用户名: 密码: 验证码:
超高速点磨削陶瓷CBN砂轮性能的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超高速磨削技术被喻为“现代磨削的最高峰”,已被国际生产工程学会列为面向21世纪的中心发展方向。德国Junker公司1994年开发的超高速点磨削技术是超高速磨削又一新的应用形式,是集数控柔性加工技术、CBN超硬磨料、超高速磨削三大先进技术于一身的先进加工工艺。超高速陶瓷CBN砂轮技术是超高速点磨削关键技术之一,陶瓷结合剂CBN砂轮因其优良的磨削性能和制作过程的绿色、环保、节能、低耗被公认为是高速、高效、高精、低成本、低环境污染的高性能砂轮,是近年来世界各国竞相开发的热点。
     本文从超高速点磨削的机理分析入手,针对超高速点磨削陶瓷CBN砂轮的结构特点,按照磨削理论和合成材料的制备原则,对其各组成部分及其关键技术、制造工艺进行了较为系统的研究,并对研发的超高速点磨削砂轮进行了磨削性能实验。总结全文,本论文的工作概括如下:
     (1)概述了超高速磨削技术及其理论研究领域的发展历史。系统论述了超高速陶瓷CBN砂轮磨削的优越性及国内外的发展状况。阐明了本课题的研究目的和意义。
     (2)从砂轮、工件接触弧长和未变形切屑厚度这两个基本参数入手,论述了两个变量角α和β对超高速点磨削机理的影响。在此基础上建立了点磨削力、磨削温度、磨削表面粗糙度理论数学模型。通过对各数学模型的MATLAB仿真,从磨削机理的角度分析了点磨削变量角及其他磨削参数对磨削力、磨削温度和表面粗糙度的影响规律。
     (3)在高速、超高速砂轮应力分布的基础上,借助ANSYS软件,以径向膨胀量最小为目标函数,分析了超高速点磨削砂轮基盘形状、材料、尺寸等的选择,进行了最终截型的优化。
     (4)为了研发良好的超高速点磨削砂轮,对国内外8种有代表性的CBN磨料进行了常温性能、高温性能和耐腐蚀性能进行了对比实验,并对不同材料工件和加工需要对磨料的种类和粒度进行了探讨性选择;然后根据低温高强陶瓷结合剂的要求,设计了三组结合剂配方。通过对三种结合剂的成分、耐火度、抗折强度、热膨胀系数、物相、微观形貌的实验分析、对比,研制出了符合超高速点磨削砂轮要求的低温高强结合剂。
     (5)由于砂轮节块对于点磨削砂轮的制作和磨削性能很重要,所以,利用ANSYS软件对目标200m/s,直径Φ370mm的超高速点磨削陶瓷CBN砂轮节块进行了优化分析。根据优化节块的尺寸和强度结果,为了确保点磨削砂轮的安全性,提出了砂轮节块的最低强度要求。然后,以前面分析的CBN磨料和陶瓷结合剂为基础,对多组烧结砂轮样条进行了强度校核、分析,最后得出了高强度砂轮样条所需磨料的微观形貌、粒度、浓度等参数特点和要求。
     (6)在前面实验的基础上,根据超高速点磨陶瓷CBN砂轮的制作工艺研发、制作了超高速点磨削陶瓷CBN砂轮一块,并在东北大学超高速点磨削实验台和北京机械工业学院凸轮轴高速磨削实验台上,对点磨削砂轮的磨削性能进行了实验分析。实验表明:点磨削力随砂轮速度的增加而降低,随工件速度、磨削深度、纵向进给速度的增加而升高;磨削温度随砂轮速度的增加而降低,随工件速度、磨削深度、纵向进给速度的增加而升高;水平变量角的增大有利于磨削力、磨削温度的降低,但是,牺牲了表面粗糙度值。当变量角αβ都为+5°或-5。时,被磨工件的粗糙度Ra值略有增大,但工件表面的金相组织中无白层出现,被磨工件表面为残余压应力;当变量角αβ都为0°时,Ra值虽有所降低,但工件表面的金相组织中出现了有害的白层组织,即磨削温度高于727℃,被磨工件表面为残余拉应力。同时进行的磨削比表明:以被磨工件表面粗糙度Ra≤0.4μm、表面不出现残余拉应力为磨钝标准,超高速点磨削砂轮的磨削比G=170。同批次的陶瓷CBN砂轮生产中的磨削性能达到了进口砂轮的水平。
     (7)在超高速点磨削陶瓷CBN砂轮磨损机理分析的基础上,完成了超高速点磨削陶瓷CBN砂轮的修整实验。实验表明:当金刚石滚轮与CBN砂轮的速比为j=0.428时,修整后的砂轮地貌最好。
Ultra-high speed grinding is regarded as "the highest peak of modern grinding technology" and listed as one of main development directions in 21st century. In 1994, ultra-high speed point grinding is developed by Junker Company in Germany. It is a new application form of ultra-high speed grinding. Ultra-high speed point grinding is an advanced processing technique which includes flexible numerical control machining technology, CBN super-hard abrasives and ultra-high speed grinding and so on. Vitrified bond CBN wheel is an important part of quick-point grinding, and called as high performance grinding wheel. Its characteristics are high speed, high efficient, high precision, and low cost, low environment pollution. Now, it is a development focus all over the world.
     In the paper, by using grinding mechanism of ultra-high speed point grinding and structural characteristics of ultra-high speed vitrified CBN wheel, and according to grinding theory and preparation principle of compose material, the key technologies of all parts of CBN wheel and manufacturing processes are systematically studied. Eventually, a vitrified bond CBN wheel is developed. Grinding performance of vitrified bond CBN wheel is tested on experiment table of quick-point grinding. The main works of the paper includes the following aspects:
     (1) The characteristics, key technologies and development status at home and abroad of vitrified bond CBN wheel and quick-point grinding are discussed. Research background and meaning of the thesis are introduced.
     (2) By undeformed chip thickness and contact arc length between grinding wheel and workpiece, the paper discusses grinding mechanism of ultra-high speed point grinding based on variable angleα&β. The theory mathematics models such as ultra-high speed point grinding force, grinding temperature and surface roughness are educed according to ultra-high speed point grinding mechanism. By MATLAB simulation, the effect of variable angleα&βand some grinding parameters on grinding force, temperature and surface roughness were analyzed.
     (3) Considering the security of CBN wheel, stress distribution characteristics of high speed and ultra-high speed grinding wheel are presented. Taking the distributing radial expansion volume of wheel base as objective function, selection of wheel hub shape, material, size and optimization of section shape are analyzed by using ANSYS software.
     (4) In order to develop an excellent ultra-high speed point grinding wheel, the paper does some comparative experiments for five kinds of home-made CBN abrasives and three kinds of foreign CBN abrasives, and analyzes their normal temperature characteristics, high temperature characteristics and resistant to corrosion. Different abrasive materials and grain sizes are tentatively selected to meet different workpiece material and machining requirements. Three kinds of vitrified bonds are configured based on request of low temperature high intensity vitrified bonds. These bonds'component, refractoriness, coefficient of thermal expansion, strength, mineral phase and micro-topography are verified by experiments. At last, the kind of low-temperature high-strength vitrified bond is selected.
     (5) The segment of CBN wheel plays the most important role on grinding wheel performance. Thus, considering the strength of the segment and its forming process, the size of wheel segment of ultra-high speed point grinding wheel withΦ370mm,vs=200m/s is optimized by ANSYS software. Considering the security of wheel, the minimum segment strength is obtained according to strength of segment optimized. Afterward, the wheel sample configured by different abrasives and bonds selected before are sintered. By the measurements of strength, grain size, concentration and micro-topography of the abrasive and bond are determined for samples with high strength.
     (6) Based on the experiment research before, the ultra-high speed point grinding CBN wheel is made according to its manufacture techniques. And the performances of the CBN wheel are tested on NEU ultra-high speed point grinding test-bed and high speed camshaft grinder made by Beijing Mechanism College. Experimentation shows that point grinding force decreases with the wheel speed increases, and with workpiece speed, grinding depth, longitudinal feeding speed increases, the grinding force increases too; the grinding temperature decreases with the wheel speed, and with workpiece speed, grinding depth, longitudinal feeding speed increases, the grinding temperature increases too; the grinding forece and temperature decreases with level variable angle increases, but surface roughness decreases. Whenα&β=±5°, although the surface roughness value (Ra) increases, but surface of workpiece present residual compress stress and without white layer and phase transformations; whenα&β=±0°, although the surface roughness value(Ra) decreases, but surface of workpiece present residual tensile stress and having white layer and phase transformations. When taking workpiece surface roughness value Ra≤0.4μm and workpiece surface without residual stress as grinding blunt standard, the grinding ratio (G) of ultra-high speed point grinding wheel is 170 in experiment. The performance of the wheel approach importation grinding wheel level in production.
     (7) The paper analyzed wear mechanism of ultra-high vitrified bond CBN wheel. Dressing experimentation of vitrified bond CBN wheel is completed. The experimentation indicates that wheel topography is best when velocity ratio j=0.428 between the diamond rotary and CBN wheel.
引文
1.宋贵亮.超高速磨削技术及机理的若干基础研究[D],沈阳:东北大学,1997,1-10.
    2. H Opitz, Guhning K. High Speed Grinding [J], Annals of the CIRP,1968,16(1):261-264.
    3. Klocke F, Briksmeier E. High-speed Grinding-fundamentals and State of the Art in Europe,Japan and the USA[J], Annals of the CIRP,1999,46(2):715-724.
    4.鹈饲直行.超高速磨削の要素技术[J].机械と工具,1997(5):30-34.
    5. Klocke F., Brinksmeier E., Evans C, Howes T., Inasaki I., Minke E., Toeshoff H. K., Webster J. A. and Stuff D.. High-speed grinding-fundamentals and state of the art in Europe, Japan and the USA [J]. Annals of the CIRP,1997,46(2):715-724.
    6.张伯霖.高速加工技术在美国的最新发展[J].制造技术与机床,1999(4):5-6.
    7.王西彬,解丽静.超高速切削技术及其新进展[J].中国机械工程,2000,11(1-2):190-194.
    8. Klocke F., Brinksmeier E., Evans C., Howes T., Inasaki I., Minke E., Toeshoff H. K., Webster J. A. and Stuff D.. High-speed grinding-fundamentals and state of the art in Europe, Japan and the USA [J]. Annals of the CIRP,1997,46(2):715-724.
    9.郑州磨料磨具与磨削研究所.国外高速磨削的发展概况[A].高速磨削资料汇编[M].第一机械工业部情报所,1974.
    10. Werner P. G.. Forschritte beim HEDG-Verfahren mit CBN-Schleifscheiben [J]. Industrie Diamonten Rundschau.1988(1).
    11. Werner P. G.. Erhohen Abtragsleistungen und Bearbeitungsguten durch moderne Schleifverfahren [J]. Automobil Industrie,1988(3).
    12. Werner P. G.. Application and technological fundamentals of deep and creep feed grinding[M]. SME paper.1979,MR79-319.
    13.黄根林.欧洲的CBN超高速磨削加工技术.磨床与磨削,1992.4:7-10.
    14. Frederick M.. First U. S. High-efficiency deep grinding (HEDG) machine. American Mechanist, 1993.4.
    15.庄司克雄,厨川常元,稻田丰,et al.超高速平面研削盘の开发[J].精密工学会志,1997,63(4):560-564.
    17. Eda H., Kishi K., Surface generation super at high speed cutting up to 1200m/s, Proc. Int. Conf.21st MTDR,1980:259.
    18. Shimizu J., Zhou L., Eda H.. Simulation and Experimental Analysis of Super High-Speed Grinding of Ductile Material [J]. Journal of Materials Processing Technology,2002,129/1-3:19-24.
    19.金滩,蔡光起.材料的应变率强化和磨削中的尺寸效应[J].中国机械工程,1999,Vol.10(12):1401-1403.
    20.刘文治.超高速大功率磨削主轴系统及其动静压混合轴承的研究[D].东北大学博士论文,1996.12.
    21.金滩,蔡光起.超高速磨削的热传递机制探讨[J].东北大学学报(自然科学版),1999,20(4):384-387.
    22.刘文治,宋贵亮,蔡光起.紊流大流量液体动静压混合轴承的设计计算[J].东北大学学报(自然科学版).1996,4pp.425-429.
    23.金滩.高效深切磨削技术的基础研究.沈阳:东北大学博士学位论文,2000.3.
    24.冯宝富.超高速磨削的单颗磨粒磨削的研究.沈阳:东北大学硕士学位论文,2000.3.
    25.张伯霖.高速加工技术在美国的最新发展[J].制造技术与机床,1999(4):5-6.
    26. Brinksmeier E., Heinzel C., Wittman M.. Friction, cooling and lubrication in grinding [J]. Annals of the CIRP,1999,48/2:581-598.
    28. Yokogawa M., Yokogawa K.. Improving grinding performance of CBN wheels by dual-fluid supply method [J]. International Journal of the Japan Society for precision engineering,1993,27/1:11-16.
    29. Gao H., Wang J., Lan X.. Development of CBN Wheel with Cold Gas Inner Cooling [J]. Key Engineering Materials,2001,202-203:215-218.
    30. Khairy A.. Aspects surface and edge finish by magneto abrasive particles [J]. Journal of Materials Processing Technology,2001,116:77-83.
    31. Komandurit R., Chandrasekaran N.. Some aspects of machining with negative-rake tools simulating grinding:a molecular dynamics simulation approach [J]. Philosophical Magazine, B,1999,79(7): 955-968.
    32. Toenschoff H K., Friemuth T., Becker J. C.. Process monitoring in grinding. Annals of the CIRP [J], 2002,Vol.51/2:551-571.
    33.胡忠辉,袁哲俊.砂轮修整方法及其对磨削表面完整性的影响[J].磨料磨具与磨削,1992(3):2-7.
    34.康仁科,原京庭,史兴宽,蓝洁,任敬心.超硬磨料砂轮的激光修锐技术研究[J].中国机械工程,2000,11(5):493-496.
    35.左敦稳,河野良弘,山下俊仪,王珉.金刚石砂轮的C02脉冲激光修锐研究[J].机械工程学报,1999,(2):42-45.
    36. Hirao M., et al.. Waterjet in-process dressing [J]. Journal of the Japan Society for precision engineering,1998,64(9):1335-1339
    37.冯宝富,蔡光起.CBN砂轮修整方法及应用[J].工具技术,2001(12):8-11
    38.万隆,陈小林,刘小磐著.超硬材料与工具[M].化学工业出版社,2006.4,273-278.
    39.戴勇.CBN砂轮磨削机理的研究[D].哈尔滨:哈尔滨工业大学,1988.
    40.刘蒲生.高速磨削[M].北京:机械工业出版社,1982.
    41.庞子瑞,胡修池,王宛山,刘悦.高速/超高速砂轮基盘的优化分析,机械工程与自动化,2008:04.
    42.庞子瑞,刘晓玲,李建壮,蔡光起.基于车磨实验台的超高速陶瓷CBN砂轮研究,金刚石与磨料磨具工程,2006:06.
    43. Mahar R.L. Progress in CBN production grinding. Superabrasive'85, Society of manufacturing Engineering, OH, USA,1985,268.
    44.徐载熊.CBN砂轮磨削的发展方向.磨料磨具与磨削,1989,2(50):20-23.
    45.王光祖,李刚,张相法。立方氮化硼合成与应用。郑州:河南科学技术出版社,1985,1-2.
    46. Subramanian K., Lindsay R.P. A systems approach for the use of vitrified bonded superabrasive wheels for precision production grinding. Journal of Engineering for industry,1992,114(1):41-52.
    47. Z. H. Li, Y. H. Zhang, Y. M. Zhu and Z. F. Yang. Sintering of vitrified bond CBN grinding tool [J]. High-Performance Ceramics III pt.2; Key Engineering Materials; 2005, vol.280-283:31-33.
    48.庞子瑞,李健壮,蔡光起.基于超高速磨削的砂轮特性选择,机械制造,2007:02.
    49.李志宏.陶瓷结合剂CBN磨具的研究[D].天津:天津大学,1996.
    50. Yokogawa M., Yokogawa K. Grinding properties of monocrystalline and microcrystalline CBN grinding wheels. Int.J. Japan Soc. Prec. Eng.,1992,26(1)20-26.
    51. Bailey M.W., Juchem H.O. Characterization of ABN 800. Industrial Diamond Review,1996,56 (568):6-9.
    52.中国标准出版社,全国磨料磨具标准化技术委员会.磨料磨具标准汇编[M],北京:中国标准出版社,2007,10.
    53..Webster,M.Tricard Innovations in Abrasive products for precision Grinding[C].Annals of the CIRP vol.53/2/2004,p.597-603.
    54. M. J. Jack, C.J.Davis, M. P. Hitchiner, B. Mills. High-speed grinding with CBN grinding wheels-applications and future technology [J], Journal of materials processing Technology 110(2001)78-79.
    55.庞子瑞,王晋生,李长河,蔡光起.超高速磨削的特点及其关键技术[J],机械设计与制造,2007,4.
    56. Juchem H.O., Cooley B.A. Vitrified bond ABN tools and their advantages, Industrial Diamond Review,1983,43(499):82-84.
    57. Jablonowski Joseph. Making CBN easier to use. American Machinist & Automated Manufacturing, 1986,130(1):82-84.
    58. Navarro Nathan P. CBN and vitrified bond:a new focus, Machine and Tool Blue Book,1986,81(10): 51-52.
    59. Alan C.C. Using CBN abrasives. Tooling & Production,2000, (12):45-49.
    60. Richard Hall. Getting the most from CBN grinding, Machinery and Production Engineering, July 1998.
    62. Balson. Vitreous bonded cubic boron nitride abrasive articles. United States patent. No.3,986,847. Oct 19,1976.
    63. Jin Yang, Doh-Yeon Kim, Ho-yong Kim. Effect of glass composition on the strength of vitreous bonded CBN grinding wheels, Ceramics International.1993,19:87-92.
    64. Scholze H. Glas Natur. Struktur und Eigenschaften. Springer-Verlag, Berlin,1977,110-136.
    65. Yokogawa M., yokogawa K. Grinding properties of Borazon CBN wheels -4.Machine & Tool,1985, 29(1) 150-159.
    66. Anonymous. Understanding the vitreous bonded Borazon CBN system. Generate Electric Super abrasives Report. Application Development Operations, Worthington. Ohio,1988,12-36.
    67.陶瓷CBN砂轮及其制法。日本专利,特开平7-93440.
    68.吕智,陈国华,徐西鹏.CBN砂轮陶瓷结合剂研究中的若干关键问题[J],矿冶,20063.
    69.李启泉,彭振斌,陈启武.陶瓷结合剂金刚石砂轮的研究[J],矿冶工程,2007,01.
    70.侯永改,王改民.影响低温烧成陶瓷结合剂强度因素的探讨[J],陶瓷研究,2001,(02).
    71.杨亮,关岩,徐晓伟,范慧俐,李玉萍.CBN磨具用陶瓷结合剂气孔控制研究[J],金刚石磨料磨具工程,2006,(01).
    72.陈敢新,吕智,章兼植,周玉梅.CBN砂轮陶瓷结合剂的研究进展[J],金刚石磨料磨具工程,2003,(05).
    73.马文闵,万隆,刘小磐,汪洋.Li_20对CBN砂轮陶瓷结合剂性能的影响[J],金刚石与磨料磨具工程,2006,(05).
    74.范文捷,陈金环,刘芳.不同化学成分的玻璃对超硬材料陶瓷磨具性能影响的研究[J],金刚石与磨料磨具工程,2007,(02).
    75.卞景盛,吴建中.新型金属陶瓷结合剂CBN砂轮[J],金刚石与磨料磨具工程,1998,(05).
    76.李志宏,董庆年,朱玉梅等.含CaO陶瓷结合剂的初步研究[J],金刚石与磨料磨具工程,1994,(05).
    77.李志宏,朱玉梅,袁启明.陶瓷结合剂CBN磨具强度的影响因素研究[J],硅酸盐通报,2002,(05).
    78.邱丽花,刘一来,朱峰,张小富.近年来关于陶瓷结合剂CBN砂轮的研究及成果[J],金刚石与磨料磨具工程,1997,(05).
    79.张向红.低温高强陶瓷结合剂超硬磨具的研究[D],燕山大学,2004,4.
    80.李印江.陶瓷结合剂砂轮配方[M],北京:中国科学技术出版社,1991,6.
    81.王艳辉,王明智,温熙宇,臧建兵.镀Ti立方氮化硼(cBN)与玻化SiO_2-Na_2O-B_2O_3结合剂的作用[J],无机材料学报,1995,(03).
    82.王艳辉,王明智,臧建兵.Cr镀层对立方氮化硼(cBN)-玻化陶瓷复合材料界面成分、结构的作用[J],复合材料学报,1996,(01).
    83.温熙宇,王艳辉,王明智.有Ti涂层的CBN与陶瓷结合剂烧结体的显微结构研究[J]硅酸盐通报,1994,(03).
    84.臧建兵,王艳辉,王明智. Ti、Mo、W、Cr及其合金镀层与超硬磨料之间结合性能的研究[J],金刚石与磨料磨具工程,1997,(02).
    85.王艳辉,王明智,院兴国.真空微蒸发镀Ti、Mo、W、Cr及合金的金刚石、CBN磨料及制品性能检测[J],金刚石与磨料磨具工程,1995,(05).
    86.张习敏.陶瓷结合剂立方氮化硼磨具组织及性能的研究[D]燕山大学,2003.
    87.张小富.Li_2O在陶瓷结合剂中的作用[J],新技术新工艺,2001,(04).
    88.侯永改,王改民,刘方晓.添加剂对低温陶瓷结合剂性能影响[J],陶瓷研究,2002,(03).
    89.侯永改,王改民.影响低温烧成陶瓷结合剂强度因素的探讨[J],陶瓷研究,2001,(02).
    90.王宛山,庞子瑞,于天标.高速陶瓷CBN砂轮节块的实验研究,金刚石与磨料磨具工程,2008:05.
    91.修世超.超高速点磨削机理及其相关技术的基础研究[D],沈阳:东北大学,2006.
    92.李长明,刘万菊.数控超高速点磨削工艺及在一汽大众的应用[J],制造技术与机床,2004,(7):67-68.
    93. Malkin S著,蔡光起,巩亚东,宋贵亮译.磨削技术理论与应用[M],沈阳:东北大学出版社,2002,33-57.
    94.彭庚新.树脂CBN砂轮激光修整及其高速磨削性能的实验研究[D],长沙:湖南大学,2004.
    95.陈涛.45#钢CBN砂轮高速磨削(120m/s)工艺研究[J],湖南大学学报,2006,(2).
    96.贺长生;石玉祥;丁宁.外圆纵向磨削力的研究[J],煤矿机械,2006/02.
    97.苟晓明,郑焕文,张澄.外圆强力切入磨削中磨削力的一些实验研究[J],东北工学院学报,1984(2).
    98.徐鸿钧.磨削温度的测量技术[J].磨料磨具与磨削,1986. (6),38-42.
    99. soneys, R., Maris, M. and Pcters, J., Thermally Induced Damage in Grinding, Annals of the CIRP, 27/2,1978, p.571.
    100. Torrance, A. A., Metallurgical Effects Associated with Grinding, Proceeding of the Twelfth International Machine Tool Design and Research Conference,1978, p.637.
    101.张冬梅,刘传绍,赵波等.磨削温度理论研究的现状与进展[J].工具技术,2006.(5.
    102. Rowe WB, Morgan M N, Black S C E et al. A simplified approach to control of thermal damage in grinding. Annals of the CIRP,1996,45(1).
    103.贝季瑶.磨削温度的分析与研究[J].上海交通大学学报,1964,9(3.
    104.叶雪丽.超高速点磨削机理的研究[D].沈阳:东北大学,2007.
    105.蔡光起.高速重负荷钢坯磨削及其机理的研究[D].沈阳:东北大学博士学位论文,1985.
    106.金滩.高效深切磨削技术的基础研究[D].沈阳:东北大学博士学位论文,1999.
    107.赵恒华,冯宝富,金滩等.高效深磨的三种解析热模型[J].金刚石与磨料磨具工程,2003(2),18-20.
    108.蔡光起,巩亚东,宋贵亮.磨削技术理论与应用[M].沈阳:东北大学出版社,2002,114-118.
    109.任敬心,华定安.磨削原理[M],西安:西北工业大学出版社,1988,6,16-238.
    110. Brinksmeier E, Giwerzew A. Chip formation mechanisms in grinding at low speeds [J], Annals of the CIRP,2003,52 (1):253-258.
    111.冯宝富,赵恒华,蔡光起.单颗磨粒高速磨削45钢和20Cr钢的研究[J].现代制造工程,2003(11):7-10.
    112.臼井英治著,高希正等译.切削磨削加工学[M],北京:机械工业出版社,1982,12,433-558.
    113. Sato, K., Grinding temperature, Bull. Japan Soc. Grind. Engrs.,1,1961, p.31.
    114. Malkin, S. and Anderson, R. B., Thermal Aspects of Grinding, Part 1—Energy Partition, Trans. ASME, J. of Eng. For Ind.,96,1974, p.1177.
    115. S. Malkin, C. Guo. Thermal Analysis of Grinding, Annals of the CIRP Vol.56/2/2007, p.760-779.
    116.王光祖,李刚,张相法.立方氮化硼合成与应用。郑州:河南科学技术出版社,1985,1-2.
    117.温度.国产陶瓷结合剂CBN砂轮的磨削性能研究及经济分析[D],南宁:广西大学,2000,p.1-10.
    118.万隆,陈石林,刘小磐.超硬材料与工具[M].北京:化学工业出版社,2006,37-42.
    119.段成荣,马福全.125米/秒高速砂轮的研制[J],金刚石与磨料磨具工程,1982/01.
    120.毕继红,王晖.工程弹塑性力学[M].天津:天津大学出版社,2007,9.113-125.
    121.陈希诚.玻璃工艺学[M].上海:上海科学技术出版社,1963,3.98-158
    122.赵金柱.立方氮化硼磨具陶瓷结合剂性能的研究[D],秦皇岛:燕山大学,2006,p.1-30.
    123.瓦崇龙,邓国发.低温高强度陶瓷结合剂的研究[J],超硬材料工程,2007/02.
    124. Subramanian K., Lindsay R.P. A systems approach for the use of vitrified bonded superabrasive wheels for precision production grinding. Journal of Engineering for industry,1992,114(1):41-52.
    125. Cooley B.A. and Juchem H.O. Vitrified Bond Wheels improve automated grinding. Cutting Tool Engineering.1988,40(2):53-59.
    126. Kato Y. Optimum dressing of vitrified bond CBN wheels and its effect on the residual stress of the work piece. SEM Technical paper. MR90-528,1990,1-28.
    127. Juchem H.O., Cooley B.A. Vitrified bond ABN tools and their advantages, Industrial Diamond Review,1983,43(499):82-84.
    128.李汉中.砂轮工作面形貌的检测[J],磨料磨具与磨削,1986,4(34),38-42.
    129.芮晓明,郑焕文,姜澄.外圆强力磨削磨削力的一些实验研究[J].东北工学院学报,1984,(2),128-135.
    130.王龙山,李国发.磨削过程模型的建立及其计算机仿真[J].中国机械工程,2002,(1),1-4.
    131. Malkin, S., Thermal Aspects of Grinding, Part 2—Suface Temperatures and Workpiece Burn[J], Trans. ASME, J. of Eng. For Ind.,96,1974, p.484.
    132. Des Ruisseaux, N.R. and Zerkle, R.D., Thermal Analysis of the Grinding Process[J], Trans. ASME, J. of Eng. For Ind.,92,1970, p.428.
    133.董刚.CBN磨具应用技术的研究[D],天津:天津大学硕士论文,2004,p24-30.
    134.李伯民,赵波.实用磨削技术[M],北京:机械工业出版社,1996,4-8.
    135. Kohli.S, Guo.C, Malkin.S. Energy Partition to the Workpiece for Grinding with Aluminum Oxide and CBN Abrasive Wheels[J], Transactions of the ASME,1995,1(162):117-120.
    136.严文浩.发展我国CBN磨削技术主要问题与对策[J],机械工艺师,1993,(1):35-37.
    137. radhakrishnan,V. AND Achyutha, B. T., in-process Monitoring of Corner Wear in Cylindrical Plunge Grinding[J], Milton C. Shaw Grindng symposium, PED-16, ASME, New York,1985,p.341.
    138. Wermer, G.., Analytical Description of Wheel Wear, Proceedings of the International conference on Production Engineering, Pt.2, JSPE,Tokyo,1974,p.64.
    139. Wermer, G.., Rlation between Grinding Work and Wheelwear in Plunge Grinding, SME Paper No. MR 75-610,1975.
    140.修世超,蔡光起.数控快速点磨削技术及其应用研究[J],中国机械工程,2005,23.
    141.修世超,蔡光起.数控快速点磨削技术的绿色特性分析[J],机械工程学报,2006,11
    142. Xiu S C, Li Q, Cai G Q. Key technology and mechanism of CNC quick-point grinding[J].Journal of Harbin Institute of Technology,2005,12(sup):43-46.
    143. Yoshikawa, H. and Sata, T., Study on Wear of Grinding Wheels, J.of Eng.for Ind., Trans.ASME,1963, P.39.
    144. Yoshikawa, H., Fracture Wear of Grinding Wheel, Production Engineering Research Conference, ASME,1963,P.209.
    145. Malkin, S. and Cook, N.H., The wear of Grinding Wheels. Part 1—Attritious Ware, J. of Eng. for Ind., Trans. ASME,93,1971 P.1120.
    146. pekelharing, A.J., Verkerk, J.and Van Beukering, F.C., A Model to Describe Wheel Wear in Grinding, Proceedings of the Internationnal Grinding Conference, Pittsburg,1972,p.412.
    147. Vickerstaff, T.J., Wheel wear and Surface Roughness in Cross Feed Surface Grinding, Int.J.Mach. Tool Des.Res.,13,1973,p.183.
    148. Banerjee, J.K.and Hillier, M.J., Wheel Wear Pattern in Surface Grinding, The Tool and Manufacturing Engineer, Feb.1969,p.59.
    149.机械工程科学技术前沿编委会.机械工程科学技术前沿[M],北京:机械工业出版社,1996,105-102.
    150. Werner P G. Advance in High Efficiency Deep Grinding[J], SME Paper, MR88-588.
    151. Tawakoli T. New Machine Concept for the Mass Production of Cylindrical Workpiece[J], Abrasive, 1996,(8):4-7.
    152. Tawakoli T. High-efficiency Deep Grinding with Shaved CBN Wheels[J], SME Paper, 1990.MR90-506.
    153. Malkin S, Guo C. Effectiveness of Cooling in Grinding[J], Presented at CIRP Annual Convention. STCG, Enschede,1998.
    154.李向东,林彬.磨削参数对陶瓷加工表面粗糙度影响的实验研究[J].机械工程与自动化,2005,(03).
    155.朱爱菊;林彬;张方阳.工程陶瓷磨削试验参数的合理选择[J].工具技术,2006/01.
    156.田欣利;林彬;于爱兵.陶瓷磨削表面残余应力对零件强度的影响研究[J],机械科学与技术,2002年01期.
    157.田欣利.陶瓷磨削表面完整性的理论与实验研究[D].天津:天津大学博士学位论文,1996.
    158.陈明君;张飞虎;董申;李旦.光学玻璃塑性模式超精密磨削加工的研究[J].中国机械工程,2001年04期.
    159.杨智勇.光学玻璃超声振动切削脆塑转变临界条件的研究[D]哈尔滨工业大学,2006.
    160.关佳亮;郭东明;袁哲俊.ELID镜面磨削中砂轮生成氧化膜特性及其作用的研究[J],机械工程学报,2000年05期.
    161.关佳亮,袁哲俊,张飞虎,栾殿荣ELID精密镜面磨削用新磨削液的研制[J]哈尔滨工业大学学报,1998,(05).
    162.田业冰.硅片超精密磨削表面质量和材料去除率的研究[D].大连:大连理工大学,2005.
    163.唐克岩.硅片自旋转磨削面型仿真与实验研究[D].大连:大连理工大学,2006.
    164.张银霞.单晶硅片超精密磨削加工表面层损伤的研究[D].大连:大连理工大学,2006.
    165.郭东明,康仁科,金洙吉.大尺寸硅片的高效超精密加工技术[J],世界制造技术与装备市场,2003,(01).
    166.丁宁,王龙山,李国发,陈向伟.细长轴磨削变形的变速优化智能预测控制研究[J],中国机械工程,2006(01).
    167.王家忠,王龙山,李国发,丁宁.外圆纵向磨削表面粗糙度的模糊预测与控制[J]吉林大学学报(工学版),2005,(04).
    168. Ramanath. and M.C.shaw. Abrasive Grain Temperature at the Beginning of a Cut in Fine Grinding. Transaction of the ASME. JEI.1988.2.
    169. V.L.Alan.短时高温试验.北京,国防工业出版社.1966.3.
    170.小野浩二等著,高希正译.理论切削学[M],北京:国防工业出版社,1985.5,203-211.
    171. Tonshoff,H.K. and Grabner,T. Cylindrical and Profile Grinding with Boron Nitride Wheels, Proceedings of the 5th International Conference on Production Engineering, JSPE,Tokyo,1984,p.341.
    172. Y.P.Maishev.Iron Beam Processing[J], Spravochnik Inzh.zh,1999, (6):58-64.
    173.叶伟昌,叶毅.超硬磨料砂轮的新进展[J],世界制造技术与装备市场,1999,10,23-25.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700