用户名: 密码: 验证码:
低渗气藏脉冲磨料射流射孔增产机理及实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
低压低渗气田在我国分布广,储量大,占已探明气藏的80%以上。但由于孔隙度、渗透率和压力低,造成产能低,经济效益差。为了提高天然气产量,解决“气荒”难题,目前大都采用射孔压裂的方式改造地层,增加气井产量。但是常规射孔方式射孔深度浅,孔眼直径小,施工时间长,易引起气井压实伤害,造成气藏渗透率低,增产效果差等问题。基于以上原因,本文提出采用脉冲磨料射流射孔增加低渗气藏的渗透率以提高天然气产量的新思路。
     本文对脉冲磨料射流形成机理、脉冲磨料射流特性及脉冲磨料射流射孔增产机理等问题进行了研究,并在四川盆地某气井进行现场实验。主要研究结论如下:
     ①首次采用大涡模拟方法,通过深入分析自激振荡喷嘴腔室内部流场变化规律、内外流场动压力变化规律、速度矢量变化规律、湍流强度分布规律,揭示了自激振荡脉冲水射流产生机理;并结合振荡、空泡溃灭对磨料在射流中的影响以及固体磨料在脉冲水射流中的分布规律揭示脉冲磨料射流的形成机理。
     ②结合大涡模拟计算和实验室试验结果,建立了适用于低渗气藏射孔增产的自激振荡磨料喷嘴设计准则,即:腔径比(L/d1)为2.3~3.3,前后喷嘴直径比(d2/d1)为1.2~1.3。自主研发出脉冲磨料射流井下射孔测试系统,该系统由脉冲磨料射流发生装置、脉动压力测试装置、适用PIV测试的围压试验装置、井下冲蚀模拟试验装置组成,研究了脉冲水射流压力振荡特性、脉冲空化特性、高度聚能特性,试验研究表明:自激振荡喷嘴出口峰值压力是普通连续射流压力的2.5倍,且波峰和波谷不完全对称;脉冲水射流空泡云长度随振荡腔长的增加先增大后减小,空泡云长度随泵压的增大而增大,随围压的增大先增大后减少;脉冲磨料射流冲蚀套管模拟试件(8mm钢板+30mm水泥试件)直径和深度是普通磨料射流冲蚀试件的1.9倍和4.7倍左右。
     ③根据低渗气藏的赋存特征和开发特点,结合脉冲磨料射流自身特性,揭示了脉冲磨料射流射孔增产机理。脉冲磨料射流增加射孔面积和深度,降低射孔压力,避免了炮弹射孔造成的二次污染,机械振动作用以超声波形式在弹性介质中传播,引起声压变化,消除气阻,空泡溃灭瞬间形成激波,扩大岩石的孔隙半径,增强微裂隙作用,有利于后续填砂压裂作用,空泡溃灭瞬间产生局部高温,声波辐射产生热作用,降低天然气体粘度,提高渗流速度。
     ④首次开发出适用于低渗气藏射孔的自激振荡磨料喷嘴并在四川地区某气井进行射孔增产现场实验,结果表明:该方法能在目的层位冲蚀出清洁渗流通道,解除近井地带储层污染,与常规喷嘴射孔压裂相比,能够降低破裂压力10-20MPa,施工后比施工前日产量提高了35倍,日产量约是相邻井位常规射孔压裂获气量的1.5倍,有效提高了气井的产量,增产效果良好。
     本研究的主要创新之处在于:首次采用大涡模拟方法揭示了自激振荡脉冲水射流和脉冲磨料射流的产生机理;建立了适用于低渗气藏射孔增产的自激振荡磨料喷嘴设计准则,自主研发出脉冲磨料射流井下射孔测试系统;揭示了低渗气藏脉冲磨料射流射孔增产机理。本文研究结论为脉冲磨料射流在低渗气藏射孔压裂增产改造应用奠定了理论和实验基础。
At present, low pressure and low permeability gas fields account for 80% of the proved gas reservoir , with the large reserves and wide-ranging distribution. As is well known, if the porosity, permeability and pressure are all low, it would become hard to improve the gas productivity and thereby increases economic benefit to the whole gas industry. In order to improve the yield of gas and solve the "gas hunger" problem, the perforating and fracturing method was put forward. The conventional methods have disadvantages of shallow perforating depth, small diameter of eyelet and time-consuming. Moreover, the compacted zone damage, lower permeability of gas reservoir, poor effect of yield will be caused. In view of the reasons mentioned above, a new idea-using pulsed abrasive water jet(PAWJ) perforation to improve the permeability of low permeability gas reservoirs and the yield of gas has been put forward.
     The study of this thesis included the generation mechanism and dynamic characteristics of the PAWJ, yield-increasing mechanism of pulsed abrasive water jet perforation. Field testing and application for this new improved technique had been carried out in Sichuan Basin gas well.The conclusions of this thesis are as follows:
     Firstly, large eddy simulation (LES) turbulence model was used to investigate the flow behavior in the chamber of self-oscillation nozzle, the change law of dynamic pressure, velocity vector and turbulence peremeters in both internal and external flow field. The formation mechanism of self-excited oscillation pulsed abrasive water jet were revealed.And the formation mechanisms of PAWJ were revealed binding the abrasive effected by pulsing and bubble collapse in jet and distribution law of solid abrasive in pulsed water jet.
     And also, design criteria of self-oscillation abrasive nozzle suitable for yield-increasing mechanism of perforation in low permeability gas reservoir was establishmented binding calculation of LES and experimental results, that is: when the chamber length/diameter ratio(L/d1)is 2.3~3.3, the diameter ratio (d2/d1) of anterior nozzle to posterior nozzle is 1.2~1.3. Test system of perforation underground of PAWJ was developmented, the system was composed of gnerating device of pulsed abrasive jet, test device of fluctuating pressure, test system of fluctuating pressure using for PIV and simulation experiment system device of erosion underground, pressure oscillation characteristics, pulsed cavitation characteristics and high energy poly characteristics of pulsed abrasive jet were researched, the results showed that: the outlet peak pressure of self-oscillation nozzle is 2.5 times higher than common continuous jet, and the wave crest and the wave trough are not completely symmetric. The length of bubble cloud increases at first then decreases with the length of oscillation chamber increases, with pump pressure increases, the length of bubble cloud increases, and with confining pressure increases, the length of bubble cloud increases and then decreases. The diameter and depth of pulsed abrasive jet erosion specimen (8mm plate + 30mm sandstone) are 1.9 and 4.7 times higher than common jets.
     Thirdly, yield-increasing mechanism of pulsed abrasive jet perforation was researched according to development and occurrence characteristics of low permeability gas reservoir, combining own characteristics of pulsed abrasive jet. Pulsed abrasive water jet could improve the area and depth of perforation, reduce perforation pressure, secondary pollution caused by the shot perforation should be avoided, mechanical vibration communicates in elastic medium as the form of ultrasonic wave, causes to sound pressure variation, eliminates gas resistance, shock wave forms at the moment of bubble collapse, expands the pore radius of rocks, enhances the effect of microfissure, it’s benefit to the effect of follow-up filling sand fracturing, local high temperature is produced at the moment of bubble collapse, and thermal effect is produced by sound radiation, reduces viscosity of natural gas, and improves the seepage velocity.
     Last but not least, self-oscillating abrasive water jet nozzle suitable for low permeability gas reservoir perforation was designed originally, and field experiment of perforation yield-increasing was carried out in one gas well in the Sichuan Basin, and the results showes that: the method could erode out sanitary seepage channel and relieve the reservoir pollution of near borehole zones. Compared with perforating and fracturing of conventional nozzle, the method could reduce fracture pressure by 10-20 MPa, daily output increases to 35 times after construction and is 1.5 times higher than conventional perforating and fracturing of adjacent well, the method improves yield of the gas well effectively and has a good effect on increasing production.
     The main creative points of the research is: generation mechanism of self-excited oscillation pulsed abrasive water jet and pulsed abrasive jet were revealed through using LES model. Design criteria of self-oscillation abrasive nozzle suitable for yield-increasing mechanism of perforation in low permeability gas reservoir was establishmented, test system of perforation underground of PAWJ was developmented. Yield-increasing mechanism of pulsed abrasive water jet perforation was revealed. Research conclusions established the theoretical and experimental basis for the application of pulsed abrasive water jet in low permeability gas reservoir perforating and fracturing yield-increase reform.
引文
[1]梁丽霞.用气量猛增多个城市天然气供应紧张局面凸显[EB/OL] . http ://www.chinanews.com/cj/cj-cyzh/news/2009/11-18/1971160.shtml,2009-11-18/2009-11-20.
    [2]潘丹丹.上半年中国天然气产量快速增长各地供需平稳[EB/OL] . http ://news.cnpc.com.cn/system/2010/07/27/001298248.shtml,2010-07-27/2010-07-29.
    [3]胡奥林,周娟,奉兰.川渝天然气消费及对地区经济和社会的贡献[J].天然气技术,2010,4(4):7-10.
    [4]谭习群,岳湘安,刘向阳,王锐,魏晨吉.低渗透非均质油藏压敏性及其对流体分布的影响———以CO2驱油藏为例[J].油气地质与采收率,2009,16(5):92-94.
    [5]胡峰,苏丽,王力朋.喉道半径与可动流体对低渗透储层渗流性的影响[J].内蒙古石油化工,2008,24:132-133.
    [6]陈勉,金衍.石油工程岩石力学[M].北京:科学出版社,2008.
    [7]张毅,李根生,熊伟,等.高压水射流深穿透射孔增产机理研究[J].石油大学学报(自然科学版),2004,28(2):38-41.
    [8]李东传,郭金荣,刘亚芬.射孔损害机理研究[J].大庆石油地质开发,2004,23(2):47-48.
    [9]于永,杨彪,杜宝坛,等.水力喷砂射孔在油气田开发中的应用[J].特种油气藏,2002,9(4):56-58.
    [10]沈忠厚.水射流理论与技术[M].东营:石油大学出版社,1998:293-320.
    [11]向文英.淹没射流中磨料与空泡的相互关系研究[D].重庆:重庆大学博士论文,2007.
    [12]周东平.空化水射流声震效应促进煤层瓦斯解吸渗流机理研究[D].重庆:重庆大学博士论文,2010.
    [13]张曙振.特低渗透油藏产能研究[D].东营:中国石油大学(华东)硕士论文,2008.
    [14]江怀友,李治平,钟太贤,齐仁理,李勇.世界低渗透油气田开发技术现状与展望[J].特种油气藏,2009,16(4):13-17.
    [15]何琰,伍友佳,吴念胜.特低渗透油藏开发技术[J].钻采工艺,1999,22(2):20-24.
    [16]张涛.低渗透油层提高采收率实验理论研究[D].大庆:大庆石油学院博士学位论文,2009.
    [17]战剑飞,刘淑霞,张平实,常中元.大庆外围油田水平井开发效果评价及展望[C].黑龙江省石油学会首届学术年会,2003.
    [18]王峰.低渗透油藏井网加密试验研究[J].特种油气藏,2006,13(3):60-64.
    [19]王元基.水平井油田开发技术文集[M].北京:石油工业出版社,2010.
    [20]王素兵.分层改造合层(分层)开采完井工具及其现场应用[J].油气井测试,2004,13(2):60-62.
    [21]杨钊.大庆外围低渗透油田分类方法及开发对策研究[D].大庆:东北石油大学博士学位论文,2010.
    [22]李孟涛.低渗透油田注气驱油实验和渗流机理研究[D].中科院渗流力学研究所博士学位论文.2005.
    [23] Ganesan Nadeson,Nor Aidil B Anua,Dr.Ashok Singhal."Water-Alternating-Gas(WAG) Pilot Implementation,A First FOR Development Project in Dulang Field,Offshore Peninsular Malaysia",SPE88499,SPE Asia Pacific Oil and Conference,18-20 October 2004.
    [24] Manrique E.,Calderon G.,Mayo L.and Stiripe M.T.,"Water-Alternating-Gas Flooding in Venezuela:Selection of Candidates Based on Screening Criteria of International Field Experiences",SPE 50645,SPE European Petroleum Conference,October 1998.
    [25]郭平,罗玉琼,何建华等.注水开发油田进行注气开发的可行性研究[J].西南油学院学报.2003,25(4):37-40.
    [26]徐艳梅.水驱-聚驱后气水交替提高采收率研究[D].成都:西南石油学院硕士学位论文,2005.
    [27]冯文光,贺承祖.自组单分子纳米膜提高驱油效率及微观机理研究[J].成都理工大学学报(自然科学版),2004,31(6):726—729.
    [28]刘晓艳.低渗透油藏稳产措施适应性分析及宏观决策[D].东营:中国石油大学(华东)硕士学位论文,2008.
    [29]王磊.低渗透油藏纳米粉体材料降压增注试验研究[D].东营:中国石油大学(华东)硕士学位论文,2008.
    [30]杨德伟,王世虎,王弥康.火烧油层的室内实验研究[J].石油大学学报(自然科学版),2003,27(2):52-54.
    [31]李松林,王东辉,陈亚军.利用高压注空气技术开发[J].低渗透轻质油油藏特种油气藏,2003,10(5):36-40.
    [32]贝君平.低渗透油藏大功率人工简谐波强化采油技术研究与应用[D].东营:中国石油大学(华东)硕士学位论文,2009.
    [33] Erdmana Jesnitzer.F,Cleaning,drilling and cutting by an interrupted jets,Proc.5th. Intern. symp.on jet cutting technogy,1980.
    [34] M.A.Z. Hasan,Hussain A.K.The Self-excited Axisymmertric Jet,J. of Fluid Mech.1982, Vol.115.
    [35]薛胜雄.高压水射流技术工程[M].合肥:合肥工业大学出版社,2006.
    [36] Vijay M.M.Nozzle for Generating Cavitating and /or Pulsed Water Jets[C],Proceeding of the4th Pacific Rim International Conference on Water Jet Technology,Japan,1995.
    [37] Nebeker E B. Rodriguez S E.Percussive Water Jet for Rock Cutting[C]. Proc. 3rd Int. Symp. on Jet Cutting Technology.BHRA,1976.
    [38] Wylie E B..Pipeline Dynamics and the Pulsed Jet. Proc[C]. 1st Int. Symp. on Jet Cutting Technology.BHRA,1972.
    [39] Johson V.E. Conn A.F..The Development of Structured Cavitating Jet for Deephole Bits,SPE 11060,1982.
    [40] Johnson V E,Conn A F.Self-resonating Cavitating Jets[C].The 6th Int. Symp. on Jet Cutting Tech. BHRA,1982.
    [41] Bourne N K,Fieid J E..Cavity Collapse in a Liquid with Solid Particles[J].J of Fluid Mech,1994,259:149-165.
    [42] PATER LL, BORSTPH.An extrusion-type pulsed jet device [J].WJTA,1998,2(2):123-135.
    [43] LICHITAROWICZ T M A.A study of pressures and erosion produced by collapsing cavitation[J].Wear,1995,186(3): 425-436.
    [44] NEBEKER E B.Standoff distance improvement using percus-sive jets [J].WJTA,1997.5(1):78-95.
    [45] LIAO ZHENFANG , TANG CHUANLIN . Pulsed jet nozzle for oil well jetting drilling[A].Proceedings of the 7th American Water Jet conference [C].Houston:Water Technology Association.1993,263~269.
    [46]廖振方,龚欣荣,唐川林.自激脉冲空化射流装置的冲蚀效果[J].重庆大学学报,1991,14(1):60-66.
    [47]廖振方,唐川林.射流一碰撞壁一腔室系统流体动力现象的研究[J].重庆大学学报,1987,11(6):125-140.
    [48]廖振方,唐川林.自激振荡脉冲水射流装置理论分析[J].重庆大学学报(自然科学版),2002(2):24-27.
    [49]廖振方,黄东胜.自激振动射流喷嘴装置的研究[J].高压水射流,1986,2.
    [50]卢义玉.磨料在振荡流中的混合机理及脉冲磨料水射流的切割特性研究[D].重庆:重庆大学博士学位论文.2000.
    [51]杨林,李晓红等.自激振荡脉冲磨料射流中波速对频率的影响[J].重庆大学学报,2000,9(5):4-7.
    [52]杨林,廖振方.来流脉动对自激振动脉冲水射流的影响[J].力学与实践,2001,23(3):24-27.
    [53]杨林,李晓红,王建生.结构参数对自激振荡脉冲水射流固有频率特性的影响[J].流体机械,2001,29(2):26-28.
    [54]杨林,李晓红,王建生.碰撞剪切流中波速对自激振荡射流频率影响[J].中国安全学报,2000,10(6):46-50.
    [55]向文英.淹没射流中磨料与空泡的相互关系研究[D].重庆:重庆大学博士学位论文,2007.
    [56]卢义玉,李晓红,康勇等.脉冲磨料射流中球泡溃灭特性研究及数值分析[J].应用力学学报,2006,23(2):199-203.
    [57]卢义玉,李晓红,杨林.脉冲磨料射流中球泡溃灭特性的理论[J].重庆大学学报(自然科学版),2003,26(5):99-104.
    [58]裴江红,廖振方,唐川林.自激振荡脉冲水射流频率特性实验研究[J].中国机械工程,2009,20(1):60-63.
    [59]唐川林,廖振方.自激振荡脉冲喷嘴射流的试验研究[J].重庆大学学报,2002,25(2):31-32.
    [60]唐川林,廖振方.石油钻井钻头用自激振荡喷嘴的研究[J].石油学报,1993,14(1):124-130.
    [61]唐川林,廖振方.自激振荡脉冲空化射流的冲蚀效果[J].重庆大学学报,1991,14(1):60-66.
    [62]唐川林,廖振方.自激振荡脉冲水射流的理论分析与实验研究[J].煤炭学报,1989,48(1):90-100.
    [63]唐川林,廖振方.自激振荡脉冲空化射流的冲蚀效果[J].重庆大学学报,1991,14(1):60-66.
    [64]熊继有,付建红,钱声华等.井下它激振荡脉冲水射流机理研究[J].石油学报,2004,25(2):100-103.
    [65]熊继有.脉冲水射流喷嘴的清岩和破岩机理[J].天然气工业,1995.15(2):38-40.
    [66]熊继有,廖荣庆,陈德颉.脉冲水射流喷嘴机理及水力特性研究[J].西南石油学院学报,1994,16(2):74-78.
    [67]王乐勤,王循明,徐如良等.自激振荡脉冲喷嘴结构参数配比试验研究[J].工程热物理学报,2004:56-58.
    [68]王偱明.自激振荡脉冲水射流装置性能影响因素数值分析及喷嘴结构优化设计[D].杭州:浙江大学博士学位论文,2005.
    [69]王循明,王乐勤,焦磊.自激脉冲水射流喷嘴参数对装置能耗影响分析[J].工程热物理学报,2008,29(5):780-782.
    [70]王循明,祝勇仁,张炜.自激脉冲水射流喷嘴参数对装置能耗的影响分析[J].轻工机械,2007,25(3):48-52.
    [71]马斐,廖荣庆,宋淑芳.脉冲喷嘴碰撞壁形状对射流特性影响的实验研究[J].西南石油学院学报,1993,15(2):38-44.
    [72]蒋祖军,廖荣庆.自激脉冲水射流在喷射钻井中的应用研究[J].天然气工业,1992,12(2):38-44.
    [73]马斐,宋淑芳.脉冲喷嘴上喷嘴流道形状对射流特性的影响[J].天然气工业,1993,13(6):53-58.
    [74]李江云,徐如良,王循明等.自激脉冲水射流发生装置试验报告[R].杭州:浙江机电职业技术学院,2006.
    [75]李江云,徐如良,王乐勤.自激脉冲喷嘴发生机理数值模拟[J].工程热物理学报,2004,25(2):241-243.
    [76]杜玉昆,王瑞和,倪红坚.环空流体吸入式自激振荡脉冲水射流大涡模拟研究[J].水动力学研究与进展,2009,24(4):455-462.
    [77]杜玉昆,王瑞和,倪红坚.磨料脉冲水射流破岩的试验研究[C].中国工程热物理学会多相流学术会议,2008.
    [78]黄继汤.应用高速摄影技术研究空化现象[J].清华大学学报,1989,29(5):1-7.
    [79]黄继汤,李志民.液体粘性对空泡收缩及膨胀的影响[J].水利学报,1987,(8):21-28.
    [80]陈秉二,叶健,古兴桥.含沙水流中沙粒与汽蚀相互影响的高速摄影观测[J].甘肃工业大学学报,1986,12(4):12-17.
    [81]沈忠厚.王汝元.李兆敏.具有共振腔的喷嘴紊流射流特性试验研究.石油大学学报(自然科学版),1990,14(6):9~13.
    [82]孙宝江,沈忠厚.脉冲喷嘴射流特性试验研究[J].石油大学学报(自然科学版),1992,16(4):32-35.
    [83]倪红坚,王瑞和.脉冲水射流破岩规律的数值试验[J].石油钻探技术,2002,30(6):15-17.
    [84]吕晓平,安朝明,胡水艳等.自激谐振脉冲水射流在玉门鸭945井的应用[J].石油钻采工艺,2009,31(4):45-47.
    [85]唐愉拉,王永清.采油工艺新补教程.西南石油学院自印教材,1994,7.
    [86]唐愉拉.射孔完井有限元数值模拟.西南石油学院培训教材,1994,4.
    [87]张继峰等.水力深穿透射孔技术最新发展及应用[J].石油机械,2002,30(10):68-70.
    [88]胡风涛.水力喷射射孔工具的研制与应用[J].石油机械,2000,28(10):39-41.
    [89] Labus T J .Fluid Jet Technology Fundamentals and Applications[J].Water jet Technology Assocition,1995.
    [90]张永利,王来贵,吴恩成.水力喷砂割缝增产增注技术的作用原理及展望[J].钻采工艺, 1998,21(2):19-21.
    [91]贺会群,李相方,胡强法等.连续管水力喷射压裂机理与试验研究[J].石油机械,2008,36(4):1-5.
    [92]王立军,贺风云,吴春玉等.深穿透水力射流射孔产能的计算及影响因素[J].大庆石油学院学报,2001,25(2):22-24.
    [93]张毅,李根生,熊伟等.高压水射流深穿透射孔增产机理研究[J].石油大学学报(自然科学版),2004,28(2):38-42.
    [94]李根生,牛继磊,刘泽凯等.水力喷砂射孔机理实验研究[J].石油大学学报,2002, 26(2):31~34.
    [95]李根生,宋剑,熊伟等.高压水射流射孔渗流场模型及计算[J].石油勘探与开发,2005,32(6):97-100.
    [96]李根生,刘丽,黄中伟等.水力射孔对地层破裂压力的影响研究[J].中国石油大学学报(自然科学版),2006,30(5):42-45.
    [97]李根生,马加计,沈晓明等.高压水射流处理地层机理及试验[J].石油学报,1998,19(1):96~99.
    [98] ASADI M and PRESTON F W.Characterization of the crushed zone formed during jet perforation by qualitative scanning electron microscopy and quantitative image anal-ysis[R].SPE 22812,1991.
    [99]方海飞,王新海,汪忠德.水力深穿射孔成孔结构对地层改造的作用数学模型研究[J].内蒙古石油化工,2007,10:65-66.
    [100]张福祥,席长丰,郑爱铃,彭建亮.水力深穿透射孔技术用于底水油藏开发[J].石油钻探技术,2004,32(6):41-43.
    [101]李华,陈德春,孟红霞.水平井变密度射孔优化设计模型[J].石油勘探与开发,2010, 37(3):363-369.
    [102]李华.水平井变密度射孔和分段射孔完井技术研究[D].东营:中国石油大学(华东)硕士学位论文,2008.
    [103]刘亚明,袁新生,艾力.水力喷砂射孔技术试验分析[J].新疆石油科技,2005,15(2):7-9.
    [104] Rockwell D.Prediction of Oscillation Frequencies for Unstable Flow Past Cavities.ASME, Journal of Fluids Engineering,1977,Vol.99:294~300.
    [105] Rockwell D , Audascher E . Review : Self-sustaining Oscillations of Flow Past Cavities[J].ASME,Journal of Fluids Engineering,Vol.100,1978:152~165.
    [106] Deardorff J W.A Numerical Study of Three-Dimensional Turbulent Channel Flow at Large Reynolds Number[J].Journal of Fluid Mechanics.1970,41:453-480.
    [107] Ferziger,J.H.,and Leslie,D.C..Large eddy simulation---a predictive approach to turbulentflow computation[J].AIAA paper 1979,1379-1441.
    [108] Clark R A,Ferziger J H,Reynolds W C.Evaluation of Subgrid-Scale Models Using An Accurately Simulated Turbulent Flow[J].J.Fluid Mech.,1979,91(1): l-16.
    [109] Kim J,Moin P,Moser RD.Turbulence statistics in fully developed channel flow at low Reynolds number[J].J Fluid Mech,1987,177:133-166.
    [110] Moin P,Kim J.Numerical investigation of turbulent channel flow[J].J Fluid Mech,1982,117:341-377.
    [111] Piomelli U.High Reynolds Number Calculations Using The Dynamic Subgrid Scale Stress Model[J].Physics of Fluids.1993,5:1484-1490.
    [112] Friedrich R,Arnal M.Analysing turbulent backward-facing step flow with the low pass -filtered Navier -Stokes equations[J].Wind Engrg Indust Aerodyn,1990,35:101-128.
    [113] Kobayashi J , Mori Y , Okamoto K et al . A microfluidic device for conducting gas-liquid-solid Hydrogenation[J].Science,2004,304(5765):1305-1308.
    [114] Dupont.P.,Haddad,C.& Debieve,J.F.2006 Space and time organization in a shock-induced separated boundary layer[J].J.Fluid Mech.559,255-277.
    [115] YU J C,LANC B.System modeling of microaccelerometer using piezoelectric thin films[J].Sensors& Actuators,2001,A88:178-186.
    [116] ZUCKER T,SKJOCLT N M,JONES R L.Effects of high-frequency chest wall oscillation on pleural pressure and oscillated flow [J] . Biomedical Instrumentation and Technology.2008,42(6):485-491.
    [117] Yuan M,Song C C S.Numerical analysis of Turbulent flow in a two-dimensional nonsymmetric plane-wall diffuser[J].Transactions of the ASME,Journal of Fluid Engineering 113:210~215.
    [118] Shaw,R.H. and Schumann,U.1992 Large-Eddy Simulation of Turbulent Flow above and within A Forest[J].Boundary-layer Meteorology.61:47-64.
    [119]白志刚.三维波浪大涡模拟及其对结构的动态效应研究[D].天津:天津大学博士学位论文.2003.
    [120] Leonard , A . Energy cascade in large-eddy simulations of turbulent fluid flows[J].Adv.Geophys.1974,18A:237-248.
    [121] Crow S C,Champagne F H.Orderly structure in jet turbulence[J].Fluid Mech.,1971,48,547-591.
    [122] King J L,Doyle P,Ogle J B.Instability in slotted wall tunnels[J].Fluid Mech.,1958,4,283-305.
    [123] Johnson V E,Conn A F.Self_resonating cavitating jets,6th International Symp.On JettingCutting Technology,1982.
    [124]唐川林,廖振方.自激振荡脉冲水射流装置理论分析和实验研究[J].煤炭学报, 1989, 3(1):90-100.
    [125]熊继有,廖荣庆,陈德颉.脉冲水射流喷嘴机理及水力特性研究[J].西南石油学院学报, 1994,16(2):74-78.
    [126]蒋海军,廖荣庆.自激振荡脉冲水射流机理探讨[J].西南石油学院学报,1998,20(3):55-58.
    [127]靳思宇,阎庆绂,董若冰.自激振荡流动的基本模式形态[J].太原理工大学学报,2001, 32(6):644-646.
    [128] E.B.怀利等.瞬变流[M],北京:清华大学流全传动与控制教研组译,水利电力出版社.
    [129] J.F.Douglas.流体力学[M],北京:高等教育出版社,1992.
    [130]张兆顺.流体力学[M],北京:清华大学出版社,1999.
    [131]张远君.流体力学大全[M],北京:北京航空航天大学出版社,1991.
    [132]章梓雄.粘性流体力学[M],北京:清华大学出版社,1998.
    [133]陈矛章.粘性流体力学理论及紊流工程计算[M],北京:北京航空学院出版社,1986.
    [134]林建忠.湍流的拟序结构[M],北京:机械工业出版社,1993.
    [135] Ellen K. Longmire.Structure of a Particle Round Jet[J],J. Fluid Mech.1992,Vol.236.
    [136]卢义玉,葛兆龙,李晓红等.空化空泡发育和溃灭过程的数值分析[J].中国矿业大学学报,2009,38(4):582-585.
    [137]卢义玉,葛兆龙,李晓红等.高压空化水射流破岩主要影响因素的研究[J].四川大学学报(工程科学版),2009,41.
    [138]黄继汤.空化与空蚀的原理及应用[M],北京:清华大学出版社,1991:5-35.
    [139] BARBER B P,PUTTERMAN S J.Observations of synchronous picosecond soluminescence [J].Nature,1991,352: 318.
    [140]张俊.两区复合低渗气藏开发动态特征研究[D].成都:西南石油大学硕士学位论文,2007.
    [141]赵澄林,陈丽华,涂强等著.中国天然气储量[M].北京:石油工业出版社,1999.
    [142]吴志均,何顺利.低渗砂岩气藏地质特征和开发对策探讨[J].钻采工艺,2004,27(4):103-100.
    [143] Neppiras, E.A.and Noltingk B.E..“Cavitation produces by ultrasonics:Theoretical condition for the onset of cavitation”[J].Proceedings of the Physical Society B,1951,64 (12):1032-1038.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700