用户名: 密码: 验证码:
黔南晚石炭世珊瑚礁生态系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中国南方晚石炭世海域广大,普遍发育了一套台地相碳酸盐岩,黔南是其中的一个代表性地区。该区碳酸盐台地浅水环境非常适宜生物生存,特别是底栖生物大量繁盛,构成了不同类型的造礁生物群落,生物造岩作用十分强烈,生物滩、丘、礁广泛出现,是开展中国南方晚石炭世生物地层和生物礁研究的理想地区。该地区大部分礁体为台地边缘礁,最具代表性的是扁坪村大型组合式珊瑚礁。
     该礁体规模巨大,结构独特,根据产礁岩系特征可划分为上下叠置的3个单元(U1、U2、U3)。其中U1为一点礁层,包括一个蓝细菌泥丘、一个Ivanovia cf. manchurica点礁和一个叶状藻点礁,通过上覆的生物碎屑层与礁主体部分划分开。U2和U3具有相同的岩系特征和类似的生物组成,它们都是由Fomitchevella骨架岩和泥粒岩组成,区别在于U3的生物丰度明显高于U2。
     研究区内造礁生物种类丰富,生态类型多样,成礁方式各异。在扁坪村大型组合式珊瑚礁中主要有造架生物Fomitchevella、造架—障积生物叶状藻,造架—覆盖生物Ivanovia cf. manchurica以及粘结生物蓝细菌。其中Fomitchevella为礁体的主要建造者,它能够通过出芽生殖方式形成笙状或丛状群体,从而建造了不同类型的礁体。群体中间部位的个体较为粗大,边缘部位的则细小,个体的生存能力较强。Ivanovia cf. manchurica群体呈板状,生长方式多样,群体的再生能力很强,参与了U1中的点礁建造。叶状藻是研究区最为重要的造礁生物之一,发育了多种形态,建造了不同类型的礁体,其中包括U1中的叶状藻点礁。另一种群体珊瑚Antheria数量较少,分布较为局限,它是群落演化中的一个过渡角色。蓝细菌是具有粘结功能的自养生物,它是U1中灰泥丘的主要建造者。附礁生物以蜒、腕足类为主,海百合、Tubiphytes、腹足类较为常见,含苔藓虫和少量单体珊瑚。
     该礁体内划分出了6个主要的造礁生物群落,它们具有类似的生物多样性,但群落的生物丰度、空间分层性、关键种的功能作用等各有差异。根据生物的生活习性、功能结构和取食位置,将它们归类为不同的生物群团。自蓝细菌群落向Fomitchevella群落发展,群落的空间分层性越来越明显,对环境的适应能力和对内部生物的调控能力也越来越强。蓝细菌、Tubiphytes、蜓、非蜒有孔虫、腕足类、腹足类生活于群落的下层,海百合、Ivanovia cf. manchurica、Antheria在中层空间取食,Fomitchevella则有着较高的捕食位置。群落的生物组分有所不同,但群落的维持机制基本一致。群落对营养盐的吸收与现代珊瑚礁群落类似,分别适用于一种或多种吸收模型。整个生态系统的能量最终来源于太阳光,藻类、微生物、蓝细菌、Tubiphytes和水体中的溶解有机物构成了初级生产力,能量通过生物间的捕食关系层层传递和损失,最终由分解者释放到水体中,一部分参与循环,绝大多数随水流散失。
     借助于对现代珊瑚礁的研究成果,对扁坪村大型组合式珊瑚礁中的生态关系类型做了详细的分析和研究。腕足类生活于叶状藻的藻丛内部,不仅获取了更多的食物,还可以在藻丛的保护环境中躲避天敌的捕食,它们不存在竞争关系,能够和谐共处,也能单独生存,因此它们是一种特殊的共栖关系。Fomitchevella群体中相邻个体为争夺更多的生长空间、更广的食物来源和更大的采光面积而出现激烈的种间空间竞争,部分个体弯曲、畸形、倾斜,甚至出向侧向的生长现象,它们由此失去了更多的生存资源,最终被直立、粗壮、高大的个体所替代。“未名造礁生物”生长和扩张速度快,攀附缠绕能力强,它们包绕在Ivanovia cf. manchurica的板状群体上,双方在接触带上出现组织加厚,形成主动包绕型的接触关系,“未名造礁生物”剥夺了Ivanovia cf. manchurica的生存资源致其死亡。Fomitchevella的个体占据基底的能力较差,Ivanovia cf. manchurica群体在侧向扩张时尽量避免与其骨架直接接触,而Fomitchevella的群体通过侧芽的方式占据了Ivanovia cf. manchurica的上方空间,从而对其形成遮蔽,二者形成了避让遮蔽型的空间竞争,最终Fomitchevella成为优势者。叶状藻对生存于藻丛中的零星Fomitchevella个体形成数量压倒型的空间竞争,竞争结果因环境条件而异。Ivanovia cf. manchurica发育在叶状藻建造的基底上,而后又被叶状藻覆盖,出现了交互式的群落替代;Ivanovia cf. manchurica群落中出现了Fomitchevella的先驱个体,后来二者的角色发生了交换,最后Fomitchevella完全成为主导者,形成了渐变式的群落替代。Fomitchevella-1群落向Fomitchevella-2群落转变的过程中,生物组成和比例出现了一定的调整,使群落的结构更加合理,对环境的适应能力更强,因此实质上是一种群落的更新。
     礁体的发育与群落的演化关系密切,整个发育过程可划分为四个阶段,每个阶段都包含了群落形成、发展、衰退等状态的改变。前两个阶段建造了点礁层,后两个阶段建造了礁主体。水体的营养程度和沉积速率控制着礁体的生长速度,在一定限度内它们成正相关关系,当这些环境条件出现突变时礁体往往会停止生长。
Carbonate rocks of plateau facies well developed in vast sea area of southern China in Late-Carboniferous, and the south of Guizhou Province was a representative region. Shallow water environment on the carbonate platform was quite favourable for organisms, especially the benthic organisms, and as a result different types of reef-building communities formed. Lithogeneous process of these organisms is intensive with organic banks, bioherms and reefs built widely, and thus it is an ideal region to study Late-Carboniferous biostratum and reef of South China. Most of these reefs developed on the platform margin, and the large-scale reef complex is the mostly representative one.
     The reef complex has a large size and a special architectural structure, and 3 superimposed units, U1, U2 and U3 could be recognized according to features of reef rocks. U1 is a patch reef layer involving a mud mound built by cyanobacteria, an Ivanovia cf. manchurica patch reef and a phylloid algae patch reef, and it is separated from mainbody of the reef by an overlying bioclast layer. U2 has an identical lithology and a similar biological composition with U3, that is, both of them are composed of Fomitchevella framestone and packstone, the difference is that abundance of organisms in U3 is much higher than that in U2.
     In the study region, the reef-building organisms are various in genera and ecotype, and their reef-building modes are diversefied. In the large-scale coral reef complex in Bianping Village, these reef-building organisms mainly include:1) Fomitchevella, frame builder; 2) phylloid algae, frame-builder and baffler; 3) Ivanovia cf. manchurica, frame-builder and covering organism; and 4) cyanobacteria, binding organism. Fomitchevella is the dominant constructor of the reef complex who grows into a phaceloid or fasciculate colony through budding and then builds reefs of diverse types. The skeletons of Fomitchevella individuals are large in the centre of the colony while small on the edge, and the individuals are viable. Ivanovia cf. manchurica develops a tabular colony and various growth forms. Their colonies get a strong power of regeneration and make a great contribution to the formation of U1. Phylloid algae is one of the most important builders in the study region which has diverse morphologies and builds different types of reefs, including the phylloid algae patch reef in U1. The other genera of colonial coral-Antheria has a low abundance and a limited distribution, and it plays a transitional role in community evolution. Cyanobacteria is a sort of autotroph with binding function, and it is the main builder of mud mound in U1. Fusulinids and brachiopods are the most common dwellers, followed by crinoids, Tubiphytes and bivalves, while bryozoans and solitary corals are few.
     Six reef-building communities are recognised in the reef complex, which are similar in biological diversity while different in abundance of benthos, vertical spacial zonation, impacts of the key species and so on. The organisms are divided into various groups according to their life habits, fuctions and feeding positions. The vertical zonation becomes more and more notable along with evilution of these communities. Their adaptability to the evironment and control on organisms also get an obvious development. Cyanobacteria, Tubiphytes, fusulinids, foram, brachiopods and gastropods live in the lower part of the communities, while rinoids, Ivanovia cf. manchurica and Antheria in the middle part and Fomitchevella in the upper part. The biological components of these communities are different but the maintaining mechanisms are generally accordant.
     Nutrient absorbing of the communities is similar to that of extant coral reef community, and one or more absorption models may be available. The energy of the whole ecosystem is derived from sunlight ultimately. Algaes, microbes, cyanobacteria, Tubiphytes and deliquescent organic materials in the water constitute the primary productivity. Energy is transferred and lost gradually through predation between organisms, and finally released into the water by decomposers. Part of the energy recycles in the ecosystem, and most is dispersed with the waterflow.
     Ecological relationships in the coral reef complex in Bianping Village are analysed and studied based on research findings of extant reefs. Brachiopods lived in the mats of phylloid algae, which enabled them to get more food and also avoid being hunted by natural enemies. They could coexist without competition or live independently, and thus they were in a special relationship of commensal. In order to get more space for growth, source of food and larger lighting area, the individuals in Fomitchevella colony always competed intensely with their neigbours, resulting in some bent, misshapen, inclined or even lateral individuals. As a result, these individuals lost more living resources and would be finally replaced by those erect, strong and long ones. The "unamed reef-building organisms" grew and expanded at a high rate and were good at en winding. They wraped on the colony of Ivanovia cf. manchurica, and both of them thickened tissues on the contact zone, and as a result an aggressive-wraping relationship was formed. The "unamed reef-building organisms" deprived Ivanovia cf. manchurica of living resources and would finally lead to its death. When laterally expanding, Ivanovia cf. manchurica would as much as possible avoid direct contact with individual skeletons of Fomitchevella, who was not good at occupying the substrate but could take up the space above Ivanovia cf. manchurica throgh laterally budding and overshaded it. Then an off-overshading spatial competition was formed and Fomitchevella would be the dominant at last. An overwhelming spatial competition was formed by phylloid algae and a few Fomitchevella individuals lived in the algae mat, but the outcomes would be various with the influences of environmental conditions. Ivanovia cf. manchurica lived on substrate built by phylloid algae and the was covered by phylloid algae, which suggested an alternate community replacement. Some outrunners of Fomitchevella initialized in Ivanovia cf. manchurica community and then overthrew the former dominantor and finally a gradual replacement occurred. Fomitchevella-1 community evolved into Fomitchevella-2 community, during which adjustments on biological composition and proportion occurred to make the community structure was more appropriate with high adaptability to the environment. Thus this was actually an update of community.
     Development of the reef is closely related to community evolution. The whole formation process could be divided into four stages and each stage involved transformation of initialization, development and decline of the communities. The patch reef layers were built in the first two stages, while the main body of the reef was built in the last two stages. Growth rate of the reef was controlled by both nutrient levels and sedimentation rate, and in a certain extent they were positively correlated. The reef would stop growing when environmental conditions changed abruptly.
引文
1.范嘉松,张维.生物礁的基本概念、分类及识别特征[J],岩石学报,1985,(3):45-59.
    2.范嘉松.古生代生物礁研究中的若干问题,兼论我国西南地区二叠纪生物礁类型[J],石油与天然气地质,1988,9(1):46-54.
    3.范嘉松.中国古生代生物礁研究的基本状况与今后的发展方向[M],中国生物礁与油气,北京:海洋出版社,1996,326-329.
    4.钟建华,温志峰,李勇,郭泽清,王海侨,柳祖汉,冀国盛,吴孔友.生物礁的研究现状与发展趋势[J],地质论评,2005,51(3):288-300.
    5. Heckel P H. Carbonate buildups in the geologic record:a review [J], In:Laport L F. (ed.), Reefs in Time and Space, SEPM (Soc. Sediment. Geol.) Spec. Publ., Tulsa,1974,18:90-155.
    6. Flugel E, Kiessling W. A new look at ancient reefs [J], In:Kiessling W, Flugel E, Colonka J. (eds.), Phanerozoic Reef Patterns, SEPM Special Publication, Tulsa,2002,72:3-20.
    7. Riding R. Structure and composition of organic reefs and carbonate mud mounds:concepts and categories [J], Earth-Science Reviews,2002,58(1-2):163-231.
    8. Wood R. The ecological evolution of reefs [J], Annu. Rev. Ecol. Syst,1998,29:179-206.
    9. Ross C A, Ross J R P. Carboniferous and early Permian biogeography [J], Geology,1985,13:27-30.
    10.刘本培,金秋琦.地史学教程[M],北京:地质出版社,1996,137-183.
    11.王俊达,李华梅.贵州石炭纪古纬度与铝土矿[J],地球化学,1998,27(6):575-578.
    12.王成文.晚石炭世腕足动物古生物地理区形成机制—环境控制论[J],吉林地质,1994,13(2):13-21.
    13.王鸿祯.中国古生代珊瑚分类演化及生物古地理[M],北京:科学出版社,1989,1-391.
    14.赵自强,丁启秀.中南区区域地层[M],武汉:中国地质大学出版社,1996,71-123.
    15. Enos P, Wei J Y, Lehrmann D J. Death in Guizhou-Late Triassic drowning of the Yangtze carbonate platform [J]. Sedimentary Geology,1998,118(1-4):55-76.
    16.梅冥相,马永生,邓军,初汉民,刘智荣,张海.滇黔桂盆地及其邻区石炭纪至二叠纪层序地层格架及三级海平面变化的全球对比[J],中国地质,2005,32(1):13-24.
    17.秦建华,吴应林,颜仰基,朱忠发.南盘江盆地海西—印支期沉积构造演化[J],地质学报,1996,70(2):99-107.
    18.王增吉.中国的石炭系[M],北京:地质出版社,1990,215-248.
    19.贵州省区域地质矿产局.贵州省区域地质志[M],北京:地质出版社,1987,164-194.
    20.张正华,王治华,李昌全.黔南二叠纪地层[M],贵阳:贵州人民出版社,1988.
    21.刘宝珺,许效松,潘杏南.中国南方古大陆沉积地壳演化与成矿[M],北京:科学出版社,1993,1-288.
    22.刘宝珺,许效松.中国南方岩相古地理图集(震旦纪—三叠纪)[M],北京:科学出版社,1993,126-144.
    23.曾允孚,张锦泉,刘文均.中国南方泥盆纪岩相古地里与成矿作用[M],北京:地质出版社,1994,1-120.
    24.陈宏明,吴祥和.中国南方石炭纪岩相古地理与成矿作用[M],北京:地质出版社,1994,1-118.
    25.冯增昭,杨玉卿,鲍志东.中国南方石炭纪岩相古地理[J],古地理学报,1999,1(1):76-86.
    26.焦大庆,马永生,邓军.黔桂地区石炭纪层序地层格架及古地理演化[J],现代地质,2003,17(3):294-302.
    27.巩恩普,关长庆,孙宝亮,姚玉增.黔南地区石炭纪大型珊瑚礁研究[J],中国科学(D辑),2003,33(7):644-649.
    28. Fan J S, Rigby J K. Upper Carboniferous phylloid algal mounds in southern Guizhou, China[J], Brigham Young University Geology Studies,1994,40:17-24.
    29.张永利,巩恩普,关长庆,Samankassou E,孙宝亮.贵州紫云石炭纪叶状藻礁:藻类繁盛的标志[J],沉积学报,2007,25(3):177-182.
    30. Wilson J L. Carbonate facies in geological history [M], Berlin Heideberg New York:Spring-Verlag, 1975,1-471.
    31.孙宝亮,巩恩普,关长庆,姚玉增,张永利.贵州紫云扁平村石炭纪珊瑚礁剖面微相分析与沉积相[J],沉积学报,2007,6(3):351-357.
    32.戎嘉余,詹仁斌.奥陶纪末集群灭绝后腕足动物复苏的主要源泉—论先驱型生物的分类[J],中国科学(D辑),1999,29(3):232-239.
    33. Sorauf J E, Pedder A E H. Late Devonian rugose corals and the Frasnian-Famennian crisis [J], Canadian Journal of Earth Sciences,1986,23(9):1265-1287.
    34. Sorauf J E. Rugosa and the Frasnian-Famennian extinction event:a progress report [J], Memoir of the Association of Australasian Palaeontologits,1989,8:327-338.
    35.廖卫华.泥盆纪最早期和最晚期珊瑚群研究的进展—兼论泥盆纪珊瑚的绝灭、复苏及其底栖组合[J],古生物学报,1997,36(2):143-150.
    36.廖卫华.中国晚泥盆世F/F生物集群灭绝事件及其后的生物复苏的研究[J],中国科学(D辑),2001,31(8):663-667.
    37.乐森璕.中国石炭纪的一些四射珊瑚新属种[J],古生物学报,1962,9(1):1-10.
    38.方少仙,侯方浩.广西田林县浪平碳酸岩台地石炭纪沉积环境及大塘期苔藓虫—珊瑚点礁[J],沉积学报,1986,4(3):30-42.
    39.方少仙,侯方浩.广西田林县浪平公社甘洞子石炭纪大塘期的苔藓虫—珊瑚格架礁[J],西南石油学院院报,1985,(4):1-15.
    40.张维,张孝林.中国南方二叠纪生物礁与古生态[M],北京:地质出版社,1992,1-125.
    41.俞建章,林英铴,时言,黄柱熙,俞学光.石炭纪二叠纪珊瑚[M],长春:吉林人民出版社,1983,17-354.
    42.郭胜哲.辽宁省东部及南部中、晚石炭世珊瑚化石[J],中国地质科学院沈阳地质矿产研究所所刊,1987,15:99-113.
    43.关长庆.黔南晚石炭世生物礁类型及其生长发育特征[D],东北大学学位论文,2007.
    44.关长庆,巩恩普,张永利,孙宝亮.黔南晚石炭世造礁珊瑚Ivanovia cf. manchurica古生态特征及成礁机制探讨[J],地质论评,2006,52(2):178-183.
    45. Pray L C, Wray J L. Porous algal facies (Pennsylvanian), Honaker Trail, San Juan Canyon, Utah [J], In: Shelf Carbonates of the Paradox Basin, Four Corners Geol. Soc. Symp.,4th Field Conf.,1963,204-234.
    46. Konishi K, Wray J L. Eugonophyllum, a new Pennsylvanian and Permian algal genus [J], Journal of Paleontology,1961,35:659-667.
    47. Torres A M, Baars D L. Anchicodium Johnson:branched or phylloid? [J], Journal of Paleontology,1992, 66(4):675-677.
    48.范嘉松,吴亚生.世界二叠纪生物礁的基本特征及其古地理分布[J],古地理学报,2005,7(3):287-304.
    49. Wray J L. Late Paleozoic phylloid algal limestone in the United States [J], Proceedings International Geological Congress, Report of 23rd Session-Genesis and Classification of Sedimentary Rocks, Prague, 1968:113-119.
    50. Torres A M, West R R, Sawin R S. Calcipatera cottonwoodensis, a new membranous Late Paleozoic calcareous alga [J], Journal of Paleontology,1992,66(4):678-681.
    51. Torres A M. Ivanovia tebagaensis was a cyathiform Permain Codiacean membranous algae with dimorphic cortices [J], J. Paleontol,1995,69:381-387.
    52. Torres A M. Reconstruction of a cyathiform Eugonophyllum, Upper Pennsylvanian, Palo Pinto County, Texas [J], J. Paleontol,1997,71:493-499.
    53. Torres A M. A three-dimensional CT (CAT) scan through a rock with Permian alga Ivanovia tebagaensis [J], J. Paleontol,1999,73(1):493-499.
    54. Torres A M. Sexual reproductive structures in the green alga Ivanovia triassica [J], Lethaia,2003,36(1): 33-40.
    55. Kirkland B L, Moore C H, Dickso J A D. Well preserved, aragonitic phylloid algae(Eugonophyllum, Udoteaceae) from the Pennsylvanian Holder Formation, Sacramento Mountains, New Mexico [J], Palaios, 1993,8(1):111-120.
    56. Forsythe G T W, Wood R, Dickson J A D. Mass spawning in ancient reef communities:evidence from Late Paleozoic phylloid algae [J], Palaios,2002,17(6):615-621.
    57. Toomey D F. Paleosynecology of a Permian plant dominated marine community [J], Neues Jahrb Geol Palaontol Abhandlung,1976,152:1-18.
    58.弗吕格尔主编,曹瑞骥,齐文同,石永泰,周明鉴,李增全,苏宗伟,张汝玫,谢洪源译.化石藻类[M],北京:科学出版社,1984,165-171.
    59. Wilson J L. Regional distribution of phylloid algal mounds in Late Pennsylvanian and Wolfcamp strata of southern New Mexico [J], In:Butler J. (ed.), Geology of the Sacramento Mountains, Otero County, New Mexico, West Texas Geol. Soc. Publ.,1977,77-68:1-7.
    60. Toomey D F, Babcock J A. Precambrian and Paleozoic algal carbonates, west Texas-southern New Mexico [J], Colo. Sch. Min. Prof. Contrib,1983,11:1-345.
    61. Bowsher A L. Late Paleozoic reef complexes of the northern Sacramento Mountains, New Mexico [J], American Association of Patroleum Geologists, Southwest Section, Transaction of Petroleum Geologists, Southwest Section,1986,49-72.
    62. Roylance M H. Depositional and diagenetic history of Pennsylvanian algal-mound complex:Bug and Papoose Canyon fields, Paradox basin, Utah and Colorado [J], Am. Assoc. Pet. Geol. Bull.,1990,74: 1087-1099.
    63. Toomey D F. Late Pennsylvanian phylloid-aglal bioherms, Orogrande Basin, South-Central New Mexico and West Texas [J], New Mexico Geological Society Guidebook42,1991,213-220.
    64. Wahlman G P. Upper Carboniferous-Lower Permian (Bashkirian-Kungurian) mounds and reefs [J], In: Kiessling W, Flugel E, Golonka J. (eds.), Phanerozoic reef patterns, SEPM Special Publications,2002,72: 271-338.
    65. Flugel E. Microfazielle Untersuchungsme thoden vonkalken [M], Berlin, Springer, Abb. Schrifttum, 1978,1-454.
    66. Toomey D F, Wilson J L, Rezak R. Evolution of Yucca mound complex, late Pennsylvanian phylloid-Algal buildup, Sacramento Mountains, New Mexico [J], Am. Assoc. Petrol. Geologists Bull.,1977, 61:2115-2133.
    67. Krainer K, Flugel E, Vachard D, Joachimski M M. A close look at late Carboniferous algal mounds: Schulterkofel, Carnic Alps, Austria [J], Facies,2003,49:325-350.
    68. Gong E P, Samankassou E, Guan C Q, Zhang Y L, Sun B L. Paleoecology of Pennsylvanian phylloid algal buildups in south Guizhou, China [J], Facices,2007,53:615-623.
    69. Martin J, Braga J, Riding R. Late Miocene Halimeda alga-miceobial segment reefs in the marginal Mediterranean Sorbas Basin, Spain [J], Sedimentology,1997,44:441-456.
    70. Beauchamp B, Davies G R, Nassichuk W W. Upper Carboniferous to lower Permain Palaeoaplysina-phylloid algal buildups, Canadian Arctic Archipelago [J], Canadian Society of Petroleum Geologists,1989, 13:590-599.
    71. Harrison P L, Babcock R C, Bull G D, Oliver J K, Wallace C C, Willis B L. Mass spawning in tropical reef corals [J], Science,1984,223:1186-1189.
    72. Jackson J B C. Modes of dispersal of clonal benthic invertebrates:consequences for species' distribution and genetic structure of local populations [J], Bulletin of Marine Science,1986,39:588-606.
    73. Baars D L, Torres A M. Late Paleozoic phylloid algae-a pragmatic review [J], Palaios,1991,6: 513-515.
    74. Chisholm J R M, Kelley R. Worms start the reef-building process [J], Nature,2001,409:152.
    75. Heckel P H, Cocke J M. Phylloid algal-mound complexes in outcropping Upper Pennsylvanian rocks of Mid-Cotinent [J], AAPG Bull.,1969,53:1058-1074.
    76. Crowley D J. Algal-bank complex in Wyandotte Limestone (Late Pennsylvanian) in eastern Kansas [J], Kansas Geol. Surv. Bull.,1969,198:1-52.
    77. Pol J C. Sedimentation of an Upper Pennsylvanian (Virgilian) phylloid algal mound complex, Hueco Mountains, El Paso country, west Texas [J], In:Toomey D F, Nitecki M H. (Eds.), Paleoalgology: contemporary research and applications. New York, Springer,1985,188-207.
    78. Flugel E. Paleoecology and microfacies of Permian, Triassic and Jurassic algal communities of platform and reef carbonates from the Alps [J], Bull Centres Recherch Explor-Product Elf-Aquitaine,1979,3: 569-587.
    79. Pickett J W, Wu W S. The succession of Early Carboniferous coral faunas in eastern Australia and China [J], Alcheringa,1990,14:89-108.
    80. Samankassou E. Upper Carboniferous-Lower Permian buildups of the Carnic Alps, Austria-Italy [J], In: Ahr W M, Harris P M, Morgan W A, Somerville I D. (Eds.), Permo-Carboniferous platforms and reefs. SEPM/AAPG Spec. Publ.,2003,78:201-217.
    81. Hay M E. Calcified seaweeds on coral reefs:complex defenses, trophic relationships, and value as habitats [J], Proceedings of the 8th International Coral Reef Symposium, Panamy City, Panama, June 1996, 1997, vol 1:713-718.
    82. Samankassou E, West R R. Construction versus accumulation in phylloid algal mounds:an example of a small constructed mound in the Pennsylvanian of Kansas, USA [J], Palaeogeography, Palaeoclimatology, Palaeoecology,2002,185:379-389.
    83. Boucher G, Clavier J, Hily C, Gattuso J P. Contribution of soft-bottom to the community metabolism (primary production and calcification) of a barrier reef flat (Moorea, French Polynesia) [J], Journal of Experimental Marine Biology and Ecology,1998,225:269-283.
    84. Taylor P D, Wilson M A. Palaeoecology and evolution of marine hard substrate communities [J], Earth-Science Reviews,2003,62:1-103.
    85. Braga J C, Martin J M, Riding R. Internal structure of segment reefs:Halimeda algal mounds in the Mediterranean Miocene [J], Geology,1996,24:35-38.
    86. Wray J L. Archaeolithophyllum, an abundant calcareous algae in limestones of the Lansing Group (Pennsylvanian), southeastern Kansas [J], Kansas Geological Survey Bulletin,1964,170:1-13.
    87. Jackson J B C, Coates A G Life cycles and evolution of clonal (modular) animals [J], Philosophical transactions of the Royal Society of London,1986, B313:7-22.
    88.刘本培,李儒峰,尤德宏.黔南独山石炭系层序地层及麦粒蜓带冰川型全球海平面变化[J],地球科学,1994,19(5):553-564.
    89. Toomey D F. History of a Late Carboniferous phylloid algal bank complex in northeastern New Mexico [J], Lethaia,1980,13:249-267.
    90. Toomey D F. Paleosynecology of a Permian plant dominated marine community [J], Neues Jahrb Geol Palaontol Abhandlung,1976,152:1-18.
    91. Forsythe G T W. A new synthesis of Permo-Carboniferous phylloid algal reef ecology [J], SEPM Spec Publ,2003,78:171-188.
    92.巩恩普.中国石炭纪生物礁基本特征及其发育规律[D],东北大学出版社,1995.
    93.常洪伦,董旭明,巩恩普,关长庆,张永利,孙宝亮,杨丽丽,李金梅.黔南晚石炭世珊瑚礁生态系统研究[J],沉积学报,2008,26(6):904-912.
    94.中国科学院南京地质古生物研究所.西南地区地层古生物手册[M],北京:科学出版社,1974,40-285.
    95.贵州地层古生物工作队.西南地区古生物图册—贵州分册(二)[M],北京:地质出版社,1978,12-304.
    96.地质矿产部宜昌地质矿产研究所.长江三峡地区生物地层学(3)晚古生代分册[M].北京:地质出版社,1984,110-239.
    97.天津地质矿产研究所.华北地区古生物图册(古生代分册)[M],北京:地质出版社,1985,239-260.
    98.陈旭,王建华.广西宜山地区晚石炭世马平组的蜓类[M],中国古生物志,总号第164册,新乙种第19号,1983,1-133.
    99.河北煤田地质勘探公司.河北晚古生代有孔虫生物地层[M],北京:科学出版社,1991,35-132.
    100.丁蕴杰.贵州普安沙子塘组珊瑚化石新资料兼论石炭—二叠系界线[J],中国地质科学院天津地质矿产研究所所刊,1986,16:123-164.
    101.关长庆,巩恩普,姚玉增,孙宝亮.黔南扁平村晚石炭世生物礁生物群落分析[J],古地理学报,2004,6(3):339-346.
    102. Rauser-Chernoussova D M. Facies of Upper Carboniferous and Artinskian deposits in the Sterlitamark-Ishimbaevo regions of the Pre-Urals, based on a study of fusulinids [J]. Trudy Akad Nauk S. S. S. R, Ser. Geo.1,1951,43:10.
    103. Maslov V P. Fossil calcareous algae of the U. S. S. R [J]. Akad Nauk S. S. R., Trudy, Inst. Geo.l Nark 160,1956,301.
    104. Toomey D F. Croneis C. Gunsight (Virgilian) Wewokellid sponges and their depositional environment [J]. Journal of Paleontology,1965,39:1-16.
    105. Fliigel E. Lower Permian Tubiphytes/Archaeolithoporella buildups in the Southern Alps (Austria and Italy) [J]. Soc. Econ. Paleont. Min. Spec. Pub.1,1981,30:143-160.
    106. Flugel E, Kochansky-Devide V, Ramovs A. A Middle Permian calcisponge/algal/cement reef strata near Bled, Slovennia [J]. Facies,1984,10:179-256.
    107.穆西南.贵州西部上石炭统的钙藻化石[J],古生物学报,1981,20(1):33-48.
    108.巩恩普.中国石炭纪生物礁[M],沈阳:东北大学出版社,1997:1-112.
    109. Wang S H, Fan J S, Rigby J K. Archaeolithoporella and Tubiphytes affinties and paleoecology in Permian reefs of South China [J]. Science in China Series B,1994,37(6):723-743.
    110. Riding R, Guo L. Affinity of Tubiphytes [J]. Paleontology,1992,34:37-49.
    111. Flugel E. Microfacies of carbonate rocks, analysis, interpretation and application [M]. Berlin: Springer-Verlag,2004:568-570.
    112. Senowbari-Daryan B, Flugel E. Tubiphytes Maslov, an enigmatic fossil classification, fossil record and significance through time [J]. Bollettino della Societa Paleontologica Italiana,1993, Special Volume 1: 353-382.
    113. Shen J W, Xu H L. Microbial carbonates as contributors to Upper Permian (Guadalupian-Lopingian) biostromes and reefs in carbonate platform margin setting, Ziyun County, South China [J]. Palaeogeography, Palaeoclimatology, Palaeoecology,2005,218:217-238.
    114. Tian S G, Fan J S. Early-Middle Permian reef frameworks and reef-building models in the Eastern Kunlun Mountains [J]. Acta Geologica Sinica,2001,75(2):115-125.
    115. Wang Y B, Zhang K X, Gong Y M, et al. The discovery of Early Permian reef belt in east Kunlun and its significance [J], Chinese Science Bulletin,1998,43(11):947-95.
    116.巩恩普,张永利,关长庆,孙宝亮.黔南石炭纪生物礁造礁群落的基本特征[J],地质学报,2007,81(9):1183-1194.
    117.张雄华.黔南紫云、晴隆晚石炭世及早二叠世四射珊瑚[J],古生物学报,2002,41(2):283-294.
    118.吴望始,赵嘉明.石炭纪珊瑚:西南地区地层古生物手册[M],北京:科学出版社,1974,265-273.
    120. Turpaeva E P. Food interrelationships of dominant species in marine benthic biocoenoses [M],1948, 137-148. In:Nikitin, B.N.(ed):Transa, Inst. Oceanol., Mar. Biol. USSR Acad. Sci. Press 20. (Published in U.S. by Amer. Inst. Biol. Sci., Wash., D.C.)
    121. Walker K R. Trophic analysis:a method for studying the function of ancient aommunities [J], J. Paleontology,1972,46:82-93.
    122.杨式溥.古生态学—原理与方法[M],北京:地质出版社,1993.
    123. Nagle D G, Paul V J. Chemical defense of a marine cyanobacterial bloom [J], J Exp Marine Biol. Ecol., 1998,225:29-38.
    124. Zhang Y L, Gong E P, Wilson M A, Guan C Q, Sun B L, Chang H L. Paleoecology of a Pennsylvanian encrusting colonial rugose coral in south Guizhou, China [J], Palaeogeography, Palaeoclimatology, Palaeoecology,2009,280:507-516.
    125. Toomey D F, Winland H D. Rock and biotic facies associated with Middle Pennsylvanian (Desmoinesian) algal buildup, Nena Lucia Field, Nolan County, Texas [J], American Association of Petroleum Geologists Bulletin,1973,57:1053-1074.
    126. Pray L F, Wray J L. Porous algal facies (Pennsylvanian), Honaker Trail, San Juan Canyon, Utah [J], In: Bass R O, Sharps S L. (Eds.), A Symposium-Shelf Carbonates of the Paradox Basin, Four Corners Geological Society, Fourth Field Conference,1963,204-234.
    127. Gray R S. Cache field:a Pennsylvanian algal reservoir in southwestern Colorado [J], AAPG Bull., 1967,51:1959-1978.
    128. Toomey D F. Late Permian reefs of southern Tunisia:facies patterns and comparison with the Capitan reef, southwestern United Status [J]. Facies,1991,25:119-146.
    129. Samankassou E, West R R. Constructional and accumulational modes of fabrics in selected Pennsylvanian algal-dominated buildups in eastern Kansas, Midcontinent, USA [J], In:Ahr W M, Harris P M, Morgan W A, Somerville I D. (Eds.), Permo-Carboniferous platforms and reefs. SEPM/AAPG Spec Publ,2003,78:219-237.
    130. Paul V J. Secondary metabolites and calcium carbonate as defenses of calcareous algae on coral reefs. In:Proceedings of the 8th International Coral Reef Symposium, Panama City, Panama June 1996,1997, vol I:707-712.
    131.杨丽丽,巩恩普,张永利,常洪伦.海洋物理化学因素对造礁珊瑚生长的影响[J],东北大学学报(自然科学版),2010,31(12):1765-1768.
    132.王向东.论四射珊瑚的内生长线—以新疆早二叠世Kepingophyllum aksuense Wu et Zhou为例[J],古生物学报,1993,32(3):346-354.
    133.王国忠.全球海平面变化与中国珊瑚礁[J],古地理学报,2005,7(4):483-492.
    134.苏瑞侠,孙东怀.南海北部滨珊瑚生长的影响因素[J],地理学报,2003,58(3):442-451.
    135.张江勇,余克服.珊瑚骨骼生长研究评述[J],地质论坪,54(3):362-372.
    136. Stromgren T. The effect of light on the growth rate of intertidal Acropora pulchra (Brook) from Phuket, Thailand, latitude 8°N [J], Coral Reefs,1987,6:43-47.
    137. Isdale P. Fluorescent bands in massive corals record centuries of coastal rainfall [J], Nature,1984,310: 578-579.
    138. Patzold J. Growth rhythms recorded in stable isotopes and density bands in the reef coral Porites lobata (Cebu, Philippines) [J], Coral Reefs,1984,3:87-90.
    139.施祺,张叶春,孙东怀.海南岛三亚滨珊瑚生长率特征及其与环境因素的关系[J],海洋通报,2002,21(6):31-38.
    140. Barnes D J, Devereux M J. Variations in skeletal architecture associated with density banding in the hard coralPorites [J], Journal of Experimental Iviarine Biology and Ecology,1988,121:37-54.
    141. Olivier N, Lathuiliere B, Thiry-Bastien P. Growth models of Bajocian coral-microbialite reefs of Chargey-les-Port (eastern France):palaeoenvironmental interpretations [J], Facies,2006,52:113-127.
    142. Markus B, Enzo I. Late Jurassic coral/microbial reefs from the northern Paris Basin-facies, palaeoecology and palaeobiogeography [J], Palaeogeography, Palaeoclimatology, Palaeoecology,1998,139: 139-175.
    143. Emmanuelle V, Jean-Marie R, Christian C, Marie-Madeleine B, Antonio C, Vincent R. Paleoecological constraints on reef-coral morphologies in the Tortonian-early Messinian of the Lorca Basin, SE Spain [J], Palaeogeography, Palaeoclimatology, Palaeoecology,2004,213:163-185.
    144. Rowan R, Powers D. Molecular genetic identification of symbiotic dinoflagellates (zooxanthellae) [J], Mar. Eco.l Prog. Ser.,1991,71:65-73.
    145. Rowan R, Knowlton N. Interspecific diversity and ecological zonation in coral-algal symbiosis [J], Proc. Natl. Acad. Sci. USA,1995,92:2850-2853.
    146. Rowan R, Knowlton N, Baker A, Jara J. Landscape ecology of algal symbionts creates variation in episodes of coral bleaching [J], Nature,1997,388:265-269.
    147. Yamano H, Miyajima T, Koike I. Importance of foraminifera for the formation and maintenance of a coral sand cay:Green Island, Australia [J], Coral Reefs,2000,19:51-58.
    148.李淑,余克服.珊瑚礁白化进展研究[J],生态学报,2007,27(5):2059-2069.
    149. Trench R K. The Cell Biology of Plant-Animal Symbioses [J], Ann. Rev. Plant Physiology,1979,30: 485-531.
    150. Loh W, Carter D A, Hoegh-Guldberg O. Diversity of zooxanthellae from scleractinian corals of One Tree Island (Great Barrier Reef) [J], Proceedings of Australian Coral Reef Society 75th Annual Conference, 1997,141-150.
    151. Loh W K W, Loi T, Carter D, Hoegh-Guldberg O. Genetic variability of the symbiotic dinoflagellates from the wide ranging coral species, Seriatopora hystrixand Acropora longicyathus, in the Indo-West Pacific [J], Mar Ecol Prog Ser.,2001,222:97-107.
    152. Chao L, Chen A, Yang Y W, et al. Symbiont diversity in scleractinian corals from tropical reefs and subtropical non-reef communities in Taiwan [J], Coral Reefs,2005,24:11-22.
    153. Toller W W, Rowan R, Knowlton N. Zooxanthellae of the Montastraea annularis species complex: patterns of distribution of four taxa of Symbiodinium of different reefs and across depths [J], Biol Bull, 2001,201:348-359.
    154. Hoegh-Guldberg O. Climate, coral bleaching and the future of the world's coral reefs [J], Mar Freshw Res.,1999,50:839-866.
    155. Takabayashi M, Carter D A, Ward S, et al. Inter-and intra-specific variability in ribosomal DNA sequence in the Internal Transcribed Spacer Regions of Corals [J], Proceedings of Australian Coral Reef Society 75th Annual Conference,1997,237-244.
    156.朱葆华,王广策,黄勃,曾呈全.温度、缺氧、氨氮和硝氮对3种珊瑚白化的影响[J],科学通报,2004,49(17):1743-1748.
    157.王丽荣,赵焕庭.珊瑚礁生态系的一般特点[J],生态学杂志,2001,20(6):41-45.
    158.王丽荣,赵焕庭.珊瑚礁生态学的研究现状和展望[J],海洋科学,2002,26(3):20-23.
    159.常洪伦,巩恩普,关长庆,杨丽丽.黔南石炭纪珊瑚礁与南海现代珊瑚礁的对比研究[J],东北大学学报(自然科学版),2009,30(11):1666-1669.
    160. Hallock P, Schlager W. Nutrient excessand the demise of coral reefs and carbonate platforms [J], Palaios,1986,1:389-398.
    161. D'Elia C F, Wiebe W J. Biogeochemica! nutrient cycles in coral reef ecosystem, In:Dubinsky Z editor. Ecosystems of the world [J], Coral Reefs,1990,25:49-74.
    162. Rougerie F, Fagerstrom J A, Chantal Andrie. Geothermal endo-up-welling:a solution to the reef nutrient paradox?[J], Continental Shelf Research,1992,12(7/8):785-798.
    163. Atkinson M J, Bilger R W. Effects of water velocity on phosphate in coral reef communities [J], Limnology and Oceanography,1992,37:273-279.
    164. Atkinson M J. Productivity of Enewetak Atoll reef flats predicted from mass transfer relationships [J], Continental Shelf Research,1992,12(7/8):799-807.
    165.宋金明.维持南沙珊瑚礁生态系统高生产力的新观点—拟流网理论[J],海洋科学集刊,1999,41:79-85.
    166.赵卫东,宋金明,李鹏程,牟晓真.珊瑚礁生态系统的协同营养模式[J],中国科学基金,2001,(1):32-35.
    167. Delesalle B, Sournia A. Residence time of water and phytoplankton biomass in coral reef lagoons [J], Continental Shelf Research,1992,12(7/8):939-949.
    168. Smith S V, Kinsey D W. Why don't budgets of energy, nutrients and carbonates always balance at the level of organisms, reefs and tropical oceans? [J], An overview. Proceedings of the 6th International Coral Reef Symposium, Townsvillo,1998,1:115-121.
    169. Webb K L, DuPaul W D, Wiebe W, et al. Enewetak (Enewetok) atoll:aspects of the nitrogen cycle on a soral reef [J], Limnol.Oceanogr,1975,20:198-210.
    170. Willians P J le B. Incorporation of microheterotrophic processes into the classical paradigm of the planktonic food web. Kiel [J], Meeresforsch,1981,5:1-28.
    171. Sorokin Y I. Plankton in the reef ecosystems [A], In:Dabinsky, Z.(eds). Ecosystems of the World 25. Coral Reefs [C], Amsterdam:Elsevier Science Publishers,1990,291-327.
    172.吴成业,张建林,黄良民.南沙群岛珊瑚礁泻湖及附近海区春季初级生产力[J],热带海洋学报,2001,20(3):59-67.
    173.周灿芳.植物群落动态研究进展[J],生态科学,2000,119(12):53-59.
    174.王伯荪.植物群落学[M],北京:高等教育出版社,1953:1-276.
    175.彭少麟.南亚热带森林群落动态学[M],北京:辞学出版社,1996.
    176.李永萍,党承林.森林顶级群落研究进展[J],云南大学学报(自然科学版),2006,28(S1):298-303.
    177.党承林,王崇云,王宝荣,李彦玲,黄其明.植物群落的演替与稳定性[J],生态学杂志,2002,21(2):30-35.
    178. Clements F E. Plant succession:An analysis of the development of vegetation [M], Publication No. 242, Camegie Institution of Washington,1916.
    179. Odum E P. Fundamentals of ecology [M], Philadelphia:Saunders Co,1971.
    180.孙儒泳.基础生态学[M],北京:高等教育出版社,2002.
    181.江志坚,黄小平.珊瑚虫-虫黄藻共生系统碳循环研究的若干进展[J],海洋科学进展,2009,27(1):112-120.
    182.李秀保,黄晖,练健生,董志军,黄良民.珊瑚及共生藻在白化过程中的适应机制研究进展[J],生态学报,2007,3:1217-1225.
    183. Jackson J B C. Competition on marine hard substrata:the adaptive significance of solitary and colonial strategies [J], Am. Naturalist,1977,111:743-767.
    184. Bak R P, Termaat R M, Dekker R. Complexity of coral interactions:influence of time, location of interaction and epifauna [J], Marine Biology,1982,69:215-222
    185. Miller R S. Pattern and process in competition [J], Advances Ecol. Research,1967,4:1-74.
    186. Loya Y. Recolonization of Red Sea corals affected by natural catastrophies and man-made perturbation [J], Ecology,1976,57:278-289.
    187. Genin A, Karp L, Rioz A. Effects of flow on competitive superiority in scleractinian corals [J], Linmology and Oceanography,1994,39:913-924.
    188. Karlson R H. Alternative competitive strategies in a periodically disturbed habitat [J], Bull. Marine Science,1980,30:894-908.
    189. Wuliff J L. Sponge-mediated coral reef growth and rejuvenation [J], Coral Reefs,1984,3:157-163.
    190. Woodin S A, Jackson J B C. Interphyletic competition among marine benthos [J], Am. Zoologist, 1979,19,1029-1043
    191. Logan A. Interspecific aggression in hermatypic corals from Bermuda [J], Coral Reefs,1984,3, 131-138.
    192. Fagerstrom J A. Spatial competition among clonal organisms in extant and selected Paleozoic reef communities [J], Facies,2000,42:1-24.
    193. Bradbury RH, Young P C. The race between the swift revisited, or is aggression between corals important? [J], Fourth Intl. Coral Reef Symp., Manila,1981,2:351-356.
    194. Lang J C. Interspecific aggression by scleractinian corals.2. Why the race is not only to the swift [J], Bull. of Marine Science,1973,23:260-279.
    195. Conell J H. The influence of interspecific competition and other factors on the distribution of the barnacle Chthamalns stellatus [J], Ecology,1961,42:710-723.
    196. Buss L W, Jackson J B C. Competitive networks:nontransitive competitive relationships in cryptic coral reef environments [J], Am. Naturalist,1979,113:223-234.
    197. Kershaw S. Patterns of stromatoporoid growth in level-bottom environments [J], Palaeontology,1984, 27:113-130
    198. Lang J C, Chomesky E A. Competition between scleractinian reef corals- a review of mechanisms and effects [J], In:DUBINSKY, Z. (ed.):Coral reefs, Ecosystems of the World,1990,25:209-252, Elsevier (Amsterdam).
    199. Glynn P W. Aspects of the ecology of coral reefs in the western Atlantic region [J], In:Jonf S O A, Endean R, (eds.):Biology and geology of coral reefs [M],1973,2:271-324, New York (Academic Press)
    200. Wilkinson C R. Net primary productivity in coral reef sponges [J], Science,1983,219:410-412.
    201. Smith S D A, Harriott V J. Tube-building polychaete worms smother corals in the Solitary Islands Marine Park, northern NSW, Australia [J], Coral Reefs,1998,17:342.
    202. Reichelt R E, Loya Y, Bradbury R H. Patterns in the use of space by benthic communities on two coral reefs of the Great Barrier Reef [J], Coral Reefs,1986,5:73-80.
    203. Fagerstrom J A. The evolution of reef communities [M], New York (Wiley):1987,600.
    204. JACKSON, J.B.C. (1983):Biological determinants of present and past sessile animal distributions.-In: Tevesz, J.S. and McCall, P.L. (eds.):Biotic interactions in Recent and fossil benthic communities,39-120, New York (Plenum).
    205. Jackson J B C, Coates A G. Life cycles and evolution of clonal (modular) animals [J], Philosophical Trans. Royal Society, ser. B,1986,313:7-22.
    206. McKenny F K. Taphonomic effects and preserved overgrowth relationships among encrusting marine organisms [J], Palaios,1995,10:279-282.
    207. Kidwell S M, Gyllenhaal E D. Symbiosis, competition, and physical disturbance in the growth histories of Pliocene cheilostome bryoliths [J], Lethaia,1998,32:221-239.
    208.朱英,王根祥,沈振旗.大莲湖水域浮游藻类群落特征及其与水环境因子的相关性研究[J],上海环境科学,2010,29(5):202-205.
    209. Meireles A D L, Mantelatto F L. Shell use by the Pagurus brevidactylus (Anomura, Paguridae):a comparison between laboratory and field condition [J], Acta Zoologica Sinica,2005,51(5):813-820.
    210. Savazzi E. Commensalism between a boring mytilid bivalve and a soft bottom coral in the Upper Eocene of northern Italy [J], Palaont. Z,1982,56, (3/4):165-175.
    211. Bouvier E L. A new instance of commensalism:association of worms of the genus Aspidosiphon with madreporarian polyps and a bivalve mollusk [J], Ann. Mag. natur. Hist. (ser.6),1894,14:312-314.
    212. Kleemann K H. Boring bivalves and their host corals from the Great Barrier Reef [J], J. Moll. Stud., 1980,46:13-54.
    213. Banks S A, Harriott V J. Patterns of coral recruitment at the Gneering Shoals, southeast Queensland, Australia [J], Coral Reefs,1996,15:225-230.
    214.沈国英,施并章.海洋生态学[M],北京:科学出版社,2002,1-119.
    215. Rinkevich B, Loya Y. Intraspecific competition in a reef coral:effects on growth and reproduction [J], Oecologia (Berlin),1985,66:100-105.
    216. Lang J C. Interspecific aggression by scleractinian corals.l. The rediscovery of Scolymia eubensis (Milne Edwards and Haime) [J], Bull. Mar. Sci.,1971,21:952-959.
    217. Okada H, Fujisaki K, Nakaksuji F. Effects of interspecific competition on debelopment and reproduction in two Giant Water Bugs, Diplonychus Japonicus Vuillefroy And Diplonychus Major Esaki (Hemiptera:Belostomatidae) [J], Researches on Population Ecology,1992,34:349-358.
    218.关长庆,巩恩普,张永利,孙宝亮,陈鹤,郭建华,李群.贵州南部晚石炭世一种新的生物礁类型[J],地质论评,2007,53(4):433-439.
    219. Burne R V, Moore L S. Microbialites:organosedimentary deposits of benthic microbial communities [J],Palaios,1987,2:241-254.
    220.沈建伟,毛家仁:.桂林中、晚泥盆世微生物碳酸盐沉积、礁和丘及层序地层、古环境和古气候的意义[J],中国科学(D辑),2005,35(7):627-637.
    221. Denys R, Coll J C, Price I R. Chemically mediated interactions between the red alga Plocamium hamatum (Rhodophyta) and the octocoral Sunularia cruciata (Alcyonacea) [J], Mar. Biol.,1991,108: 315-320.
    222. Lirman D. Competition between macroalgae and corals:effects of herbivore exclusion and increased algae biomass on coral xurvivorship and growth [J], Coral Reefs,2001,19:392-399.
    223. Titlyanov E A, Titlyanova T V. The Dynamics of the restoration of mechanical damage to colonies of the scleractinian coral porites lutea under conditions of competition with algal settlers for substratum [J], Russian Journal of Marine Biology,2009,35(3):230-235.
    224. Titlyanova T V, Titlyanov E A. Coral-algal competition on damaged reefs [J], Russian Journal of Marine Biology,2008,34(4):199-219.
    225. McCook L J, Jompa J, Diaz-Pulido G. Competiton between corals and algae on coral reefs:a review of evidence and mechanisms [J], Coral Reefs,2001,19:400-417.
    226. McCook L J. Competition between corals and algae turfs along a gradient of terrestrial influence in the nearshore central Great Barrier Reef [J], Coral Reefs,2001,19:419-425.
    227.陈源仁.化石群落的演替[J],成都地质学院学报,1988,15(1):36.49.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700