shrinkage and need to carry out population and community ecology basic research. In this paper, the typical located plot of the three elm woods were used to investigated the population characteristics (such as the quantative characteristics of leaf modules, branch modules, thorn modules and fruit modules) and the community characteristics (such as the scpecies composition and quantative characteristics of arbor layer and herbal layer). The coefficient of variation, mathematical models, the important value and species diversity indexes were applied to analyze the phenotypic plasticity of mudules, seed rain dynamics and community structure characterization respectively. We aimed to discover the structure and dynamics of elm woods population and community. This paper has important theoretical and practical significance and can create some degree of new perspective of plant population and community research, as well as provide scientific evidences and technical supports for the elm woods management and restoration in Songliao Plain.
     1 Research of H. davidii woods Ecology
     1)Population Ecology
     The variation degree of H. davidii modules varied greatly in different age-class branches. The regulation was as follows: the variation degree of modules biomass is greater than the modules numbers. Furthermore the variation degree of 1a and 2a branches were higher than 3a branches commonly, which indicated that the effect of external factors on modules biomass (in particular branches biomass) was relatively large, but little effect on the modules numbers.
     Regression analysis showed that there were significant regression between the biomass, modules numbers of 1a and 2a branches and the total biomass of branches. Furthermore, the regression function determination coefficient (R2) of 1a and 2a branches were higher than those of 3a branches commonly, which indicated that the contribution of 1a and 2a branches to the capacity of population regeration and expansion were higher than those of 3a branches. Correlation analysis showed that the modules of 1a and 2a branches all growed at the same rate, and the modules of 3a branches except of thorn modules showed the same growth rate too.
     2)Seed rain and the patterns of the seed dispersal in H. davidii woods
     The quantitative characteristics of the H. davidii seed rain in the understory and at the woodsides, as well as the seed dispersal patterns at the woodsides and of the isolating trees were analyzed. The results indicated that among three smpling plots, the average density of the seed rain in the understory was the highest (13732.5±3106.2 seeds·m~(-2)). For isolating trees, the seed rain had the highest density (5449.4±1429.3seeds·m~(-2)) in southeast transect, being significantly higher than that in other directions, and the lowest one (650.2±631.6 seeds·m~(-2)) in the northwest transect, being significantly lower that in other directions. At the woodsides, the seed rain density was significantly higher in the east and south transects than in the west and north transects. The variation of the seed density was greater, with the variation coefficient being 25.7%-106.3% in different directions in the two plots of isolating trees and woodsides. Same as other anemochorous plants, H. davidii had the characteristies of seed dispersal away from the seed source. In the eight sampling transects, there existed diversity in the patterns of the dispersal away from the seed source in per unity area and in accumulated area, including linear, power, exponential, quadratic parabola and logarithmic functions.
     3)The synecology
     There were not shrubs in H. davidii woods and the arbor layer could be divided into two inferior layers, which the height of upper-arbor layer was 4.05-7.86 m and the lower-arbor layer height was 2.05-3.20 m. There were totally 32 herbal species belonging to 13 families and 27 genera, which were dominant by Poaceae, Fabaceae and Compositae. There were 11 areal type, most of which were Mongolian-Northeastern China-Dahuricia-North China accounting for 34.38%, and the Northeastern China- North China areal type taking up 12.5%. The species of mesophyte dominated three water ecological types, making up 59.37%, and the mesoxerophyte and xerophyte species occupying 25% and 15.63% respectively. Most plants among the six life forms belonged to the hemicryptophyte which accounted for 31.25%. The H. davidii community had the typical characteristic of temperate steppe.
     The species diversity of herbal layers in H. davidii woods were correlated to the extent of arbor layer development, the decrease of camopy would lead to the increase of ecological dominant diversity of herbaceous layer and decrease of eveness and species diversity. There were no significantly correlations between the community production and species number within functional group, but with the individuals within functional group showed a significant positive correlation (p <0.05).
     4)The impact of grazing on species diversity of H. davidii woods
     With the increase of grazing intensity, the life form structure showed a significant change. The dominance type of life form was hemicryptophyte under moderate and medium disturbance, and under the heavy disturbance the dominance type was therophyte. The change of the species diversity indicated that the community under moderate disturbance had the highest richness, evenness and species diversity, particularly there were sigmificant difference between richness (p<0.05). With the increased of the disturbance extent, the species diverstiy of community decreased linearly. H. davidii woods showed the degraded characteristic such as species number decrease, community structure simplified and xerotic trends.
     2 Research of Ulmus macrocarpa var. mongolica woods Ecology
     1)Population ecology
     The variation degree of U. macrocarpa var. mongolica modules varied greatly in different age-class branches. The regulation was as follows: the variation degree of modules numbers is greater than the modules biomass. Furthermore, contrast to H. davidii, the variation degree of 1a and 2a branches were lower than 3a branches commonly, which indicated that the effect of external factors on modules numbers was relatively large, but little effect on the modules biomass. These may be determined by the spcies biological characteristics.
     Regression analysis showed that there were significant regression between the biomass, modules numbers of different age-class branches and the total biomass of branches. The order of regression function determination coefficient (R2) of different age-class branches was 1a <2a<3a, which was accordance with the coefficient of variation. The results showed that the contribution of 1a and 2a branches to the capacity of population regeration and expansion were decreased. Correlation analysis showed that the modules of 1a, 2a and 3a branches all growed at the same rate, the numbers and biomass of modules in different age-class branches were correlated with the total biobass significantly, which indicated the coincidence of modules in resource utilization.
     2)The synecology
     The canopy of arbor layers was 40-60%, the height 5.83-9.33m, DBH 0.13-0.19m, Under branch height 2.16-2.63m, row distance 3.72-8.16m. The total number of herbal species were 47 and belonged to 2 families and 39 genuses, The main families embraced Poaceae, Fabaceae and Compositae. Most areal type were Mongolian-Northeastern China-Dahuricia-China north within 13 areal types.The area has the influx characteristics of 4 areal type. The species of mesophyte dominated three water ecological types, the rest was xerophyte and mesoxerophyte, which had the trends of dried habitat condition. The life forms of most of the plants belonged to the therophytes, followed by hemicryptophytes. There were no significantly correlations between the community production and species number within functional group, but with the individuals within functional group showed a significant positive correlation (p <0.05).
     3 Research of U. pumila woods Ecology
     1)Population ecology
     The regulation of U. pumila modules in different age-class branches was as follows: the variation degree of modules biomass is greater than the modules numbers. Furthermore, coincide with macrocarpa var. mongolica, the variation degree of 1a and 2a branches were lower than 3a branches commonly, which indicated that the effect of external factors on modules numbers was relatively large, but little effect on the modules biomass. Regression analysis showed that there were significant regression between the modules biomass, modules numbers of different age-class branches and the total biomass of branches. The order of regression function determination coefficient (R2) of different age-class branches was 1a <2a<3a. The results showed that the contribution of 1a branches to the capacity of population regeration and expansion were decreased under the impact of human disturbance and external factors. As the result the population regeneration and community structure were unsustainable. Correlation analysis showed that the modules of 1a, 2a and 3a branches all growed at the same rate, the numbers and biomass of modules in different age-class branches were correlated with the total biobass significantly, which indicated the coincidence of modules in resource utilization.
     2)The synecology
     The U. pumila woods structure was relatively simple, there were only arbor and herbal layers without shrub layers , furthermore there were not typical temperate forest species but steppe species. Usually there were higher species richness of herbal layers. The dominant species were Celeistogenes squarosa, Pottentilla sp., Leymus chinensis, et al.. There were also Prunus armeniaca and Securinega suffruticosa shrubs in some local topography.
     View from the composition of ecological and areal type structure, compared to the survey by Li jiandong in 1981, the hemicryptophyte and geophyte decreased and the therophyte increased dramatically. The hygrophilous disappeared and Xerophytes decreased dramatically. In terms of the areal type, most areal type were Mongolian-Northeastern China-Dahurica-China north. The area has the influx characteristics of 4 areal type but the number of areal type decreased dramatically too. In addition, there were no significantly differences between three plots, which indicated that there were seriously human disturbance and lead to homogenization in species composition and community structure.
引文
[1]许文.可持续发展思想形成综述[J].现代农业科技. 2005, 2: 56-57.
    [2]孙儒泳,李博,诸葛阳等.普通生态学[M].北京:高等教育出版社. 1993.
    [3] Tansley. The use and abuse of vegetational concepts and terms[J]. Ecology. 1935, 16(3): 284-307.
    [4] Odum E P.生态学基础[M].北京:人民教育出版社. 1981.
    [5]李耶波.对《生态学概论》一书的评介[J].植物生态学与地植物学丛刊. 1981, 5(1): 82-83.
    [6]常杰,葛莹.生态学[M].杭州:浙江大学出版社. 2009.
    [7]世界环境与发展委员会.我们共同的未来[M].北京:世界知识出版社. 1989.
    [8] Humboldt von A. Ideen zu einer physiognomic der gewachse[M]. Cotta. Stuttgart. 1960, 1-2.
    [9] Braun-Blanquet J. Plant sociology: the study of plant communities[M]. New York: McGraw-Hill Book Co. Inc. 1932, 287-304.
    [10]瓦尔明E.植物生态学——植物群落研究引论[M].陈庆诚,陈泽霖译.北京:科学出版社. 1965.
    [11] Daubenmire.植物群落——植物群落生态学教程[M].陈庆诚译.北京:人民教育出版社. 1982.
    [12] Mueller-Donbois D, Ellenberg H.植被生态学的目的和方法[M].鲍显成,张绅,杨邦顺等译.北京:科学出版社. 1986, 90-97.
    [13]毛子军.植被生态学的历史,现状与发展趋势[J].生态科学进展(第二卷)[M].高等教育出版社. 2006, 69-94.
    [14]宋永昌.植被生态学[M].上海:华东师范大学出版社. 2001.
    [15] Cowles H C. The ecological relations of the vegetation on the sand dunes of Lake Michigen[J]. Bot. Gaz. 1899, 27:95-391.
    [16] Cowles H C. The physiographic ecology of Chicago and Vicinity: A study of the Origen, development, and classification of plant societies[J]. Bot.Gaz. 1901, 31: 73-182.
    [17] Greig-Smith P. Qwantiative plant ecolgy(2nd)[M]. Longdon: Butterworths. 1967.
    [18] Pielou E C.数学生态学引论[M].卢泽愚译.北京:科学出版社. 1988.
    [19] May R, McLean A.理论生态学[M].陶毅,王百桦译.北京:高等教育出版社. 2010.
    [20] Whittaker R H. A criticism of the plant association and climatic climax conceots[J]. N W, Sci. 1951, 25: 17-31.
    [21] Whittaker R H. Vegetation of the Great Smoky Moutains[J]. Ecorl. Monogr. 1956, 26: 1-80.
    [22] Whittaker R H. Vegetation of the Siskiyou Montains, Oregon and California[J]. Ecological Monographs. 1960, 30: 279-338.
    [23] Whittaker R H. Gradient analysis of vegetation[J]. Biol. Reu. 1967, 42: 207-264.
    [24]道库恰耶夫B B.俄国草原之今昔[M].北京:科学出版社. 1958.
    [25]特卡钦柯M E.森林学[M].北京:中国林业出版社. 1959.
    [26]孙世洲.《野外地植物学》(第4卷)中的大、中比例尺植被制图简介[J].植物生态学报. 1981, 5(4): 318-319.
    [27]舒勇,刘扬晶.植物群落学研究综述[J].江西农业学报. 2008, 20(6) : 51-54.
    [28] Raunkiaer C. The life forms of plants and statistical plant geography [M]. New York: Oxford University Press. 1932, 2-10.
    [29]钱崇澍.安徽黄山植被和区系的初步记录[J]. Contr. Biol. Lab. Sci. Soc. China, Bot. Ser. 1927, 3: 1-85.
    [30]钱崇澍.南京钟山岩脊的植被[J]. Contr. Biol. Lab. Sci. China Bot. Ser. 1932, 7: 215.
    [31]刘慎谔.中国北部及西部植物地理概念[J].北平研究院植物科学研究所汇刊. 1934, 2(9): 423-451.
    [32]刘慎谔.中国南部及西部植物地理概论[J].北平生物学杂志. 1937, 1(1):15.
    [33]侯学煜.贵州中北部之植物分布与土壤[J].土壤季刊. 1941, 1(3): 4.
    [34]张宏达.西沙群岛的植被[J]. Sunyatsenia. 1948, 7(1-2): 75-88.
    [35]刘慎谔.法国高斯山植物地理的研究[J].刘慎谔文集.北京:科学出版社. 1985.
    [36]中国科学院植物研究所.中国植被区划(初稿)[M].北京:科学出版社. 1960.
    [37]侯学煜.中国植被[M].北京:人民教育出版社. 1960.
    [38]吴征镒,朱彦丞.云南植被[M].北京:科学出版社. 1987.
    [39]安徽植被协作组.安徽植被[M].合肥:安徽科学出版社. 1981.
    [40]天津农业区划委员会植被专业组.天津植被[M]. 1984.
    [41]中国科学院内蒙古宁夏综合考察队.内蒙古植被[M].北京:科学出版社. 1985.
    [42]吴征镒.云南植被[M].北京:科学出版社. 1987.
    [43]黄威廉.台湾植被[M].北京:中国环境科学出版社. 1993.
    [44]刘濂.河北植被[M].北京:科学出版社. 1996.
    [45]雷明德等.陕西植被[M].北京:科学出版社. 1999.
    [46]王仁卿,周光裕.山东植被[M].济南:山东科学技术出版社. 2000.
    [47]李建东,吴榜华,盛连喜.吉林植被[M].长春:吉林科学技术出版社. 2001.
    [48]周以良等.中国大兴安岭植被[M].北京:科学出版社. 1991.
    [49]周以良.中国东北植被地理[M].北京:科学出版社. 1997.
    [50]蒋有绪,郭泉水,马娟.中国森林群落分类及其群落学特征[M].北京:科学出版社. 1998.
    [51]吉林森林编委会.吉林森林[M].长春:吉林学科出版社. 1988.
    [52]郎惠卿.中国湿地植被[M].北京:科学出版社. 1999.
    [53]郑慧莹,李建东.松嫩平原的草地植被及其利用保护[M].北京:科学出版社. 1993.
    [54]李建东,杨允菲.松嫩平原羊草草甸植物的生态及分布区型结构分析[J].草业学报. 2002, 11(4): 10-20.
    [55]白云鹏,韩大勇,董艳红等.科尔沁沙地刺榆群落的结构特征[J].应用生态学报. 2008, 19 (2): 257-260.
    [56]钱迎倩,马克平.生物多样性研究的原理与方法[M].北京:中国科学技术出版社. 1994.
    [57]马克平,钱迎倩,王晨.生物多样性研究的现状与发展趋势[J].见:中国科学院生物多样性委员会(编),生物多样性研究的原理与方法.北京:中国科学技术出版社. 1994, 1-12.
    [58]郭勤峰.物种多样性研究的现状及趋势[J].见:李博(主编),现代生态学讲座.北京:科学出版社. 1995, 89-107.
    [59]克纳普R.实验植物群落学[M].郑慧莹译.北京:科学出版社. 1974.
    [60]张新时.研究全球变化的植被分类系统[J].第四纪研究. 1993, 157-169.
    [61]张新时.植被的PE(可能)指标与植被-气候分类(二):几种主要方法与PEP程序介绍[J].植物生态与地植物学学报. 1989, 13: 197-207.
    [62]蒋高明,林光辉.生物圈二号内生长在很高CO2浓度下的几种植物光合能力的变化[J].科学通报. 1997, 42: 434-438.
    [63]李凌洁.土地利用变化对草原生态系统土壤碳储量的影响[J].植物生态学报. 1998, 22: 300-302.
    [64]徐文铎.中国东北主要植被类型的创面与气候的关系[J].植物生态学与地植物学学报. 1986, 10(4): 254-263.
    [65]杨允菲等.东北草原羊草种群种子生产与气候波动的关系[J].植物生态学报. 2001, 25(3): 337-343.
    [66]周广胜,张新时.全球生态学--气候变化与生态响应[M].北京:高等教育出版社. 2000.
    [67]克纳普R.植被动态[M].宋永昌等译.北京:科学出版社. 1986.
    [68]王伯荪.植物群落学[M].北京:高等教育出版社. 1987.
    [69]彭少麟.森林群落波动的探讨[J].应用生态学报. 1993, 4(2): 120-125.
    [70]彭少麟,张祝平.鼎湖山森林植被主要优势种云南银柴、柏拉木生物量及第一性生产力研究[J].应用生态学报. 1992, 3 (3): 202-206.
    [71]米湘成,马克平.中国植物生态学研究进展Ⅱ中国植物群落生态学研究[J].植物学报. 2003, 45(增刊): 70-76.
    [72]刘慎谔.动态地植物学--基本理论的探讨及其应用[J].刘慎谔文集.北京:科学出版社. 1985, 179-228.
    [73]邬建国等.生态演替理论与模型[J].当代生态学引论. 1992, 49-64.
    [74]赵松岭.植物群落演替研究[M].西安:陕西科学技术出版社. 1996.
    [75] Arber A. The natural philosophy of plant form[M]. London: Cambridge Unvisity Press. 1950.
    [76] Aber J D. Jordan W R. Restoration ecology: an environmental middle griund[J]. Bioscience. 1985, 35(7): 399.
    [77]郑慧莹,李建东.松嫩平原盐生植物与盐碱化草地的恢复[M].北京:科学出版社. 1999.
    [78]赵晓英,陈怀顺,孙成权.恢复生态学——生态恢复的原理与方法[M].北京:中国环境科学出版社. 2001.
    [79]惠特克R H.植物群落排序[M].王伯荪译.北京:科学出版社. 1978.
    [80]惠特克R H.植物群落分类[M].周纪伦等译.北京:科学出版社. 1985.
    [81]阳含熙,卢泽愚.植物生态学数量分类方法[M].北京:科学出版社. 1981.
    [82] Halle F, Oldeman R A A, et al.. Dynamiquede croissance des Arbres Tropicaux[M]. Parix: Massm. 1971.
    [83] Harper J L. Population biology of plants[M]. San Francisco: Academic Press. 1977.
    [84] White J. The plant as a metapopulation[J]. Ann. Rev. Ec01. Syst. 1979, 10: 109-145.
    [85] Solbring O T. Demography and evolution in plant populations[M]. Berkeley: University of California Press. 1980.
    [86] Silvertown J W. Introduction to plant population ecology[M]. Oxford: Blackwell Scientific Publishing. 1982.
    [87] Porter J R. A modular approach to analysis of plant growth[J]. New. Phytologist. 1983, 94: 183-200.
    [88]杨持,叶波,张慧荣.不同生境条件下羊草构件及羊草种群元性系分化[J].内蒙古大学学报. 1996, 27(3): 422-425.
    [89]殷淑燕,刘玉成.大头茶构件种群生物量及叶面积动态[J].植物生态学报. 1997, 21(1): 83-89.
    [90]张文辉,李红,李景侠等.秦岭独叶草群落个体和构件生物量动态研究[J].应用生态学报. 2003, 14(4): 530-534.
    [91]焦德志,杨允菲,丁雪梅.扎龙自然保护区不同生境条件下羊草种群构件的年龄结构[J].生态学杂志. 2006, 25(6): 617-620.
    [92]杨允菲,张宝田,李建东.松嫩平原人工草地野大麦无性系冬眠构件的结构及形成规律[J].生态学报. 2004, 24(2): 268-272.
    [93]杨允菲,张宝田,张春华.松嫩平原赖草无性系构件的形成与空间扩展实验[J].应用生态学报. 2007, 18(5): 877-882.
    [94]杨允菲,张宝田,张宏一.松嫩平原碱化草甸天然角碱蓬群落密度制约的分析[J].草业学报. 1993, 2(4): 1-6.
    [95]杨允菲,张宝田.松嫩平原碱化草甸天然虎尾草群落密度制约特征的研究[J].生态学报. 1992, 12(3): 266-272.
    [96]成海洪,王建林,常建军等.西藏栽培白菜型油菜种群构件与环境因子的灰色关联度分析[J].生态科学. 2007, 26(6): 495-500.
    [97]赵玉,贾娜尔,李海燕等.伊犁河谷不同生境假苇拂子茅种群构件的生产力特征[J].安徽农业科学. 2008, 36(25): 10822-10823.
    [98] Bazzaz F A, Harper J L. Demographic analysis of the growth of Linum usitatissimum[J]. New Phytol. 1979, 193-208.
    [99] McGraw J B, Keith G. Demography growth analysis[J]. Ecology. 1990, 71: 1199-2004.
    [100] White J. The population structure of vegetation[M]. Dordrecht, Boston, Lancaster: Dr. W. Junk Publishers. 1985.
    [101]聂勇,黎云祥,权秋梅等.不同群落类型中柔毛淫羊藿无性系构件的形态特征及生物量配置比较[J].中国野生植物资源. 2009, 28(5): 14-19.
    [102]钟章成,曾波.植物种群生态研究进展[J].西南师范大学学报(自然科学版). 2001, 26(2): 230-236.
    [103]苏智先,钟章成,杨万勤等.四川大头茶种群生殖生态学研究I.生殖年龄、生殖年龄结构及其影响因素研究[J].生态学报. 1996, 16(5): 517-524.
    [104]黎云祥,刘玉成,钟章成.植物种群生态学中的构件理论[J].生态学杂志. 1995, 14(6): 35-41.
    [105]王宁,刘济民.顶坛花椒生长状况极其构件种群研究[J].贵州林业科技. 2004, 32(3): 26-30.
    [106]刘济明,蒙朝阳,周超等.朴树苗期种群构件研究[J].安徽农业科学. 2007, 35(20): 6114-6115, 6124.
    [107]王超,蒙朝阳,陈洪等.小蓬竹的叶面积指数测定[J].山地农业生物学报. 2007, 26(3): 277-279.
    [108]韩忠明,韩梅,吴劲松等.不同生境下刺五加种群构件生物最结构与生长规律[J].应用生态学报. 2006, 7(7): 164-168.
    [109]杨利民,韩梅,张连学.药用植物资源的可持续利用及其种群生态学研究与展望[J].吉林农业大学学报. 2006, 28(4): 383-388.
    [110]黎云样,刘玉成,钟章成.缙云山四川大头茶叶种群的结构及动态[J].植物生态学报. 1997, 21(1): 68-76.
    [111]宋金枝,杨允菲.松嫩平原碱化草甸朝鲜碱茅无性系冬眠构件的结构及生长分析[J].生态学杂志. 2006, 25(7): 743-746.
    [112]孙书存,陈灵芝.植物种群的构件理论与实践[C].生物多样性与人类未来——第二届全国生物多样性保护与持续利用研讨会论文集. 1996.
    [113]黎云祥,陈利,杜道林.四川大头茶的分枝率和顶芽动态[J].生态学报. 1998, 18(3): 311-314.
    [114] Jones M, Harper J L. The influence of neighbours on the growth of trees I: the demography of buds in Betula pendula[J]. Proe. R. Soc. London. 1987, B1232: 1-18.
    [115]宋学会,黎云祥,苏智先.马尾松苗分枝率研究[J].四川师范大学学报. 2001, 22(2):158-160.
    [116] Noble J C, Bell A D, Harper J L. The population of plant growth I: the morphology and structure demography of Carex arenaria[J]. Journal of Ecology. 1979, 67: 983-1008.
    [117]宋玉洋.梭梭构件格局的环境变异[J].西北林学院院报. 2008, 23(6): 60-65.
    [118]刘玉成,黎云祥,苏杰.缙云山大头茶幼苗种群构件结构及与环境因子的多元分析[J].植物生态学报. 1996, 20(4): 338-347.
    [119]李淑兰.刺五加种群构件的数量统计——刺五加种群地上部分构件的数量统计[J].吉林林学院学报. 1995, 11(1): 6-10.
    [120]刘玉成,杜道林.缙云山大头茶幼苗种群构件结构及与环境因子的多元分析[J].植物生态学报. 1996, 20(4): 338-347.
    [121]何丙辉,钟章成.不同养分条件对银杏枝种群构件生长影响研究[J].西南农业大学学报. 2003, 25(6): 475-479.
    [122]祝廷成.内蒙古伊胡塔附近植被的初步研究[J].华东师范大学学报. 1957, (1): 174-188.
    [123]李建东,杨允菲.松嫩平原榆树疏林植物组分的结构型[J].草地导报. 2003, 12(11): 277-300.
    [124]杨允菲,白云鹏,李建东等.科尔沁沙地刺榆林种子散布的空间格局[J].应用生态学报. 2010, 21(8): 1967-1973.
    [125]韩大勇,白云鹏,董艳红等.松嫩平原沙地蒙古黄榆群落结构的研究[J].东北师范大学学报(自然科学版). 2008, 40(3): 107-111.
    [126]杨利民,周广胜,王国宏等.人类活动对榆树疏林土壤环境和植物多样性的影响[J].应用生态学报. 2003, 14(3): 321-325.
    [127]刘建,朱选伟,于飞海等.浑善达克沙地榆树疏林生态系统的空间异质性[J].环境科学. 2003, 24(4): 29-34.
    [128]彭羽,蒋高明,李永庚等.浑善达克沙地榆树疏林自然保护区核心区设计的初步研究[J].植物生态学报. 2005, 29(5): 775-780.
    [129]裘善文.试论科尔沁沙的形成与演变[J].地理科学. 1989, (4): 319-328.
    [130]胡孟春.全新世科尔沁沙地环境冶演变的初步探讨[J].干旱区资源与环境. 1989, 51-58.
    [131]盖平,鲍智娟,张结军等.环境因素对芦苇地上部生物量影响的灰色分析[J].东北师大学报(自然科学版). 2002, 34(3): 87-91.
    [132]白军红,崔保山,李晓文等.向海芦苇沼泽湿地土壤铵态氮含量的季节动态变化[J].草业学报. 2006, 15(1): 117-119.
    [133]张艳红,邓伟,张树文.向海自然保护区丹顶鹤生境结构空间特征[J].生态学报, 2006, 26(11): 3726-3731.
    [134] Peart D R.Species interactions in a successional grassland I. Seed rain and seedlings recruitment[J]. Journal of Ecology. 1989, 77: 236-251.
    [135] Moles A T, Drake D R. Potential contribution of the seed rain and seed bank to regeneration of native forest under plantation pine in New Zealand[J]. New Zealand Journal of Botany. 1999, 37: 83- 93.
    [136] Godoy J A, Jordano P. Seed dispersal by animals: Exact identification of source trees with endocarp DNA microsate11ites[J]. Molecular Ecology. 2001, 10: 2275-2283.
    [137]邹莉,谢宗强,李庆梅等.神农架巴山冷杉种子雨的时空格局[J].生物多样性. 2007, 15(5): 500-509.
    [138] Schnabel A, Nason J D, Hamrick J L. Understanding the population genetic structure of Gleditsia triacanthos L.: Seed dispersal and variation in female reproductive success[J]. Molecular Ecology. 1998, 7: 819-832.
    [139] Michael E. Seed Ecology[M]. London and New York: Chapman and Hall. 1985, 57-116.
    [140] Wagner R H. The annual seed rain of adventive herbs in a radiation damaged forest[J]. Ecology. 1965, 46: 517-520.
    [141] Rabinowicz D, Rapp J K. Seed rain in a north America n tall grass prairie: The resemblance of their abundance and compositions to dispersing seeds[J]. Oikos. 1980, 36: 191-195.
    [142]杨允菲,祝廷成.草本植物群落种子雨的初步研究[J].植物学通报. 1989, 6(1): 48-51.
    [143]杨允菲,祝廷成.松嫩平原大针茅群落种子雨动态的研究[J].植物生态学与地植物学学报. 1991, 15(1): 46-55.
    [144] Schott G W, Hamburg S P. The seed rain and seed banks of an adjacent tall grass prairie oldfields[J]. Canadian Journal of Botany. 1997, 75:1-7.
    [145]韩有志,王政权.天然次生林中水曲柳种子的扩散格局[J].植物生态学报. 2002, 26(1): 51-57.
    [146]杨允菲.松嫩平原碱化草甸星星草种子散布的研究[J].生态学报. 1990, 10(3): 288-290.
    [147]杨允菲,祝玲.松嫩平原碱化草甸野大麦的种子散布格局[J].植物学报. 1994, 36(8): 636-644.
    [148]杨允菲,祝玲.松嫩平原碱化草甸朝鲜碱茅种子散布机制的分析[J].植物学报. 1995, 37(3): 222-230.
    [149] Bai Y G, Romo J T. Seed production, seed rain, and the seed bank of fringed sagebrush[J]. Journal of Range Management. 1997, 50: 151-155.
    [150] Silva M G, Tabarelli M. Seed dispersal, plant recruitment and spatial distribution of Bactris acanthocarpa Martius (Arecaceae) in a remnant of Atlantic forest in northeast Brazil[J]. Acta Oecologica. 2001, 22: 259-268.
    [151]张玉波,李景文,张昊等胡杨种子散布的时空分布格局[J].生态学报. 2005, 25(8): 1994-2000.
    [152]刘足根,朱教君,袁小兰等.辽东山区长白落叶松(Larix olgensis)种子雨和种子库[J].生态学报. 2007, 27(2): 579-587.
    [153] Molau U, Larsson E L. Seed rain and seed bank along an alpine altitudinal gradient in Swedish Lapland[J]. Canadian Journal of Botany. 2000, 78: 728-747.
    [154] Murell D J. The community-level consequences of seed dispersal patterns[J]. Annual Review of Ecology and Systematics. 2003, 34: 549-574.
    [155]马万里,孙波等.长白山地区胡桃楸种群的种子雨和种子库动态[J].北京林业大学学报. 2001, 23(3): 70-72."
    [156] Shen Z H, Tang Y Y, LüN, et al. Community dynamics of seed rain in mixed evergreen broad-leaved and deciduous forests in a subtropical mountain of central China[J]. Journal of Integrative Plant Biology. 2007, 49(9): 1294-1303.
    [157]刘双,金光泽.小兴安岭阔叶红松(Pinus koraiensis)林种子雨的时空动态[J].生态学报. 2008, 28(11): 5731-5740.
    [158]张健,郝占庆,李步杭等.长白山阔叶红松(Pinus koraiensis)林种子雨组成及其季节动态[J].生态学报. 2008, 28(6): 2445-2454.
    [159]李钢铁,姚云峰,邹受益等.科尔沁沙地榆树疏林草原植被研究[J].干旱区资源与环境. 2004, 18(6): 132-138.
    [160]李永庚,蒋高明,高雷明等.人为干扰对浑善达克沙地榆树疏林的影响[J].植物生态学报. 2003, 27(6): 829-834.
    [161]李钢铁,姚云峰,张德英.科尔沁沙地疏林草原植被恢复技术体系[J].内蒙古农业大学学报(自然科学版). 2005, 26(3): 1-6.
    [162]李法曾,张学杰.中国榆科植物系统分类研究综述[J].武汉植物学研究. 2000, 18(5): 412-416.
    [163] Misao H. Stratigraphic distribution of Hemiptelea(Ulmaceae) pollen from Pleistocene sediments in the Osaka sedimentary basin, southwest Japan. Review of Palaeobotany and Palynology, 2007, 144(3): 287-299
    [164]中国植被编辑委员会.中国植被[M].北京:科学出版社. 1995.
    [165]张继义,赵哈林,张铜会等.科尔沁沙地植被恢复系列上群落演替与物种多样性的恢复动态[J].植物生态学报. 2004, 28(1): 86-92.
    [166]钱宏.长白山高山冻原植物群落的生态优势度[J].生态学杂志. 1990, 9(2): 24-27.
    [167]沈泽昊,吕楠,赵俊.山地常绿落叶阔叶混交林种子雨的地形格局[J].生态学报. 2004, 24(9): 1981-1987.
    [168]王震洪,段昌群,杨建松.半湿润常绿阔叶林次生演替阶段植物多样性和群落结构特征[J].应用生态学报, 2006, 17(9): 1583-1587.
    [169]杜凤国,王欢,刘春强等.天女木兰群落物种多样性的研究[J].东北师大学报(自然科学版), 2006, 38(2): 91-95.
    [170]张玉起,胡连秋,王福祥等.蒙古黄榆优良无性系的选择[J].吉林林业科技, 2004, 33(1): 26-31, 38.
    [171]黄建辉,白永飞,韩兴国.物种多样性与生态系统功能:影响机制及有关假说[J].生物多样性. 2001, 9(1): 1-7.
    [172]左小安,赵学勇,张铜会等.科尔沁沙地榆树疏林草地物种多样性及乔木种群空间格局[J].干旱区资源与环境. 2005, 19(4): 63-68.
    [173]程彬,付晓霞,韩启等.虫害诱导的家榆挥发物对榆紫叶甲寄主选择行为的影响[J].林业科学. 2010, 46(10): 76-82.
    [174]李清雪,李钢铁,王永胜.浑善达克沙地不同立地类型榆树种内竞争分析[J].内蒙古农业大学学报. 2010, 31(3): 304-308.
    [175]韩大勇,杨允菲,李建东.1981-2005年松嫩平原羊草草地植被生态对比分析[J].草业学报. 2007, 16(3): 9-14.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700