用户名: 密码: 验证码:
盐土多环芳烃降解菌筛选分离及其污染修复应用基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国陆上许多油田位于盐碱土地区,随着石油工业的发展,油田周边土壤受到多环芳烃(PAHs)污染越来越严重;此外,最近频发的海上石油泄漏事故也使滨海地区盐土PAHs污染事件常有发生。为此,盐碱土壤PAHs污染问题已越来越受到人们的关注。微生物降解被认为是去除环境中PAHs的主要途径,但盐碱土壤苛刻的生境条件和芳香族化合物危害的双重胁迫,使普通微生物难于在其中存活生长,致使盐碱土壤微生物修复PAHs污染变得困难。本文从长期受石油污染的天津大港油田滨海盐土中筛选分离出耐盐碱PAHs高效降解菌,采用液体培养的方法,系统研究了不同盐分含量、酸碱度以及PAHs浓度等生境条件,对菌株降解PAHs的影响;并以大港油田盐土为供试土壤,采用人工室内模拟的方法,对高效菌株固定化、以及向污染土壤添加表面活性剂等生物强化方式降解PAHs进行了系统的研究;在此基础上,通过测定细菌Pantoea sp.TJB5降解PAHs酶活性及降解酶相关基因的表达,从酶学和分子水平上阐释了细菌Pantoea sp.TJB5对PAHs降解机制。结果表明,菌株具有较强降解PAHs的能力,用于盐土PAHs修复是可行的。所得主要研究结果如下。
     1.以菲、芘混合样品为唯一碳源和能源,在滨海盐土中分离出5株细菌、3株真菌。效率测定结果表明,分离出的8个菌株均能降解PAHs,但降解能力不同。分离出的5株细菌分别编号为TJB1、TJB2、TJB3、TJB4和TJB5,3株真菌编号为TJF1、TJF2、TJF3。TJB1为叶杆菌属(Phyllobacterium sp.)、TJB2和TJB3为假单胞菌属(Pseudomonassp.)、TJB4为盐单胞属(Halomonas sp.), TJB5为泛菌属(Pantoea sp.); TJF1为青霉属(Penicillium sp.), TJF2为双曲孢属(Sigmoidea sp.), TJF3为胶孢炭疽属(Colletotrichum sp.)。
     2.选取降解能力较强的细菌Pantoea sp.TJB5、真菌Penicillium sp.TJF1和8株菌混合液(TJM)为供试菌株进行液体培养,以典型PAHs—菲和芘为研究对象,系统分析了pH、盐分含量、PAHs初始浓度以及葡萄糖供应水平对供试菌株降解PAHs效率的影响。结果表明,随着PAHs初始浓度增加,供试菌株对PAHs的降解效率逐渐降低,但以Pantoea sp.TJB5对菲、TJM对芘的降解效果较好;Pantoea sp.TJB5、Penicillium sp.TJF1和TJM具有很强的耐盐碱特性,在菲、芘初始浓度均为50 mg/L、盐浓度2%、pH 8.6的液体条件下,它们对菲、芘的降解率分别达到93.9%、41.3%、56.6%和20.1%、27.9%、52%;加入适量葡萄糖作为共代谢底物可促进对PAHs的降解,其中Pantoea sp.TJB5、Penicillium sp.TJF1和JTM对菲、芘降解率分别提高了1.2%、5.5%和22.5%、29.3%及35.5%、13.8%。
     3.对Pantoea sp.TJB5降解PAHs功能酶进行定位测定,结果表明该酶为胞内酶。红外图谱分析结果表明,胞内酶含有—OH、—NH、C=O、C—O、C=S等基团,属于某些酶蛋白质和糖类的基团,在对PAHs羟基化,脱羧等开环反应中发挥着一定作用,使PAHs水溶性增强,易被生物所降解。邻苯二酚-2,3-双加氧酶(C230)是PAHs开环裂解关键胞内酶,并从降解菌Pantoea sp.TJB5中扩增得到C230的部分基因序列,克隆测序获得534 bp,证明了PAHs降解过程中C230关键酶的存在。
     4.降解菌Pantoea sp.TJB5、Penicillium sp.TJF1和菌群TJM在固定化、添加表面活性剂等处理条件下对菲和芘污染的盐土修复效果明显;实验结果表明对微生物做固定化处理和向污染土壤中添加表面活性剂,供试菌株对盐土中的菲、芘污染物具有较高的去除率,证明这在污染盐土的修复技术上是可行的。供试菌株固定化和添加表面活性剂处理50天对芘的降解率均较添加游离菌的对照处理高出20%以上;其中,固定化处理的混合菌效果最好,20天时盐土中的菲接近背景值,50天芘的去除率达到97.4%、高出对照处理游离菌的25.8%。
     5.固定化菌株和固定化与鼠李糖脂联合处理修复盐土PAHs污染效果显著;添加固定化菌株和鼠李糖脂5个月后,土壤中4环PAHs的去除率为94.9%,高于游离菌处理。
Many oil fields in China are located in the salt-alkali soil, with the development of prtroleum industry, the pollution of nearby soil by polycyclic aromatic of oil fields is getting more serious; In addition, the frequent happening of oil spills recently at coastal area also leads to the PAHs contamination of salt-alkali soil. Thus, the PHAs pollution of salt-alkali soil is getting more and more attention. Microbial degradation is considered to be the major approach for the removal of PAHs in the environment. However, dual stresses of the salt-alkali environment and the aromatic compounds make it difficult for the microbes to survive and grow, which result in the difficulty of the microbial rehabilitation of PAHs pollution in salt-alkali soil. We isolated some PAHs degrading bacteria from the long-standing Oil-polluted coastal salt-alkali soil of Dagang field in Tianjin.The infuluence of different salt concentration, pH, PAHs concentration and other factors are studied systematically using liquid culture method, The salt soil of Dagang oil field was taken as the experimental soil to study systematically the degradation of PAHs after the immobilization of degrading strain and the addition of surface active agen to the polltuted soil. On this basis, by measuring the degrading enzyme activity of PAHs-degrading bacteria Pantoea sp.TJB5 and expression of related genes, we drew some conclusions on the degradation mechanism of the PAHs on enzymetic and molecular level. The results showed that this strain has a strong activity on PAHs degradation and is possible to be applied on salt-alkali soil rehabilitation. The main results obtained are as follows.
     1. Taking mixed samples of pehnanthrene and pyrene as sole carbon and energy source, we isolated 5 strains of bacteria and 3 strains of fungi from the salt-alkali soil. It was showed that all the 8 strains isolated could degrade PAHs, but the degradation capacities were different. The 5 strains of bacteria isolated were named as TJB1、TJB2、TJB3、TJB4 and TJB5, the 3 strains of fungi were named as TJF1、TJF2、TJF3. TJB1 was leaf spp(Phyllobacterium sp.), TJB2 and TJB3 were Pseudomonas (Pseudomonas sp.), TJB4 was the salt unit cell(Halomonas sp.), TJB5 was pan-genus(Pantoea sp.); TJF1 was Penicillum(Penicillium sp.), TJF2 was Hyperbolic sp(Sigmoidea sp.), TJF3 was anthrax spores for the plastic case (Colletotrichum sp.).
     2. Bacteria Pantoea sp.TJB5 and fungus Penicillium sp. TJF1 with high degradation ability and 8 strains mixture (TJM) were tested using the liquid culture, Taking PAHs-phenanthrene and pyrene as the research object, the effect of pH, salt content, the initial concentration of PAHs and suppling levels of glucose on the strains's degradation rate on PAHs. The results showed that the degradation efficiency of the tested strains on PAHs decreased with increasing initial concentration of PAHs, but Pantoea sp.TJB5 had better effect on pehnanthrene, and TJM had better effect on pyrene; Pantoea sp.TJB5, Penicillium sp. TJF1 and TJM were more tolerant to salt-alkali. When the initial concentration of phenanthrene and pyrene was 50 mg/L, salt concentration was 2%, pH was 8.6, the degradation rate on phenanthrene of them reached 93.9%、41.3%、56.6% and 20.1%、27.9%、52% respectively; Addition of appropriate amount of glucose as co-metabolic substrate can promote the degradation of PAHs, for example, the degradation rate of Pantoea sp.TJB5, Penicillium sp.TJF1 and TJM on phenanthrene and pyrene increased by 1.2%、5.5% and 22.5%、29.3% and 35.5%、13.8%.
     3. The functional degrading enzyme of Pantoea sp.TJB5 on PAHs was showed to be intracellular enzyme through positioning measurement. The IR spectra analysis showed that the intracellular enzymes containing groups as OH、NH、C=O、C—O、and C=S, these groups were connected with some enzymes and Carbohydrates, and played some roles in the oxidation, decarboxylation and reduction, and thus make PAHs more soluble and easy degrading. Catechol-2,3-dioxygenase (C230) is a key enzyme in the ring cleavage of PAHs, we amplified C230 partial gene sequence of 543 bp from Pantoea sp.TJB5, indicating that the key enzyme-- C230 of PAHs degrading exists.
     4. Degrading effect of bacterium Pantoea sp.TJB5, Penicillium sp. TJF1 and flora TJM on phenantheren and pyrene was significant after immobilization or addition of the surface-active agent in the salt-alkali soil remediation. The results showed that the tested strains has a high removal rate of pollutants on phenanthren, pyrene in salt-alkali soil after addition of immobilized micro-organisms and surface-active agent to the contaminated soil, which proved that it's practical in the repair of contaminanted alkali soil. Immobilization of the tested strains, and addition of surfactrant for 50 days could improve the degradation rate of pyrene by more than 20% compared with control of sole bacteria; The effect of immobilized bacteria mixture was best, the phenanthrene content in salt-alkali soil was close to the background value after 20 days, the removal rate of pyrene 50 days was 97.4%, higher than the control treatment of free bacteria's 25.8%.
     5. The remediation effect of immobilized strain and rhamnolipid treated immobilized strain was remediation of PAHs in salt soil; Removal rate of 4 rings PAHs in soil was 94.9% 5 months after the addition of rhamnolipid, higher than in the treatment of free bacteria.
引文
[1]Alexander M.Aging, bioavailability, and overstimation of risk from environmental polutants[J].Enviromental Science and Technology,2000,34,4259-4265.
    [2]Ambujom Saraswathy, Rolf Hallberg. Mycelial pellet formation by Penicillium ochrochloron species due to exposure tu pyrene[J]. Microbiological Research,2005, (160):375-383.
    [3]Baisuo Zhao, Hui Wang, Xinwei Mao, et al. Biodegradation of Phenanthrene by a Halophilic Bacterial Consortium Under Aerobic Conditions[J]. Curr Microbiol,2009,58:205-210.
    [4]Baldwin BR,Nakstsu CH,Nies L et al.Detection and enumeration of aromatic oxygenase genes by multiplex and real time PCR.Appl Environ Microbiol,2003,69:3350-3358.
    [5]Banat I M.The isolation of a thermophilic biosurfactant producing Bacillus sp[J].Biotechnol.lett, 1993,15:591-594.
    [6]Braddock JF,Lindstrom JE,Brown EJ.Distribution of hydrocarbon-degrading microorganisms in sediments from Prince William Sound,Alask,following the Exxon Valdez Oil Spill. [J].Mar Pollut Bull,1995,30:125-132.
    [7]Boonchan S,Britz ML,Stanley GS.Degradation and mineralization of high-molecular-weight polycyclic aromatic hydrocarbons by defined fungal-bacterial cocultures[J].Appl Environ Microbiol,2000,66:1007-1019.
    [8]Brody.JG, Moysich KB, Humblet O,et al.Environmental pollutants and breast cancer-epidemiologic studies,Cancer 109(Suppl.S)2007:2667-2711.
    [9]Bruns A,Berth-Corti L.Fundibacter jadensis gen.nov.,a new slightly halophilic bacterium, isolated from interidal sediment[J].International of Systematic Bcteriology,1999,49:441-448.
    [10]Burlage R,Hopper W,Sayler GS.The ToL(PwwO) catabolic plasmid[J].Appl Environ Microbiol,1989,55:1323-1328.
    [11]Calvo C, Toledo F L, Gonzalez-lopez J.Surfactant activity of a naphthalene degrading Bacillus pumilus strain isolated from oil sludge [J]. Journal of Biotechnology,2004,109:255-262.
    [12]Canet R,Birnstingl JG,Malcolm DG,et al.Biodegradation of polycyclic aromatic hydrocarbons (PAHs) by native microflora and combinations of white-rot fungi in a coal-tar contaminated soil[J].Bioresource Technology,2001,76,113-117.
    [13]Catherine Sartoros,Laleh Yershalmi,Patrick Beron et al.Effects of surfactant and temperature on biotransformation kinetics of anthracene and pyrene[J].Chemosphere,2005,61:1042-1050.
    [14]Carolan T.MacLeod, Andrew J.Daugulis.Interfacial effects in a two-phase partitioning bioreactor degradation of polycylic aromatic hydrocarbons(PAHs) by a hydrophobic Mycobacterium[J].Process Biochemistry,2005,40:1799-1805.
    [15]Cerniglia CE.Biodegradation of polycyclic aromatic hydrocarbons[J].Biodegradation,1992, 3:351-368.
    [16]Cerniglia CE. Microbial metabolism of polycyclic aromatic hydrocarbons[J]. Adv.Appl.Microbiol, 1984,30:31-71.
    [17]Chen S, Aitken M.Salicylate stimulates the degradation of high-molecular weight polycylclic aromatic hydrocarbons by Pseudomonas saccharophila P15[J].Environ.Sci.Technol.1999,33:435-439
    [18]Chiari M, Ettori C, colonna S, et al. Oxidation of cystine to cysteic acid in proteins by peroyacids, as monitored by immobilized pH gradients[J]. Electrophoresis,1991,12(5):376-377.
    [19]Chang B V, Shiung L C, Yuan S Y. Anaerobic biodegradation of polycyclic aromatic hydrocarbon in soil[J]. Chemosphere,2002,48:717-24.
    [20]Chang-Hyun Chang,Jaeyoon Lee,Bong-Gun Ko et al.Staphyolccus sp.KW-07 contains nahH gene encoding catechol 2,3-dioxygenase for phenanthrene degradation and a test in soil microcosm[J].International Biodeterioration & Biodegradation,2011,65(1):198-203.
    [21]Cho JC,Kim SJ.Detection of a plasmid from polyclic aromatic hydrocarbon-degrading shpingomonas sp. Strain KS14[J].J.Mol.Micorbiol.Biotechnol,2001,3(4):503-506.
    [22]Cornelissen G,Gustafsson O,Bucheli TD,et al.Extensive sorption of organic compounds to black carbon,coal, and kerogen in sediments and soils:mechanisms and consequences for distribution,bioaccumulation,and biodegradation[J].Environmental Science & Technology,2005, 39:6881-6895.
    [23]Cutright T J. Polycyclic aromatic hydrocarbon biodegradation and kintics using cunninghamella echinulata var.elegans[J]. International Biodetertoration and Biodegradation,1995,46(1):397-408.
    [24]Dariush Minai-Tehrani, Saeed Minoui, Ali Herfatmanesh.Effect of Salinity on Biodegradation of Polycyclic Aromatic Hydrocarbons(PAHs) of Heavy Crude Oil in Soil[J].Bull Environ Contam Toxicol, 2009,82:179-184.
    [25]Delia Teresa Sponza, Oguzhan Gok.Effect of rhamnolipid on the aerobic removal of polyaromatic hydrocarbons(PAHs) and COD components from petrochemical wastewater[J].Bioresource Technology,2010,101:914-924.
    [26]Demaneche S, Meyer C, Micoud J et al.Identification and functional analysis of two aromatic-ring-hydroxylating dioxygenases from a sphingomonas strain that degrades various polycyclic aromatic hydrocarbons[J]. Appl Environ Microbiol,2004,70(11):6714-6725.
    [27]Disz M P, Boyd K G, Grigon S J W.et al.Biodegradation of crude oil across a wide range of salinities by an extremely halotolerant bacterial consortium MPD-M, immobilized onto polypropylene fibers[J]. Biotechnol Bioeng,2002,79:145-153.
    [28]Doddamani HP,Ninnekar HZ.Biodegradation of phenanthrene by a Bacillus species[J]. Current Microbiology,2000,41:11-14.
    [29]Edwards NT.Reviws and analysis:Polycyclic aromatic hydrocarbons(PAHs) in the terrestrial environment-A review[J].Environ.Qual,1983,12:427-441.
    [30]Edward JC,Paul TK.Principles and practices for petroleum contaminated soil[M].Lewis:Lewis Pubishers INC,1993:111-129.
    [31]Etkere M,Read JS,Mattiasson B.Polycyclic aromatic hydrocarbon bidegradation in extracellular fluids and static batch cultures and selected sub-tropical white rot fungi [J]. Journal of Biotechnology,2005,115:367-377.
    [32]Fahy A, Ball AS, Lethbridge G, et al.Isolation of alkali-tolerant benzene-degrading bacteria from a contaminated aquifer[J]. Lett. Appl. Microbiol,2008,47 (1):60-66.
    [33]Freld JA,Feiken H,Hage A et al.Application of white-rot Fungus to Biodegrade Benzo(a)pyrene in Soil In:Bioaugmentation for Site Remediation (Hinchee RE,Fredericksong J,Allemen BC,Eds.)[J].Battelle Memorial Institute,Ohio,1995,165-171.
    [34]Francois Bordas, Pierre Lafrance, Richard Villemur.Conditions for effective removal of pyrene from an artifially contaminated soil using Pseudomonas aeruginosa 57SJ rhamnolipids[J].Environmental Pollution,2005,138:69-76.
    [35]Gabriela S, Jaroslava S.Review of surfactin chemical properties and the potential biomedical applications[J]. Centteral European Journal of Medicine,2008,3(2):123-133.
    [36]Gauthier E, Deziel E, Villemur R et al.Initial characterization of new bacteria degrading high-molecular weight polycyclic aromatic hydrocarbons isolated from a 2-year enrichment in a two-liquid-phase culture system [J].Journal of Applied Microbiology,2003,94:301-311.
    [37]Ghosh U.The of black carbon in influencing availability of PAHs in sediments[J].Human & Ecological Risk Assessment,2007,13:276-285.
    [38]Goyal AK, Zylstra GJ. Molecular cloning of novel genes for polycyclic aromatic hydrocarbon degradation from Comamonas testosterone GZ39[J]. Appl Environ Microbiol,1996,62(1):230-236.
    [39]Guo CL,Zhou HW,Wong YS, et al.Isolation of PAH-degrading bacteria from mangrove sediments and their biodegradation potential[J].Marine Polution Bulletin,2005,51:1054-1061.
    [40]Guo-Ying Zhang, Jian-Ya Ling, Hai-Bo Sun, et al. Isolation and characterization of a newly isolated polycyclic aromatic hydrocarbons-degrading Janibacter anophelis strain JY11[J]. Jorunal of Hazardous Materials,2009, (172):580-586.
    [41]Han TX, Wang ET, Wu LJ. Rhizobium multihospitium sp. nov., isolated from multiple legume species native of Xinjiang, China[J]. Int. J. Syst. Evol. Microbiol,2008,58 (PT 7):1693-1699.
    [42]Hamann C,Hegemann J,Hildebrandt A.Detection of polycyclic aromatic hydrocarbon degradation genes in different soil bacteria by polymerase chain reaction and DNA hybridization[J].FEMS Microbiol Lett,1999,173:255-263.
    [43]Harayama S,Kok M,Nidle EL.Functional and evolutionary relationships among diverse oxygenase[J].Annu Rev Microbiol,1992,46:565-601.
    [44]He-Ping Zhao, Qing-Sheng Wu, Lei Wang, et al. Degradation of phenanthrene by bacterial strain isolated from soil in oil refinery fields in Shanghai China[J]. Jorunal of Hazardous Materials, 2009, (164):863-869.
    [45]He-Ping Zhao,Qing-Sheng Wu,Lei Wang et al.Degradation of phenanthrene by bacterial strain isolated from soil in oil refinery fields in Shanghai China[J]. Journal Hazardous Materials,2009,164:863-869.
    [46]Ho Y, Jackson M, Yang Y et al.Characterization of fluoranthene-and pyrene-degrading bacteria isolated form PAH-contaminated soil and sediments and comparison of several Shpingomonas spp.[J].J.Ind.Microbiol 2000,2:100-112.
    [47]Huang XD,E1-Alawi Y,Penrose DM et al.A multi-process phytoremediation system for removal of polycyclic aromatic hydrocarbons from contaminated soils[J].Environmental Pollution,2004,130(3):465-476.
    [48]Hwang S, Cutright T J. Preliminary exploration of relationship between soil characteristics and PAHs desorption and biodegradation, Environmental International,2003,29:887-894.
    [49]Isis Serrano Silva,Eder da Costa Santos,Cristiano Ragagnin de Menezes,et al.Bioremediation of polyaromatic hydrocarbon contaminated soil by native soil microbiota and bioaugmentation with isolated microbial consortia[J].Bioresource Technology,2009,100:4669-4675.
    [50]Isis S.Silva,Matthew Gtossman,Lucia R.Durrant.Degradation of polycyclic aromatic hydrocarbons(2-7 rings) under microaerobic and very-low-oxygen conditions by soil fungi[J].International Biodeterioration & Biodegradation,2009,63:224-229.
    [51]Jacob J,Karcher W,Belliardo JJ et al.Polycyclic aromatic hydrocarbons of environmental and occupational importance-Theri occurrence,toxicity and the development of high-purity certified reference materials[J].Fresen.Anal.Chem,2004,340:755-767.
    [52]Johnson DL,Maguire KL,Anderson DR et al.Enhanced dissipation of chrysene in planted soil:The impact of a rhizobial inoculum[J].Soil Biology and Biochemistry,2004,36(1):33-38.
    [53]K.Chupungars, P.Rerngsamran, S Thaniyavarn.Polycyclic aromatic hydrocarbons degradation by Agrocybe sp.CU-43 and its fluorine transformation[J].Int.Biodeter.Biodegr,2009,63:93-99.
    [54]Kawai F,Hanada K,Yoshiki T,et al.Bacterial degradation of a water-insoluble polymer(polyprolene glycol) [J].Journal of Fermentation Technology,1997,55,89-96.
    [55]Kastner M,M Brener-Janumali,B Mahro.Impact of inoculation protocols,salinity and pH on the degradation of polycyclic aromatic hydrocarbons(PHAs) and survival PAH-degrading bacteria introduced into soil[J].Applied and Enviromental Microbiology,1998,64:359-362.
    [56]Kiesel B, Mueller RH, Kleinsteuber S, et al.Adaptative Potential of Alkaliphilic Bacteria towards Chloroaromatic Substrates Assessed by a gfp-Tagged 2,4-D Degradation Plasmid [J].Eng. Life Sci,2007,7 (4):361-372.
    [57]Kim E, Aversano PJ, Romine MF et al. Homology between genes for aromatic hydrocarbon degradation in surface and deep-subsurface Sphingomonas strains[J]. Appl Environ Microbiol,1996,62(4):1467-1470.
    [58]Kiyohara H,Nagao K,Kouno K,et al.Phenanthrene-degrading phenotype of Alcaligenes faecalis AFK2 [J].Appl Environ Microbiol,1982,43(2):458-461.
    [59]Lau KL, Tsang YY, Chiu SW. Use of spent mushroom compost to bioremediate PAH-contaminated samples[J]. Chemosphere,2003,52:1539-1546.
    [60]Leonardia V,Sasek V,Petruccioli M, et al.Bioavailability modification and fungal biodegradation of PAHs in aged industrial soil[J].International Biodeterioration & Biodegradation,2007,60:165-170.
    [61]Liang YN, Gardner DR, Miller CD et al.Study of Biochemical Pathways and Enzymes Involvoed in Pyrene Degradation by Mycobacterium sp.Strain KMS[J].Appl.Environ.Microbiol,2006, 72(12):7821-7828.
    [62]Liu Zhongbao, Laha Shonalid, Luthy R G. Surfactant solubilization of polycyclic aromatic hydrocarbon compounds in soil-water suspensions[J].Water Science and Technology,1991,23(1-3):475-485.
    [63]Lipzig MMH,Vermeulen NPE,Cusinu R,et al.Formation of estrogenic metabolites of benzo[a]pyrene and chrysene by cytochrome P450 activity and their combined and supra-maximal estrogenic activity[J].Environ.Toxicol.Phar,2005,19:41-55.
    [64]L.Valetin,G.Feijoo,M.T.Moreira,et al.Biodegradation of polycyclic aromatic hydrocarbons in forest and marsh soils by white-rot fungi[J].Int.Biodeter.Biodegr,2006,58:15-21.
    [65]M.Larsbo, J.Stenstrom, A.Etana et al.Herbicide sorption, degradation, and leaching in three Swedish soil under long-term conventional and reduced tillage[J].Soil Till.Res,2009,105:200-208.
    [66]Mergaert J, Verdonck L, Kerstens k,et al.Numerical taxonomy of Erwinia species using API systems[J].J.Gen.Microbiol,1984,130:1893-1910.
    [67]Michiei Sho,Chantal Hamel,Charles W Greer.Two distinct gene clusters encode pyrene degradation in Mycobacterium sp.strain S65 [J].FEMS Microbiology Ecology,2004,48:209-220.
    [68]Moody JD,Freeman JP,Doerge DR et al.Degradation of phenanthrene and anthracene by cell suspensions of Mycobacterium sp.strain PYR-1 [J].Appl Environ Microbiol,2001,67:1476-1483.
    [69]Moriwaki J, Tsukiboshi T. Colletotrichum echinochloae, a new species on Japanese barnyard millet (Echinochloa utilis) [J]. Mycoscience,2009, (50):273-280.
    [70]Moser R,Stahl U.Insights into the genetic diversity of initial dioxygenases from PAH-degrding bacteria[J].Appl Environ Microbiol,2001,55:609-618.
    [71]Muhammad Afzal,Sohail Yousaf,Thomas G Rerchenauer et al.Soil type affects paint colonization, activity and catabolic gene expression of inoculated bacterial strains during phytoremediation of diesel[J].Journal of Hazardous Materials,2011,186:1568-1575.
    [72]Mulligan CN, Yong RN, Gibbs BF.Surfactant-enhanced remediation of contaminated soil:a review[J].Engineering Geology,2001,60:371-380.
    [73]Najoi El Azhari,Marion Devers-Lamerni,Guillaume Chatagnier et al.Molecular analysis of the catechol-degrading bacterial community in a coal wasteland heavily contaminated with PAHs[J].Journal of Hazardous Materials,2010,177:593-601.
    [74]Nam N C, Alexander M. Relation between organic matter content of soil and the sequestration of phenanthrene. Environment Science & Technology,1998,32:3785-3788.
    [75]Nicholson CA,Fathepure BZ.Aerobic Biodegradation of Benzene and Toluene Under Hypersaline Conditions at the Great Salt Plains, Okalahoma[J].FEMS.Microbiol.Lett,2005,245:257-262.
    [76]Nie Maiqian,Yin Xihou,Ren Chunyan et al. Novel rhamolipid biosurfactants produced by a polycyclic aromatic hydrocarbon-degrading bacterium Psedomonas aeruginosa strain NY3[J].Biotechnology Advances,2010,28:635-643.
    [77]Ohtsubo Y,Nagata Y,Kimbara K et al.Experssion ot the bph genes involved in bipheny1/PCB degradation in Pseudomonas sp.KK.S102 induced by the biphenyl degration intermediate 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoic acid[J]. Gene,2000,256:223-228.
    [78]Okuta A, Ohnishi K, Yagame S et al.Intersubunit in teraction and catalycic activity of catechol 2,3--dioxygenases[J].Biochemical Journal,2003,371:557-564.
    [79]Olivier Potin,Catherine Rafin,Etinne Veignie.Bioremediation of an aged polycyclic aromatic hydrocarbons (PAHs)-contaminated soil by filamentous fungi isolated from the soil[J]. Internatioanl Biodeterioration & Biodegradation,2004,54:45-52.
    [80]Osman S, La Duc MT, Dekas A, et al. Microbial burden and diversity of commercial airline cabin air during short and long durations of travel[J].ISME J,2008,2 (5):482-497.
    [81]Page MM, Page CL.Elcetroremediation of contaminanted soil[J].J Environ Eng,2002,128(3):208-219.
    [82]Parrish ZD,Banks MK,Schwab AP.Effectiveness of phytoremediation as a secondary treatment for polycyclic aromatic hydrocarbons(PAHs) in composted soil[J].International Journal of Phytoremadiation,2004,6(2):119-137.
    [83]Paria S, Yuet PK.Solidificationstabilization of organic and inorganic contaminants using Portland cement:a literature review[J].Environmental Reviews,2006,14:217-255.
    [84]Potin O,Veignie E,Rafin C.Biodegradation of polycyclic aromatic hydrocarbons(PAHs) by Cladosporium sphaerospermum isolated from an aged PAH contaminated soil [J].FEMS Microbiology Ecology,2004,51:71-78.
    [85]Powell SM, Bowman JP, Ferguson SH et al.The importance of soil characteristics to the structure of alkane-degrading bacterial communities on sub-Antarctic Macquarie Island[J].Soil Biology & Biochemistry,2010,42:2012-2021.
    [86]Qing zhao,Peijun Li,Frank Stagnitti et al.Effects of aging an freeze-thawing on extractalility of pyrene in soil[J].Chemosphere,2009,76:447-452.
    [87]Qing zhao, Lukas Weise, Peijun Li et al.Aging behavior of phenanthrene and pyrene in soils:A study using sodium dodecylbenzenesulfonate extraction[J].Journal of Hazardous Materials,2010,183:881-887.
    [88]Redondo C, Cubero J, Melgarejo P. Characterization of Penicillium species by ribosomal DNA sequencing and BOX, ERIC and RELP-PCR analysis[J]. Mycopathologia 2009,168 (1):11-22.
    [89]Rey-Salgueiro L,Martinez-Carballo E,Carcia-Falcon et al.Occurrence of polycyclic aromatic hydrocarbons and their hydroxylated metabolites in infant foods[J].Food Chemistry,2009,115:814-819.
    [90]Rila J, Eisentraeger A. Application of bioassays for risk characterisation and Remediation control of soils polluted with Nitroaromatics and pahs[J]. Water, Air and Soil Pollution,2003,148:223-242.
    [91]Ribalet F, Intertaglia L, Lebaron P et al. Differential effect of three polyunsaturated aldehydes on marine bacterial isolates[J]. Aquat. Toxicol,2008,86 (2):249-255.
    [92]Rodrigo J.S.Jacques, Eder C.Santos, Renato Haddad et al. Mass spectrometry analysis of surface tension reducing substances produced by a PAH-degrading pseudomonas citronellolis strain[J].Brazilian Journal of Microbiology,2008,39:353-356.
    [93]Rodrigues AC,Wuertz S,Brito AG,et al.Three-dimensional distribution of GFP-labeled Pseudomonas putida during biofilm formation on solid PAHs assessed by confocal laser scanning microscopy[J].Water Science and Technology,2003,47(5):139-142.
    [94]Ruey-an Doong, Wen-gang Lei.Solubilization and mineralization of polycyclic aromatic hydrocarbons by Psedomonas putida in the presense of surfactant[J].Journal of Hazardous Materials,2003,B96:15-27.
    [95]Rybicki BA, Nock NL, Savera AT,et al.Polycyclic aromatic hydrocarbon-DNA adduct formation in prostate carcinogenesis[J].Cancer Lett,2006,239:157-167.
    [96]Sack U, Fritsche W.Enhancement of pyrene mineralization in soil by wood-decaying fungi[J].FEMS Microbiol.Ecol,1997,22:77-83.
    [97]Saito A,Iwabuchi T,Harayama S.Characterization of genes for enzymes involved in the phenanthrene degradation in Nocardiodes sp.KP7. [J].Chemosphere,1999,38:1331-1337.
    [98]Saicher RE, Reddy KR.Effect of pH control at the and for the electrokinetic removal of phenanthrene from kaolin soil[J].Chemosphere,2003,51(4):273-287.
    [99]Sikkema J,Bont J.A.M,Poolman B.Mechanisms membrane toxicity of hydrocarbons[J].Microbiology and Molecular Biology Reviews,1995,59:201-222.
    [100]Smith M J, Lethbridge G, Burns R G. Fate of phenanthrene pyrene and benzo [a]pyrene during biodegradation of crude oil added to two soils[J].Fems Microbiology Letters,1999,173:445-452.
    [101]Smith M J, Lethbridge G, Burns R G.Bioavailability and biodegradation of polycyclic aromatic hydrocarbons in soils[J].FEMS Microbillogy Letters,1997,152:141-147.
    [102]Somtrakoon K, Suanjit S, Pokethitiyook P et al.Phenanthrene stimulates the degradation of pyrene and fluoranthene by Burkholderia sp.VUN10013[J].World Journal of Microbiology and Biotechnology,2008, 24(4):523-531.
    [103]Takizawa N,Iida T,Sawada T,et al.Nucleotide sequences and characterization of genes encoding naphthalene upper pathway of Pseudomonas aeruginosa PaKl and Pseudomonas putida OUS82. [J].J Biosci Bioeng,1999,87(6):721-731.
    [104]Tam NF, Guo CL, Yau WY, et al. Priliminary study on biodegradation of phenanthrene by bacteria isolated form mamgrove sediments in Hong Kong[J]. Marine Pollution Bulletin,2002, (45):316-324.
    [105]Tian Y, Luo YR, Zheng TL, et al. Contamination and potential biodegradation of polycyclic aromatic hydrocarbons in mangrove sediments of Xiamen, China[J]. Marine Pollution Bulletin,2008, (56): 1184-1191.
    [106]Traczewska TM.Changes of toxicological properties of biodegradation products of anthracene and phenanthrene[J].Water Sci.Technol,2000,41:31-39.
    [107]V.San Miguel,C.Peinado,F.Catalina et al.Bioremediation of naphthalene in water by Sphingomonas paucimobilis using new biodegradable surfactants based on poly( ε-caprolactone) [J].Internatioanl Biodeterioration & Biodegradation,2009,63:217-223.
    [108]Vinas M,Sabate J,Espuny MF et al.Bacterial Community Dynamics and Polycyclic Aromatic Hydrocarbon Degradation during Bioremediation of Heavily Creosote-Contaminated Soil[J].Applied and environmental microbiology,2005,71(11):7008-7018.
    [109]Virkutytea J, Sillanp M, Latostenmaa P.Electrokinetic soil remediation critical overview[J].The Science of the Total Environment,2002,289:97-121.
    [110]Wang Cuiping, Sun Hongwen, Li Jieming et al. Enzyme activities during degradation of polycyclic aromatic hydrocarbons by white rot fungus Phanerochaetee chrysosporium in soils[J]. Chemosphere,2009,77:733-738.
    [111]Wang Y N, Cai H, Chi C O, et al. Halomonas shengliensis sp nov., a moderately halophilic denitrifying, crude-oil-utilizing bacterium[J]. Int J Syst Evol Microbiol,2006,57:1222-1226.
    [112]Wang Jianlong, Han Liping, Shi Hanchang, et al. Biodegradation of quinoline by gel immobilized Burkholderia sp[J]. Chemosphere,2001,44(5):1041-1046.
    [113]Walter U, Beyer M, Klein, Rehm HJ.Degradation of pyrene by Rhodococcus sp. UW1[J]. Appl.Microbiol.Biotechnol.1991,34:671-676.
    [114]Wei RB, Li FC, Song R et al.Comparison of two marine sponge-associated Penicillum strains DQ25 and SC10:differences in secondary metabolites and their bioactivities[J].Annals of Microbiology,2009,59(3)579.
    [115]Whang L.M, Liu PG, Ma C, et al.Application of biosurfactants, rhamnolipid, and surfactin, for enhanced biodegradation of diesel contaminated wated and soil [J] Journal of Hazardous Materials,2008,151:155-163.
    [116]WU Yirui, HE Tengten, ZHONG Mingqi et al.Isolation of marine benzo[a]pyrene-degrading Ochrobacterum sp.BAP5 and proteins characterization[J].Jorunal of Enviromental Sciences,2009,21-1446-1451.
    [117]YANG P, TEO W K, TING Y P. Design and performance study of a novel immobilized hollow fiber membrane bioreactor[J]. Bioresource Technology,2006,97:39-46.
    [118]Yang S.K, Mccourt D.W, Roller P.P. et al. Photomutagenicity of 16 polycyclic aromatic hydrocarbons from the US EPA priority pollutant list[J]. Mutat. Res,2004,557(1):99-108.
    [119]Yang Y, Chen RF, Shiaris MP.Metabolism of naphthalene,fluorene, and phenanthrene:preliminaty characterization of a cloned gene cluster from Psedomonas putida NCBI 9816 [J].J Bacteriol,1994,176(8):2158-2164.
    [120]Ye D,Siddiqi A,Macubbin AE et al.Degradation of polycylic aromatic hydrocarbons by Sphingomonas paucimobilis[J].Environ.Sci.Technol.1996,30:136-142.
    [121]Yu HS,Zhu LZ,Zhou WJ.Enhanced desorption and biodegradation of phenanthrene in soil-water systems with the presence of anionic-nonionic mixed surfactants [J]. Journal Hazardous Material,2007,142(1-2):354-361.
    [122]Zongze Shao,Zhisong Cui,Chunming Dong,et al.Analysis of a PAH-degrading bacterial population in subsurface sediments on the Mid-Atlantic Ridge[J].Deep-Sea Research I,2010,57:724-730.
    [123]Zhou WJ,Zhu LZ.Enhanced desorption of phenanthrene from contaminated soil using anionic mixed surfactant[J].Environ Pollut,2007,147(2):350-357.
    [124]Zhang YM,Miller RM.Enhanced octadecane disprsionand biodegradation by a pseudomonas rhamnolipid surfactant (biosurfactant) [J].Prog Nat Sci,2005,15:577-585.
    [125]Zhao Zhenyong,Ammaiyappan Selvam,Jonathan et al.Effects of rhamnolipids on cell surface hydrophobicity of PAH degrading bacteria and the biodegradation of phenanthrene[J].Bioresource Technology,2011,102:3999-4007.
    [126]程国玲,李培军,王凤友,等.多环芳烃污染土壤的植物与微生物修复研究进展[J].环境污染治理技术与设备,2003,4(6):30-36.
    [127]陈来国,冉勇.多环芳烃生物修复中的表面性剂[J].生态环境2004,13(1):88-91.
    [128]陈静,王学军,胡俊栋等.表面活性剂对白腐真菌降解多环芳烃的影响[J].环境科学,2006,27(1):154-159.
    [129]曹晓星,田蕴,胡忠等PAHs降解基因及降解酶研究进展[J].生态学杂志,2007,26:917-924.
    [130]丁娟,罗坤,周娟,等.表面活性剂Tween80和β-环糊精对白腐菌降解多环芳烃的影响[J].南京大学学报(自然科学),2007,,43(5):561-566.
    [131]范淑秀,李培军,巩宗强,等.紫花苜蓿对多环芳烃菲污染土壤的修复作用研究[J].环境科学,2007,28(9):2080-2084.
    [132]付文详,郭立正.敌敌畏降解真菌的分离及其特征研究[J].环境科学与技术,2006,,29(4):32-34.
    [133]谷体华,袁建军,郑天凌等.泉州湾表层沉积物对多环芳烃潜在降解活性的研究[J].厦门大学学报(自然科学版)2005,44,(6):102-106.
    [134]郭楚玲,郑天凌,洪华生.多环芳烃的微生物降解与生物修复[J].海洋环境科学,2000,19(3):24-29.
    [135]郭婷,张承东,张清敏.生物修复石油污染盐碱土壤小试模拟系统中土壤性质与微生物特性变化 [J].中国环境科学,2010,8:1123-1129.
    [136]李振高,骆永明,滕应编著.土壤与环境微生物研究法[M].北京:科学出版社,2008.
    [137]高彦征,朱利中,凌婉婷,等.土壤和植物样品的多环芳烃分析方法研究[J].农业环境科学学报,2005,24(5):1003-1006.
    [138]巩宗强,李培军,王新,等.污染土壤中多还芳烃的共代谢降解过程[J].生态学杂志,2000,19(6):40-45.
    [139]巩宗强,李培军,王新,等.芘在土壤中的共代谢降解研究[J].应用生态学报,2001,12(3):447-450.
    [140]韩慧龙,汤晶,江皓,等.真菌-细菌修复石油污染土壤的协同用机制研究[J].环境科学,2008,29(1):190-195.
    [141]胡晓芳,夏福军,朱南文,等.原油污染土壤的生物法修复效果研究[J].环境化学,2006,25(5):593-597.
    [142]金彬明,刘佳明.海洋微生物有机磷降解酶的纯化与性质研究[J].中国微生态学杂志,2007,19(1):37-19.
    [143]金相灿,程振华,徐南妮,等.有机化合物污染化学—有毒有机物污染化学.北京:清华大学出版社,1990:55-60
    [144]李广贺,张旭,卢晓霞.土壤残油生物降解性与微生物活性[J].中国地质大学学报:地球科学,2002,27(2):181-185.
    [145]李凤梅,郭书海,牛之欣等.稠油降解菌的筛选及其对胶质和沥青质生物降解[J].土壤通报,2006,,37(4):764-767.
    [146]李艳琴,中泉,赵春贵,等.植病生防菌成团泛菌电机转化条件的研究[J].微生物学通报,2000,27(4,245-249.
    [147]罗启仕,张锡辉,王慧等.土壤中2,4-二氯酚在非均匀电动力学作用下的迁移[J].环境科学学报,2004,24(6):1104-1109.
    [148]李全霞,范丙全,龚明波,杨慧.降解芘的分枝杆菌M11的分离鉴定和降解特性[J].环境科学,2008,3:763-768.
    [149]刘魏魏,尹睿,林先贵,等.多环芳烃污染土壤的植物-微生物联合修复初探[J].士壤,2010,42(5):800-806.
    [150]李轶.硝基苯污染底质的生物修复技术研究[D].南京:河海大学,2008:58-60.
    [151]马放,杨基先,金文标.环境生物制剂的开发与应用.北京:化学工业出版社,2004.
    [152]毛欣慰,王慧,赵百锁.BTEX降解嗜盐菌群的多样性及其降解特性[J].环境科学学报。2009,29(4):709-715.
    [153]沈德龙,冯永君,宋未.内生成团泛菌YS19对水稻乳期光合产物在旗叶、穗分配中的影响[J].自然科学进展,2002,12(8):863-865.
    [154]孙红文,李书霞.PAHs的光致毒效应.环境科学进展[J].1998,6(6):1-11.
    [155]沈国清,陆贻通,周培.土壤环境中重金属和多环芳烃复合污染研究进展.上海交通大学学报(农业科学版),2005,23(1):102-106.
    [156]宋立超,李培军,刘宛等.盐碱土壤PAHs降解菌的筛选鉴定及其降解特性[J].微生物学通报,2011,38(2):282-287.
    [157]苏丹,李培军,王鑫,等.混合菌固定化及其对土壤中芘和苯并芘的降解[J].辽宁工程技术大学学报,2007,26(3):461-463.
    [158]宋玉芳,孙铁珩,许华夏.表面活性剂TW-80对土壤中多环芳烃生物降解的影响[J].应用生态学报,1999,10(2):230-232.
    [159]唐玉斌,孙常宇,陈芳艳,等.一株屈高效降解菌的分离鉴定及其降解特性[J].微生物学通报,2009,36(4):593-597.
    [160]吴蔓莉.两株优势菌对多环芳烃的降解机理研究,西南建筑科技大学博士学位论文,2010.
    [161]王鹏.新型胞外多糖产生菌Phyllobacterium sp.nov.921F及其多糖结构的研究,中国海洋大学博士学位论文,2008
    [162]王劲,闫卫利,郜舟顺,等.尿中1-羟基芘作为焦炉工多环芳烃暴露监测指标研究[J].职业卫生与病伤,2006,21(1):8-9.
    [163]王发园,林先贵,周健民.丛枝菌根与土壤修复[J].土壤,2004,36(3):251-257
    [164]王里奥,崔志强,钱宗琴等.微生物固定化的发展及在废水处理中的应用[J].重庆大学学报,2004,27(3):126-129.
    [165]王焘,郑余阳,杨磊,等.苯酚污染土壤的电动力学修复技术研究[J].2009,,22.(2):22-25
    [166]王遵亲.中国盐渍土[M].北京:高等教育出版社,1993:132.
    [167]王震宇,赵建,李锋民,等.盐渍化土壤中土著菌的石油烃降解潜力研究[J].农业环境科学学报,2009,28(7):1416-1421.
    [168]王新,李培军,巩宗强.固定化微生物降解土壤中菲和芘的研究.应用生态学报,2001,12(4):636-638.
    [169]王新,李培军,宋守志,等.固定化微生物对土壤中多环芳烃的降解[J].东北大学学报(自然科学版),2006,27(10):1154-1158.
    [170]吴宇澄,骆永明,滕应,等.石油污染土壤中芳烃降解菌及邻苯二酚2,3双加氧酶的克隆[J].土壤, 2006,38(5):640-644.
    [171]项海,王纬,章宏梓,等.鼠李糖脂促进含油餐饮废水的生物降解[J].水处理技术,2008,34(9):65-67,74.
    [172]徐泉,黄泉发,程炯佳,等.电动力学及其联用技术降解污染土壤中持久性有机污染物的研究进展[J].环境科学,2006,27(11):2363-2368.
    [173]袁军,赖其良,郑天凌等.深海多环芳烃降解菌新鞘胺醇杆菌H25的降解特性及降解基因[J].微生物学报,2008,,48(9):1208-1213.
    [174]袁军,西南太平洋盆地(Lau Basin)深海热液区沉积物中微生物多样性及多环芳烃降解微生物的初步研究,华中农业大学博士学位论,2008.
    []75]杨柳燕,肖琳,环境生物技术.北京:科学出版社,2003.
    [176]杨林书,阎程.秸秆资源化考略[J].农业环境保护,1993,12(6):271-273,283.
    [177]于小丽,张江.多环芳烃污染与防治对策[J].油气田环境保护,1996,6:53-56.
    [178]杨玉楠,韩东.嗜盐菌强化石油污染土壤生物修复的可行性研究[J].农业环境科学学报,2007,26:121-126.
    [179]姚治华,王红旗,刘敬奇等.石油污染土壤中苯降解菌的筛选及降解特性研究[J].农业环境科学学报,2006,25(6):1498-1503.
    [180]余顺.全球海洋——大气环境中污染物的迁移及行为[J].海洋环境科学,1989,8(3):55-63.
    [181]赵百锁,王慧,毛心慰.嗜盐微生物在环境修复中的研究进展[J].微生物学通报,2007,34(6):1209-1212.
    [182]张丹,李兆格,包新光等.细菌降解萘、菲的代谢途径及相关基因的研究进展[J].生物工程学报,2010,26(6):726-734.
    [183]周德平,吴淑杭,闵航等.少动鞘胺醇单胞菌ZX4儿茶酚2,3-双加氧酶基因的克隆与表达[J].上海农业学报,2007,23(2):7-10.
    [184]周东美,邓昌芬.重金属污染土壤的电动修复技术研究进展[J].农业环境科学学报,2003,22(4):505-08.
    [185]周宏伟,谭凤仪,钟音等.代谢组学及其在微生物领域研究进展[J].分析化学,2007,35:309-315.
    [186]钟华,增光明,黄国和,等.生物表面活性剂对土壤中微生物降解疏水性有机物的作用机制[J].高技术通讯,2006,16(3):325-330.
    [187]张建峰,苏凤宜,刑新会.邻苯二酚2,3-双加氧酶在恶臭假单胞杆菌整细胞催化中的酶检活检测方法[J].化工学报,2008,59(2):450-455.
    [188]张杰,刘永生,孟玲.多环芳烃降解菌筛选及其降解特性[J].应用生态学报,2003,14(10):1783:1786.
    [189]张晶,张惠文,丛峰,等.长期灌溉含多环芳烃污水对稻田土壤酶活性与微生物种群数量的影响[J].生态学杂志,2007,26(8):1193-1198.
    [190]张秀霞,吴伟林,单宝来,等.固定化降解菌Q5降解喹啉动力学[J].石油学报(石油加工),2009,25(3):442-446.
    [191]张金丽,郑天玲.多环芳烃污染环境的控制与生物修复研究进展[J].福建环境,2002,19(2):26-29.
    [192]张志刚.固定化混合菌种降解2,6-二叔丁基苯酚研究.同济大学博士学位论文,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700