用户名: 密码: 验证码:
低品位硼镁矿及富硼渣综合利用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
虽然辽宁省硼矿资源较丰富,但是经过50多年硼镁矿的大量开采,省内硼矿贫化趋势明显,平均品位由20世纪60年代初期的18%降至12%左右。事实上,许多硼矿加工企业所用矿石硼品位仅在10%左右。本文以低品位硼镁矿为原料,在硫酸法制备硼酸的基础上,充分回收硼酸母液中的镁资源。整个工艺过程形成闭路循环,没有废液排出。用热力学原理计算、分析研究了硼镁矿中蛇纹石、白云石、与稀酸的反应活性。结果表明,蛇纹石、白云石中的Mg可被稀酸完全浸出。当硫酸用量为理论用量的85%,反应时间为100min,硫酸浓度控制在20%,搅拌速度约为100rmp时,硼酸的浸出率可达93.80%。硼酸一次性收率能达到71.06%。所得硼酸纯度为99.62%,达到了工业硼酸标准(GB 538-90)中一等品的含量(硼酸含量在99.4%~100.8%之间)。硼酸的母液在高压釜内进行高温结晶时,硫酸镁浓度应控制在25%以上,溶液中硫酸镁可被有效回收。当硫酸镁浓度为28%,结晶温度为180℃,结晶时间为4h时,一水硫酸镁能够被有效的回收,其一次性收率可达45.03%。一水硫酸镁的纯度达到96.07%。
     硼铁矿在电炉或高炉内经熔态选择性还原后实现铁与硼的分离,得到含硼生铁和富硼渣。此工艺称为“火法”硼铁分离路线。富硼渣中B2O3的品位可达到12%~17%。从化学组成上来看,它与焙烧后的硼镁矿相似,可代替硼镁矿作为硼的来源。用热力学原理计算、分析研究了富硼渣中原硅酸镁、硅酸钙镁与稀酸的反应活性。结果表明,原硅酸镁、硅酸钙镁中的Mg可被稀酸完全浸出。在理论研究的基础上,分别用硫酸和盐酸对富硼渣进行浸出试验研究。硫酸酸解富硼渣Ⅱ时,最佳的酸解条件是:浸出温度99℃、硫酸用量为理论用量的95%、浸出液固比为6:1、浸出时间为90min。在此最佳条件下进行试验,B浸出率达到98.76%,Mg浸出率为74.32%。对于硫酸酸解液的利用,不同于一般先进行低温结晶制备硼酸再回收利用硼酸母液中硫酸镁的工艺。而是先进行高温提镁,然后剩余母液再低温结晶硼酸。为充分利用热溶液,节省能源,溶液经过除铁、铝步骤后,趁热直接加入高压釜内升温提镁。最终滤液可打入酸解工序,滤液中的硼酸和硫酸镁可重复回收。整个工艺形成闭路循环,没有废液排放。浸出液中的硫酸镁一次性收率在50%左右,硼酸一次收率可达65%以上。制得的一水硫酸镁的纯度达到95.42%。硼酸纯度为99.27%,达到了工业硼酸标准(GB 538-90)中合格品的标准(硼酸含量大于99.0%)。盐酸浸出富硼渣Ⅱ时,最佳酸解条件为:浸出温度为95℃,酸用量为理论用量的95%,浸出时间为40min,浸出液固比为1:1。对盐酸浸出液进行综合利用,开发了制备硼酸和氢氧化镁工艺,并得到副产品硫酸钙。由此方法制得的硼酸纯度为99.55%,达到了工业硼酸标准(GB 538-90)中一等品的标准(硼酸含量在99.4%~100.8%之间)。氢氧化镁的纯度达到80%以上,副产品硫酸钙纯度达到98.81%。
     开发了富硼渣熔融钠化-热处理晶化-水浸-结晶制备硼砂工艺。以富硼渣为原料,碳酸钠为钠化剂,在高温下进行熔融钠化,熔渣经热处理晶化后得到钠化渣。钠化渣在常压或加压条件下进行水浸,将硼转移到水溶液中,再调节水溶液的pH值,室温下自然冷却结晶,最终得到硼砂晶体。试验结果表明,适合用本工艺制取硼砂的富硼渣,其化学组成应满足:氧化钙含量小于6%;氧化镁与氧化硅的质量比R应在1.4-2.0区间内;氧化铝含量小于9%。最佳工艺条件为:碳酸钠为理论用量的2.3倍,钠化渣热处理温度为650℃,热处理时间为4.5h,水浸温度为180℃。钠化渣中硼的一次浸出率最高可达87.64%。硼砂产品中主含量达到99.31%,大大高出工业硼砂国家标准(GB/T537-1997)中一等品硼砂的含量95.0%,接近硼砂优等品(99.5%)的含量。
Although boron resources in Liaoning Province is rich, the dilution trend of ascharite is clearly after 50 years of substantial mining. The average grade of ascharite decreases from 18% to 12% since the early sixties of the 20th century. Moreover, the average grade of ascharite used in processing enterprises is only about 10%. In this paper, on the basis of preparation of boric acid by sulfuric acid method, we use the low-grade ascharite as the raw material to recover the magnesium sulfate in boric acid mother liquor. Since the whole process is a closed circuit, no waste is discharged. The reactivity of the reactions of diluted acid with serpentine ore and dolomite is analyzed by thermodynamic principles. The results show that the Mg can be completely leached from serpentine ore and dolomite by diluted acid. When the amount of sulfuric acid is 85% of the theoretical amount, sulfuric acid concentration is 20%, reaction time is 100min, stirring speed is about 100rmp, the boron leaching rate is up to 93.80% and the recovery rate of boric acid is 71.06%. The purity of boric acid is 99.62%, which fits the first grade industrial products (boric acid content of between 99.4%-100.8%) according to the industrial standard of boric acid (GB 538-90). In addition, when the boric acid mother liquor crystallizes at high temperature in an autoclave, the magnesium sulfate can be efficiently recycled if the concentration of magnesium sulfate is more than 25%. For example, when the concentration of magnesium sulfate in the solution is 28%, the crystallization temperature is 180℃, and the crystallization time is 4h, the magnesium sulfate can be effectively recycled. The recovery rate and purity of magnesium sulfate monohydrate are 45.03% and 96.07%, respectively.
     Ludwigite is the most important boron resource in China, the B2O3 reserves of which is 58% of the country total reserves. The Selective reduction of ludwigite in the electrical furnace or blast furnace will result in the Separation of iron and boron. This process will finally produce the boron-rich slag and B-containing pig iron. The grade of the boron-rich slag could up to 12%~17%. Since the obtained boron-rich slag is similar to ascharite in the chemical composition, it could replace the ascharite to be the source of Boron. The reactivity of the diluted acid with Mg2SiO4 and MgCaSiO4 in the boron-rich slag has been analyzed based on the thermodynamic principle. It was showed that Mg in the Mg2SiO4 and MgCaSiO4 can be completely leached by the dilute acid. The sulfuric acid and hydrochloric acid were used in the leaching experiments. The best acid leaching conditions for boron-rich slagⅡby sulfuric acid are:99℃of the leaching temperature,95% of the theoretical amount of the amount of sulfuric acid,6:1 of the ratio of leaching liquid to solid, and 90min of the leaching time. Under this condition, the leaching rates for B and Mg are 98.76% and 74.32%, respectively. To take advantage of sulfuric acid leaching solution, the magnesium was recovered at high temperature first, and then the boric acid was crystallized from the mother liquor. This process is different from the previous technology, in which the boric acid was crystallized at low temperature, and then the magnesium was recovered from the mother liquor. After the process of eliminating iron and aluminum, the hot solution was directly added to the autoclave. Adding the hot solution to the autoclave can use the heat of hot solution to save energy. Final filtrate could be added to acid leaching process, the boric acid and magnesium sulfate can be recovered again. The entire process is a closed circuit, no wastewater is discharged. The recovery rate of magnesium sulfate is about 50% and the recovery rate of boric acid is more than 65%. The purity of magnesium sulfate monohydrate is 95.42%。The purity of boric acid is 99.27%, which fits the qualified products under the industrial standard (GB 538-90) for boric acid (the acid content is greater than 99.0%).
     The results showed that the best acid leaching conditions for boron-rich slagⅡby hydrochloric acid are:95℃of the leaching temperature,95% of the theoretical amount of the amount of sulfuric acid,1:1 of the ratio of leaching liquid to solid,40 min of the leaching time. To take advantage of leaching solution, the preparation technology of boric acid and magnesium hydroxide process was developed and calcium sulfate was the by-product. The purity of the boric acid obtained by this method is 99.55%, which fits the first grade industrial products under the industrial standard (GB 538-90) for boric acid (acid content of between 99.4%-100.8%). The purity of magnesium hydroxide is greater than 80%, and the purity of the calcium sulfate is 98.81%.
     In the borax preparation process, the technology route of molten sodium treatment—heat treatment—water leaching—crystallization was developed. The boron-rich slag as the raw material reacts with sodium carbonate at high temperature. After the reaction, the molten slag turns to be Na2CO3-modified slag after heat treated. Na2CO3-modified slag is leached by water at atmospheric pressure or high pressure conditions. The boron could transfer to the aqueous solution and then adjusting the pH value of the aqueous solution. Subsequently, the borax is crystallized in the solution at room temperature. The results show that the chemical composition for boron-rich slag which is suitable for this technology should be met the following factors:the calcium oxide content is less than 6%; the MgO/SiO2 should be within the range of 1.4 to 2.0; alumina content is less than 9%. The optimum technology conditions are as following: the amount of sodium carbonate is 2.3 times of the theoretical amount of sodium carbonate; temperature is 650℃; heat treatment time is 4.5h; leaching temperature is 180℃. The highest leaching rate of boron is up to 87.64% in the Na2CO3-modified slag. The purity of the boric acid is up to 99.31%, significantly higher than the purity of first grade borax (95.0%) of national standards for industrial borax (GB/T 537-1997), close to the high-class borax product (99.5%).
引文
1.李大纲.高炉渣中有价组分选择性析出与分离[D],沈阳:东北大学,2005.
    2.朗建峰,艾志,张显鹏.“高炉法”综合开发硼铁矿工艺中铁硼分离基本原理及工艺特点[J],矿产综合利用,1996,3:1-3.
    3.冉启培,姚越,郑学家.硼化物的制造与应用[M],辽宁:辽宁科学技术出版社,1985,126.
    4. O'Driscoll M. Borates:the Turk of the to wn[J], Industrial Miner,2001, (402):30-46.
    5. Osman N A, Sabri C, Mehmet O, et al. Determination of the optimum conditions for boric acid extraction with carbon dioxide gas in aqueous media from colemanite containing Arsenic[J], Industrial and Engineering Chemmistry Research,2000,39(2):488-493.
    6. Acarkan N, Bulut G, Kangal O, et al. A new process for upgrading boron content and recovery of borax concentrate[J], Minerals Engineering,2005,18(7):739-741.
    7.郑学家.国内外硼酸生产技术综述[J],辽宁化工,2000,29(5):276-278.
    8.赵鸿.我国硼矿床的类型及工业应用[D],北京:中国地质大学,2007.
    9.冉启培.我国硼工业的现状和动向[J],化学世界,1998,39(11):567-570.
    10.夏学惠,赵玉海,阎飞.辽东-吉南地区硼矿床地质特征及成矿远景[J],化工矿产地质,2007,29(3):169-177.
    11.孙新华.我国硼镁矿综合利用研究概况[J],矿产综合利用,1995,4:39-42.
    12.陈良琨.西藏硼矿的开发利用[J],中国矿业,1995,4(5):19-21.
    13.郑学家.硼化物生产与应用[M],北京:化学工业出版社,2007,349-380.
    14. Ma Y G, Yang Z, Matsumoto M, et al. Effect of composition and temperature of crystallization on the microstructure and magnetic properties of NdFeB thin films for perpendicular recording media[J], Physica Status Solid A,2003,199(3):491-500.
    15. Ma B M. Recent development in bonded NdFeB magnets[J], Journal of Magnetism and Magnetic Materials,2002,239(3):418-423.
    16. Jones M, Marsh R. The preparation and structure of magnesium boride[J], Journal of American Chemmical Society,1954,76:1434-1436.
    17. Kang W N, Kim H J, Choi E M, et al. MgB2 superconducting thin films with a transition temperature of 39 Kelvin[J], Science,2001,292(5521):1521-1523.
    18. Braccini V, Nardelli D, Malagoli A, et al. MgB2 tapes with non-magnetic sheath effect of the sintering temperature on the superconducting properties [J], IEEE Transactions on Applied Superconductivity,2005,15(2):3211-3214.
    19. Eremets M I, Struzhkin V V, Mao H K, et al. Superconductivity in Boron[J], Science, 2001,293(5528):272-274.
    20.李葆萱,王英红,毛成立,等.含硼富燃固体推进剂药浆粘度调节[J],固体火箭技术,2000,23(4):19-22.
    21.范红杰,王宁飞,关大林.GAP包覆硼对硼固体推进剂燃烧特性的影响[J],推进技术,2002,23(3):262-264.
    22. XuHHK, Quinn J B, Smith D T. Effects of different whiskers on the reinforcement if dental resin composites[J], Dental Materials,2003,19(5):359-367.
    23.胡晓兰,梁国正.硼酸铝晶须/双马来酰亚胺树脂摩擦磨损性能[J],复合材料学报,2004,21(6):21-26.
    24.方舟,王皓,傅正义,等.ZrB2陶瓷的制备和烧结[J],中国有色金属学报,2005,15(11):1699-1704.
    25. Mishra S K, Das S, Das S K, et al. Sintering studies on ultrafine ZrB2 powder produces by a self-propagated high-temperature synthesis process[J], Journal of Materials Research,2000,15(11):2499-2504.
    26.刘然,薛向欣,姜涛.硼及其硼化物的应用现状及研究进展[J],材料导报,2006,20(6):1-4.
    27. Garrett, D E. Borates[M], California: Academic Press,1998,401-428.
    28. Yesilyurt, M. Determination of the optimum conditions for the boric acid extraction from colemanite ore in HNO3 solutions[J], Chemical Engineering and Processing,2004, 43(10):1189-1194.
    29.罗玉萍.陶瓷工艺学[M],北京:中国建筑工业出版社,1981,46-49.
    30. Vidyawathi S S, Amaresh R, Satapathy L N. Effect of boric acid sintering aid on densification of barium ferrite[J], Bulletin of Material Science,2002,25(6):569-572.
    31. Prutting S M, Cerveny J D. Boric acid vaginal suppositories:A brief review[J], Infectious Diseases in Obstetrics and Gynecology,1998,6(4):191-194.
    32. Clarkson T W. Inorganic and organometal pesticides. Handbook of pesticide toxicology[M], New York:Academic Press,1991,497-583.
    33. Miller E W, Alers A E, Pralle A, et al. Boronate-based fluorescent probes for imaging cellular hydrogen peroxide[J], Journal of American Chemistry Society,2005,127(47): 16652-16659.
    34. Zhu Y C, Bando Y, Xue D F, et al. New boron nitride whiskers:showing strong ultraviolet and visible light luminescence[J], The Journal of Physical Chemistry B,2004,108(20): 6193-6196.
    35. Jung D S, Hong S K, Lee H J, et al. Effect of boric acid flux on the characteristics of (CeTb)MgAl11O19 phosphor particles prepared by spray pyrolysis[J], Journal of Alloys and Compounds,2005,398(1-2):309-314.
    36.冉启培,姚越,郑学家,等.硼化物的制造和应用[M],辽宁:辽宁科学技术出版社,1985,56-58.
    37. Liu Y, Tossell J A. Ab initio molecular orbital calculations for boron isotope fractionations on boric acids and borates[J], Geochimica et Cosmochimica Acta,2005,69(16): 3995-4006.
    38. Vallealle C S, Reynard B, Danel I. Boron isotopic fractionation between minerals and fluids:New insights from in situ high pressure-high temperature vibrational spectroscopic data[J], Geochimica et Cosmochimica Acta,2005,69(17):4301-4313.
    39. Micael F. News of the week-boron neutron capture therapy[J], Chemical and Engineering News,2002,80(34):13.
    40.庄严,吕嘉冬,吴瑞征,等.有机硼表面活性剂的合成及其应用研究[J],精细与专用化学品,2005,13(1):14-16.
    41.韩檬,赵博,张卫江.硼-10酸的合成[J],化学工程,2007,35(8):70-73.
    42. Skelton W T W, Dowling M F, KhalikS I A. Effect of boric acid on the severity of vapor explosions in pure water and surfactant solutions[J], Nuclear engineering and design, 1995,155(1-2):359-368.
    43.李文光.我国硼矿资源概况及利用[J],化工矿物与加工,2002,(9):22-24.
    44. Paju M, Hougardy H P, Grabke H J. Effects of boron alloying on properties of a low-carbon low-alloyed steel[J], Scandinavian Journal of Metallurgy,1989,18(5): 235-242.
    45. Itakura T, Sasai R, Itoh H. Precipitation recovery of boron from wastewater by hydrothermal mineralization[J], Water Research,2005,39(12):2543-2548.
    46. Taylan N, Giirbiiz H, Bulutcu A N. Effects of ultrasound on the reaction step of boric acid production process from colemanite[J], Ultrasonics Sonochemistry,2007,14(5):633-638.
    47. Chaudhuri M K, Hussain S, Kantam M L, et al. Boric acid:a novel and safe catalyst for aza-Michael reaction in water[J], Tetrahedron Letters,2005,46(48):8329-8331.
    48. Kondaiah G C M, Reddy L A, Babu K S, et al. Boric acid:an efficient and environmentally benign catalyst for transesterification of ethyl acetoacetate[J], Tetrahedron Letters,2008,49(1):106-109.
    49. Shelke K F, Sapkal S B, Kakade G K, et al. Boric acid as an efficient catalyst for the synthesis of 1,1-diacetate under solvent-free condition[J], Chinese Chemical Letters, 2009,20:1453-1456.
    50. Kumar A, Maurya R A. An unusual mannich type reaction of tertiary aromatic amines in aqueous micelles[J], Tetrahedron Letters,2008,49(38):5471-5474.
    51. Shelke K E, Sapkal S B, Sonar S S, et al. An efficient synthesis of 2,4,5-Triaryl-lH-imidazole derivatives catalyzed by boric acid in aqueous media under ultrasound-irradiation[J], Bulletin of the Korean Chemical Society,2009,30(5): 1057-1060.
    52.朱建华,魏新明,马淑芬,等.硼资源及其加工利用技术进展[J],现代化工,2005,25(6):26-29.
    53.胡德生,林志祥,仲剑初.硫酸分解硼镁铁矿综合利用工艺[D],大连:大连理工大学,1996.
    54.何长清.硼铁矿综合利用[D],沈阳:东北大学,1996.
    55.吕秉玲.翁泉沟硼铁矿的综合利用[J],无机盐工业,2005,37(4):38-45.
    56.杨卉凡,李琦,王秋霞.铁硼矿的综合利用新工艺研究[J],中国资源综合利用,2002,(9):12-15.
    57.王文忠.复合矿综合利用[M],沈阳:东北大学出版社,1994,126.
    58.刘然,薛向欣,姜涛,等.硼铁矿综合利用概况与展望[J],矿产综合利用,2006,(2):33-36.
    59.徐莹.硼镁铁矿的硫酸浸出工艺研究[J],辽宁师专学报,2006,8(1):106-107.
    60.张显鹏,郎建峰,崔传孟,等.低品位硼铁矿在高炉冶炼过程中的综合利用[J],钢铁,1995,30(12):9-11.
    61.张玉柱,朗建峰,李振国.含硼添加剂改善烧结矿质量机理及硼—镁复合添加剂的研究[J],矿产综合利用,2000,(1):29-32.
    62.赵庆杰,何长清,高明辉.硼铁矿综合利用—硼精矿活化及含硼铁精矿改善烧结球团的机理[J],华东冶金学院学报,1997,3:262-266.
    63.郭振宇.烧结矿加硼工业试验[J],烧结球团,1980,(4):51.
    64.万佑生.烧结配硼灰泥粉试验研究[J],烧结球团,1991,(6):9.
    65.李玉明.加硼泥烧结矿工业试验及高炉冶炼效果[J],烧结球团,1995,1:6.
    66.刘素兰,张显鹏,崔传孟.硼铁矿冶炼Fe-B-Si合金的工艺研究[J],金属学报,1996,4:393-396.
    67.陈吉,刘素兰,张显鹏.富硼渣碳碱法制取硼砂[J],东北大学学报(自然科学版),1996,17(5):508-511.
    68. Zhang P X, Sui Z T. Effect of factors on the extraction of boron from slags[J], Metallurgical and Materials Transactions,1995,26B(1):345-351.
    69.郎建峰,曹文华,张显鹏,等.化学成分对富硼渣活性及相结构的影响[J],矿产综合利用,1997,1:41-44.
    70.战洪仁,刘素兰,樊占国.富硼渣冷却速率与活性的关系[J],东北大学学报(自然科学版),2007,28(11):1604-1607.
    71.刘素兰,陈吉,张显鹏.富硼渣硫酸浸出试验研究[J],东北大学学报(自然科学版),1996,17(4):378-380.
    72.刘素兰,张显鹏,崔传孟.富硼渣提硼研究[J],化工矿山科技,1997,26(5):38-59.
    73.郭汝新,沈世才.硫镁肥的过去现在和将来[J],海湖盐化工,2000,29(1):19-22.
    74.郭安强,黄龙,牛虎,等.MgSO4·H2O生产中干燥工艺的改进[J],无机盐工业,1997,(5):42-43.
    75.胡庆福.镁化合物生产与应用[M],北京:化学工业出版社,2004,357-385.
    76. Grevel K D, Majzlan J. Internally consistent thermodynamic data for magnesium sulfate hydrates[J], Geochimica et Cosmochimica Acta,2009,73(13):6805-6815.
    77. K1L1c O, K1L1c A M. Recovery of salt co-products during the salt production from brine[J], Desalination,2005,186(1-3):11-19.
    78.张丽清,刘素兰,卢旭东,等.模拟富硼渣硫酸浸出硼镁分离研究[J],沈阳化工学院学报,1998,12(2):108-112.
    79.贺春宝.盐湖粗镁生产精制一水镁新工艺实验研究[J],苏盐科技,2006,9(3):7-8.
    80.贺春宝,张喜荣.利用粗镁生产精制一水硫酸镁的研究[J],无机盐工业,2000,32(6):31-32.
    81.吕秉玲.翁泉沟硼铁矿的综合利用[J],无机盐工业,2005,37(4):38-45.
    82.叶亚平,吕秉玲.翁泉沟硼镁铁矿的硫酸法加工(Ⅰ)—磁铁矿的阻溶及其机理[J],化工学报,1996,47(4):447-453.
    83.冉启培,姚越,郑学家,等.硼化物的制造和应用[M],辽宁:辽宁科学技术出版社,1985,143-147.
    84.天津化工研究院.无机盐工业手册(下)[M],北京:化学工业出版社,1996,1089-1090.
    85.王志勇,董松琦,张庆芳.简明无机化学教程[M],北京:高等教育出版社,1988,1-19.
    86.商蓉生.蛇纹石制镁盐及副产活性Si02的应用探讨[J],无机盐工业,1996,(02):9-11.
    87.杨艳霞,冯其明,刘琨,等.纤蛇纹石在盐酸浸出过程中结构变化的研究[J],中国矿业大学学报,2007,36(4):559-564.
    88.杨保俊,于少明,单承湘.蛇纹石硫酸浸出过程动力学研究[J],硅酸盐学报,1999,27(1):65-70.
    89.胡显智.高镁矿石酸浸降镁及浸出液综合利用研究[D],昆明:昆明理工大学,2001.
    90.杨显万,何蔼平,袁宝州.高温水溶液热力学数据计算手册[M],北京:冶金工业出版社,1983.
    91.贺春宝,张喜荣.利用粗镁生产精制一水硫酸镁的研究[J],无机盐工业,2000,32(6):31-32.
    92.廖步勇,肖应凯,魏海珍,等.硼酸溶液蒸发时温度对硼的挥发和硼同位素分馏的影响[J],盐湖研究,2003,11(2):24-28.
    93. Spivack A J, Edmond J M. Determination of boron istope ratios by thermal ionization mass spectrometry of the dicesium metaborate cation[J], Anal Chem,1986,58(1):31-35.
    94. Davidson G R, Bassett R L. Application of boron isotopes for identifying contaminants such as fly ash leachate in groundwater[J], Environmental Science and Technology,1993, 8(27):172-176.
    95.肖应凯,肖云.海水蒸发时蒸气相硼的浓度及硼同位素分馏研究[J],盐湖研究,2001,9(4):15-23.
    96.孙新华,欧秀芹,周启立.硼镁矿综合利用研究[J],无机盐工业,2005,37(2):44-46.
    97.张丽清,朱建新,刘素兰,等MgSO4-H2O体系高温结晶动力学研究[J],沈阳化工学院学报,1999,13(2):147-149.
    98.张丽清,姚淑华,齐轩,等.硼酸对硫酸镁高温结晶的影响[J],沈阳化工学院学报,2000,14(2):155-157.
    99. Sahin O. Effect of borax on the crystallization kinetics of boric acid[J], Journal of Crystal Growth,2002,236(1-3):393-399.
    100.梁英教,车荫昌.无机热力学数据手册[M],沈阳:东北大学出版社,1993.
    101.伊赫桑巴伦.纯物质热化学数据手册[M],北京:科学出版社,2003.
    102.Hauck D, M uller F. Thermochemie des Systems MgO-B2O3[J],1979.
    103.Fabian M, Svab E, Proffen T, et al. Structure study of multi-component borosilicate glasses from high-Q neutron diffraction measurement and RMC modeling[J], Journal of Non-Crystalline Solids,2008,354(28):3299-3307.
    104.Gou F, Greaves G N, Smith W, et al. Molecular dynamics simulation of sodium borosilicate glasses [J], Journal of Non-Crystalline Solids,2001,293:539-546.
    105.Chen D, Miyoshi H, Masui H, et al. NMR study of structural changes of alkali borosilicate glasses with heat treatment[J], Journal of Non-Crystalline Solids,2004, 345/346:104-107.
    106.Uhlmann D R, Hays J F, Turnbull D. Effect of high pressure on crystallization kinetics with special reference to fused silica[J], Physics and Chemistry of Glasses,1966,7:159.
    107.Chen H S, Kimerling L C, Poate J M, et al. Diffusion in a Pd-Cu-Si Metallic Glass[J], Applied Physics Letters,1978,32(8):461.
    108.戴道生,韩汝琪.非晶态物理[M],北京:电子工业出版社,1989,528.
    109.张培新,隋智通,罗冬梅.MgO-B2O3-SiO2-Al2O3-CaO中含硼组分析晶动力学[J],材料研究学报,1995,9(1):66-70.
    110.Levin E M, Robbins C R, McMurdie H F. Phase Diagrams for Ceramists[J], The American Ceramic Society,1964,3:89.
    111.刘素兰,张显鹏,蔡丽萍.高温B-H2O系E-pH图[J],中国稀土学报,1998,16:427-429.
    112.Christian G D,王令今,张振宇译.分析化学[M],北京:化学工业出版社,1988,373.
    113.Enyashin A N, Ivanovskii A L. Atomic and electronic structure of the orthoboric (H3BO3) and metaboric(H3B3O6) acids nanotubes[J], Chemical Physics Letters,2005,411(1-3): 186-191.
    114.戴长虹,张显鹏.含挥发组分B2O3渣系活度的测定方法[J],金属学报,1994,18:243-246.
    115.张成韬.MgO-B2O3,SiO2-B2O3及MgO-SiO2-B2O3体系的热力学研究[D],沈阳:东北大学,1988.
    116.林树昌,迟兴婉,郭金雪,等.定量分析化学[M],北京:北京师范大学出版社,1991,222-223.
    117.范跃.分析化学[M],北京:中国计量出版社,2006,143-173.
    118.华南理工大学化学系.分析化学[M],北京:高等教育出版社,2004,108.
    119.Davidson G R, Bassett R L. Application of boron isotopes for identifying contaminants such as fly ash leachate in groundwater[J], Environmental Science Technology,1993, 8(27):172-176.
    120.周有英.无机盐工艺学[M],北京:化学工业出版社,1995,112-123.
    121.张锡瑜.化学分析原理[M],北京:科学教育出版社,1991,42-51.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700