用户名: 密码: 验证码:
一类微生物发酵的多种非线性动力系统建模与优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以甘油生物转化生产1,3-丙二醇为研究背景,针对提高发酵生产强度和目标产物转化率的两种途径——发酵工艺优化和菌种基因改造,分别从过程动力学和计算系统生物学的角度,利用了非线性混杂系统建模与优化、S系统理论和结构动力学建模等方法,对该发酵过程进行了研究,主要工作可概括如下:
     1.考虑非耦联批式流加发酵,根据实际发酵实验,把整个发酵过程分为不同的发酵模式,提出了一个能够描述所有发酵模式的混杂速率向量场,再依据底物和中和剂流加控制方式的不同,建立了描述发酵模式之间切换的规则,与混杂向量场共同构成了非耦联批式流加发酵的非线性混杂动力系统,研究了该系统的非齐诺性和适定性等问题,并对具体实验进行了数值模拟.
     2.针对所提出的非耦联批式流加发酵的混杂动力系统,建立了具有非光滑连续状态约束的参数辨识模型,并以脉冲微分方程的形式给出了混杂动力系统的参数灵敏度函数,利用曲线变分等数学工具,证明了约束函数关于参数单边方向可导,给出了辨识问题的最优性条件,分别构造算法估计参数的灵敏度并对灵敏度较高的参数进行辨识.
     3.针对甘油连续发酵的代谢还原途径上底物甘油和产物1,3-丙二醇跨膜运输机理不清等问题,以S系统的形式给出了描述胞外主要物质和胞内还原途径上关键代谢物的变化的多种可能动力学模型,并基于胞外数据对各个模型进行了参数辨识.在缺乏胞内实验数据的情况下,基于生物系统的鲁棒性特征,给出了甘油代谢系统鲁棒性的定量定义,利用这一指标衡量各种可能系统的鲁棒性,从而推断出甘油和1,3-丙二醇的最有可能的跨膜运输方式.此外,针对推断后的S系统,分析了系统状态关于独立变量的对数增益以及参数的灵敏度,数值结果表明系统的对数增益和参数灵敏度均比较平稳,进一步验证了系统的合理性.
     4.建立了甘油代谢还原途径的结构动力学模型,并根据代谢网络的结构给出了模型参数的范围(称为参数空间),在参数空间上从各个角度分析了过量表达克雷伯氏菌的甘油脱水酶和1,3-丙二醇氧化还原酶的编码来降低3-羟基丙醛的抑制强度这一基因改造过程可能对甘油代谢还原途径的动力学产生的影响,验证了不稳定性和分岔的存在性,并通过数值结果对以往的一些实验现象进行了解释.
     本文的工作不仅可以丰富非线性混杂系统与计算系统生物学的理论,而且可以为1,3-丙二醇的产业化生产提供参考.因此该项研究具有重要的理论意义与应用价值.
This dissertation investigates the modelling, analysis and parameter identification of the microbial production of 1,3-propanediol from glycerol. In terms of process kinetics and com-putational system biology, we apply nonlinear hybrid systems, S system theory and structural kinetic modelling to simulating the fermentation process and providing theoretical analysis for genetic engineering of the strains. The main contributions obtained in this dissertation are sum-marized as follows.
     1. A fed-batch fermentation of glycerol with open loop substrate input and pH logic control is considered. According to the factual experiments, we divide the whole fermentation process into four different modes and propose a hybrid vector field to describe them. A switching rule among various modes is constructed based on the control principles of the flows of substrate and neutralizing agent. A hybrid system is formulated by combing the hybrid vector field and the switching rule. The non-Zenoness and well-posedness of the hybrid system are discussed. Numerical simulation of a factual fed-batch fermentation is carried out.
     2. Based on the proposed hybrid system, a parameter identification model is built, which is a problem of semi-infinite nonsmooth programming. The parametric sensitivity functions for the hybrid system are given by a set of impulsive differential equations and the one-sided directional differentiability of the constraint functions are proved in terms of the calculus of variation of piecewise-smooth curves. On this basis, the optimality conditions of the parameter identification problem are derived. Two algorithms are constructed to reduce the number of parameters to be optimized and to solve the identification problem, respectively.
     3. In the context that the transport mechanisms of glycerol and 1,3-propanediol across cell membrane in glycerol metabolic system are still unclear, we develop dynamical systems for various possible metabolic systems, which are presented in the form of S systems. The parameters of the systems are identified based on extracellular data. In the absence of intracellular data, we take the robustness property of biological system into consid-eration and propose a quantitative definition of biological robustness. The robustness performance is used to measure the plausibility of the possible systems and to determine the most reasonable transport systems of glycerol and 1,3-propanediol from all possible ones. Parameter sensitivity and Log gain of the steady states with respect to the inde-pendent variables are also estimated. Numerical results reveal that the steady states of the system are relatively insensitive to the independent variables and the rate constants, which show the validity of the determined system again.
     4. A structural kinetic model is proposed to describe the dynamics of the reductive path-way of glycerol metabolism. Without the intracellular data, the feasible ranges of the parameters in the model still can be given based on the structure of the metabolic net-work and the knowledge of the reaction mechanisms. We then estimate the influence of over-expression of the genes encoding glycerol dehydratase and 1,3-propanediol oxidore-ductase on the stability of the system. The existence of instability and Hopf bifurcation are proved and some previously experimental phenomena are explained by our numerical results.
     The results of this dissertation can not only develop the theory and the applications of nonlinear hybrid dynamical systems and computational system biology, but also reduce exper-imental cost and provide certain guidance for industrialization of 1,3-propanediol production. Therefore, this research is quite interesting in both theory and practice.
引文
[1]孙亚琴.甘油生物歧化过程酶催化和基因调控的非线性数学模拟与分析:(博士学位论文).大连:大连理工大学,2010.
    [2]修志龙.微生物发酵法生产1,3-丙二醇的研究进展.微生物学通报,2000,4:300-302.
    [3]Steuer R. Computational approaches to the topology, stability and dynamics of metabolic networks. Phytochemistry,2007,68:2139-2151.
    [4]Hans S W. A class of hybrid-state continuous-time dynamic systems. IEEE Trans. Automat. Contr., 1966,11(2):161-167.
    [5]Theodosios P. Stability of systems described by differential equations containing impulses. IEEE Trans. Automat. Contr.,1967,12(1):43-45.
    [6]Timothy L J. Analytic models of multistage processes. In Proc. IEEE Conf. Decision Contr., San Diedo, 1991.
    [7]van der Schaft A, Schumacher H. An introduction to hybrid dynamical systems. London: Springer-Verlag,2000.
    [8]Branicky Michael S, Borkar Vivek S, Mitter Sanjoy K. A unified framework for hybrid control:Model and optimal control theory. IEEE Trans. Automat. Contr.,1998,43(1):31-45.
    [9]Leonessa A, Haddad W M, Chellaboina V S. Nonlinear system stabilization via hierarchical switching control. IEEE Trans. Automat. Contr.,2001,46(1):17-28.
    [10]Liberzon D. Switching in systems and control. Birkhauser,2003.
    [11]Albert B, Gerard B. The synchronous approach to reactive and real-time systems. In Proc. IEEE,1991, 79(9):1270-1282.
    [12]Baleani M, Ferrari A, Mangeruca L, et al. Correct-by-construction transformations across design envi-ronments for model-based embedded software development. In Proc. DATE,2005,2:1-6.
    [13]Filippov A F. Differential equations with discontinuous righthand sides. Dordrecht:Kluwer Academic Publishers,1988.
    [14]Danca M F. Controlling chaos in discontinuous dynamical systems. Chaos Solitons Fractals,2004,22: 605-612.
    [15]吴锋,刘文煌,郑应平.混杂系统研究综述.系统工程,1997,15(2):1-5.
    [16]程曙.混杂系统理论及其应用于制造系统的研究进展.计算机集成制造系统,2008,14(5):937-943.
    [17]李卫东,刘曰锋.混杂系统研究综述.自动化技术与应用,2007,27(1):1-4.
    [18]郑刚,谭民,宋永华.混杂系统的研究进展.控制与决策,2004,19(1):7-16.
    [19]Gollu A, Varaiya P P. Hybrid dynamical systems. In Proc. IEEE Conf. Decision Contr., Tampa,1989, 2708-2712.
    [20]Noguchi S, Hirata M, Adachi S. Hybrid modeling of hard disk drives based on input-output data. In Proceedings of SICE Annual Conference,2005,1132-1135.
    [21]Back A, Guckenheimer J, Myers M. A dynamical simulation facility for hybrid systems. Hybrid Sys-tems, Lecture Notes in Computer Science,1993,736:255-267.
    [22]Varaiya P P. Smart cars on smart roads:Problems of control. IEEE Trans. Automat. Contr.,1993,38: 195-207.
    [23]Hynes C S, Meyer G, Palmer E A, et al. Vehicle management for the high speed civil transport. NASA Ames Res. Center, Tech. Rep.,1993.
    [24]Mohamed G L, Bayoumi M, Rudie K. A survey of modeling and control of hybrid systems. A. Rev. Control,1997,2:79-92.
    [25]Buss M, Glocker M, Hardt M, et al. Nonlinear hybrid dynamical systems:Modeling, optimal control, and applications. Engell S, Frehse G, Schnieder E (Eds.):Modelling, Analysis and Design of Hybrid Systems, LNCIS,2002,279:311-335.
    [26]Nerode A, Yakhnis A. Modelling hybrid systems as games. In Proc. IEEE Conf. Decision Contr., Tuc-son,1992,2947-2952.
    [27]Gao Y, Lygeros J, Quincampoix M. On the reachability problem for uncertain hybrid systems. IEEE Trans. Automat. Contr.,2007,52(9):1572-1586.
    [28]Branicky M S. Multiple lyapunov functions and other analysis tools for switched and hybrid systems. IEEE Trans. Automat. Contr.,1998,43(4):475-482.
    [29]Dayawansa W P, Martin C F. A converse Lyapunov theorem for a class of dynamical systems which undergo switching. IEEE Trans. Automat. Contr.,1999,44(4):751-759.
    [30]Hespanha J P, Morse A S. Stability of switched systems with average dwell-time. In Proc. IEEE Conf. Decision Contr., Phoenix, AR,1999,2655-2660.
    [31]Zhai G, Hu B, Yasuda K, Michel A N. Stability analysis of switched systems with stable and unstable subsystems:An average dwell time approach. Int. J. Syst. Sci.,2001,32(8):1055-1061.
    [32]Michael M. Stability analysis of switched systems using variational principles:An introduction. Auto-matica,2006,42:2059-2077.
    [33]Mancilla-Aguilara J L, Garcia R A. An extension of LaSalle's invariance principle for switched systems. Syst. Control Lett.,2006,55:376-384.
    [34]Broucke M, Arapostathis A. Continuous selections of trajectories of hybrid systems. Syst. Control Lett., 2002,47:149-157.
    [35]Broucke M. Regularity of solutions and homotopic equivalence for hybrid systems, In Proc.IEEE Conf. Decision Contr., New York,1998.
    [36]Collins P. Generalised hybrid trajectory spaces. In Proc.17th Int. Symp. Mathematical Theory of Net-works and Systems, Kyoto, Japan,2006,2101-2109.
    [37]Wu C Z, Teo K L, Rehbock V. Well-posedness of bimodal state-based switched systems. Appl. Math. Lett.,2008,21:835-839.
    [38]Wu C Z, Teo K L, Rehbock V, et al. Existence and uniqueness of solutions of piecewise nonlinear systems. Nonlinear Analysis,2009,71:6109-6115.
    [39]Sussmann H. A maximum principle for hybrid optimal control problems. In Proc. IEEE Conf. Decision Contr., Phoenix,1999,425-430.
    [40]Riedinger P, Kratz F, lung C, et al. Linear quadratic optimization for hybrid systems. In Proc. IEEE Conf. Decision Contr.,1999,3:3059-3064.
    [41]Cassandras C G, Pepyne D L, Wardi Y. Optimal control of a class of hybrid systems. IEEE Trans. Automat. Contr.,2001,46(3):398-415.
    [42]Garavello M, Piccol B. Hybrid necessary principle. SIAM J. Control Optim.,2005,43(5):1867-1887.
    [43]Hedlund S, Rantzer A. Optimal control of hybrid systems. In Proc. IEEE Conf. Decision Contr., Phoenix,1999,3972-3977.
    [44]Xu X P, Antsaklo P J. Optimal control of switched systems via non-linear optimization based on direct differentiations of value functions. Int. J. Control,2002,75:1406-1426.
    [45]Shahid S M, Caines P E. On the optimal control of hybrid systems:optimization of trajectories, switch-ing times, and location schedules. LNCS,2003,466-481.
    [46]Church A. Logic, arithmetic, and automata. In Proc. Int. Congress Math.,1962,23-35.
    [47]Buchi J, Landweber L. Solving sequential conditions by finitestate operators. In Proc. Amer. Math. Soc.,1969,295-311.
    [48]Rabin M O. Automata on infinite objects and Church's problem. In Regional Conf. Series in Math., 1972.
    [49]Maler O, Pnueli A, Sifakis J. On the synthesis of discrete controllers for timed systems. In Theoretical Aspects of Computer Science. LNCS, Berlin Springer-Verlag,1995,900:229-242.
    [50]Heymann M, Lin F, Meyer G. Synthesis and viability of minimally interventive legal controllers for hybrid systems. Discrete Event Dyn. Syst.:Theory and Applicat.,1998,8(2):105-135.
    [51]Lygeros J, Godbole D, Sastry S. Verified hybrid controllers for automated vehicles. IEEE Trans. Autom. Contr.,1998,43(4):522-5398.
    [52]Lygeros J, Tomlin C, Sastry S. Controllers for reachability specifications for hybrid systems. Automat-ica,2000,35(3):349-370.
    [53]Tomlin C, Lygeros J, Sastry S. A game theoretic approach to controller design for hybrid systems. In Proc. IEEE,2000,88(7):949-969.
    [54]Hartwell L H, Hopfield J J, Leibler S, et al. From molecture to modular cell biology. Nature,1999.402: C47-52.
    [55]Klipp E, Herwig R, Kowald A, et al系统生物学的理论、方法和应用.贺福初等译.上海:复旦大学出版社,2007.
    [56]托雷斯内斯托尔V,沃伊特埃伯哈德O.代谢工程的途径分析与优化.修志龙,滕虎等译.北京:化学工业出版,2005.
    [57]赵学明.系统生物学与微生物代谢工程.首届全国微生物基因组学研讨会论文摘要集,2006.
    [58]Torres N V, Voit E O. Pathyway analysis and optimization in metabolic engineering. Cambridge Uni-versity Press,2002.
    [59]Steuer R, Gross T, Selbig J, et al. Structural kinetic modeling of metabolic networks. Proc. Natl. Acad. Sci.,2006,103(32):11868-11873.
    [60]Rene T, Richard D A. Biological Feedback, CRC Press,1990.
    [61]Rene T, Denis T, Marcelle K. Dynamical behaviour of biological regulatory networks-I. Biological role of feedback loops and practical use of the concept of the loop-characteristic state. Bull. Math. Biol., 1995,57(2):247-276.
    [62]Erik P, Thomas M, Omholt S W. Feedback loops, stability and multistationarity in dynamical systems. J. Biol. Syst.,1995,3(2):409-413
    [63]Gouze J L. Positive and negative circuits in dynamical systems. J. Biol. Syst.1998,6:11-15.
    [64]Cinquin O, Demongeot J. Roles of positive and negative feedback in biological systems. C.R. Biologies, 2002,325:1085-1095.
    [65]Remy E, Ruet P, Thieffry D. Positive or negative regulatory circuit inference from multilevel dynamics. Positive Systems:Theory and Applications, Lecture Notes in Control and Information Science,2006, 341:263-270.
    [66]Eduardo S, Alan V C, Reinhard L, et al. The effect of negative feedback loops on the dynamics of Boolean networks. Biophys. J.,2008,95:518-526.
    [67]Guldberg C M, Waage P. Uber die chemische Affinitat. J. Prakt. Chem.,1879,19:69.
    [68j Henri M V. Lois generales de l'action des diastates. Hermann, Paris,1903.
    L69] Stelling J, Klamt S, Bettenbrock K, et al. Metabolic network structure determines key aspects of func-tionality and regulation. Nature,2002,420:190-193.
    [70]Fell D A, Wagner A. The small world of metabolism. Nat. Biotechnol.,2000,18:1121-1122.
    [71]Jeong H, Tombor B, Albert R, et al. The large-scale organization of metabolic networks. Nature,2000, 407:651-654.
    [72J Jeong H, Mason S, Barabasi A L, et al. Lethality and centrality in protein networks. Nature,2001,411: 41-42.
    [73]Wagner A, Fell D A. The small world inside large metabolic networks. Proc. R. Soc. Lond.2001, B268: 1803-1810.
    [74]Maslov S, Sneppen K. Specificity and stability in topology of protein networks. Science,2002,296: 910-913.
    [75]Farkas I J, Jeong H, Vicsek T, et al. The Topology of the transcription regulatory network in the yeast, Saccharomyces cerevisiae. Phys. A.,2003,381:601-612.
    [76]Schuster S, Danderkar T, Fell D A. Detection of elementary flux modes in biochemical networks:A promising tool for pathyway analysis and metabolic engineering. TIBECH.,1999,17:53-60.
    [77]Schuster S, Fell D A, Danderkar T. A general definition of metabolic pathyways useful for systematic organization and analysis of complex metabolic systems. Nat. Biotechnol.,2000,18:326-332.
    [78]Michaelis L, Menten M L. Die Kinetik der invertinwirkung. Biochem. Zertschrift.,1913,49:333-369.
    [79]Savageau M A. Biochemical systems analysis, Ⅰ. Some mathematical properties of the rate law for the component enzymatic reactions. J. Theor. Biol.,1969,25:365-369.
    [80]Savageau M A. Biochemical systems analysis, Ⅱ. The steady-state solutions for an n-pool system using a power-law approximation. J. Theor. Biol.,1969,25:370-379.
    [81]Savageau M A. Biochemical systems analysis, Ⅲ. Dynamic solutions using a power-law approximation. J. Theor. Biol.,1970,26:215-26.
    [82]Kacser H, Burns J A. The control of flux. Symp. Soc. Exp. Biol.,1973,27:65-104.
    [83]Heinrich R, Rapoport T A. A linear steady-state treatment of enzymetic chains:General properties, control and effector strength. Eur. J. Biochem.,1974,42:89-95.
    [84]Savageau M A, Voit E O. Recasting nonlinear differential equations as S-systems:A canonical form. Mathem. Biosci.,1987,87:83-115.
    [85]Kacser H, Sauro H M, Acerenza L. Enzyme-enzyme interactions and control analysis. Eur. J. Biochem., 1990,165:215-221.
    [86]Ricard J. Biological complexity and the dynamics of life process. Elsevier, Amsterdam,1999.
    [87]Varma A. Palsson B O. Metabolic flux balancing: basic concepts, scientific and practical use. Nat. Biotechnol.,1994,12:994-998.
    [88]Albert R, Jeong H, Barabasi A L. Error and attack tolerance of complex networks. Nature,2000,406: 378-382.
    [89]Hidde de Jong. Modeling and simulation of genetic regulatory systems:a literature review. J. Comput. Biol.,2002,9(1):67-103.
    [90]Huang J L, Guo H, Meng C. Modeling and analysis of genetic regulatory networks based on Petri net. Process in Biochemistyr and Biophysics,2008,35(4):418-423.
    [91]Majewski R A, Domach M M. Simple constrained optimization view of acetate overflow in E. coli. Biotechnol. Bioeng.,1990,35:731-738.
    [92]Savinell J M, Palsson B O. Optimal selection of metabolic fluxes for in vivo measurement. Ⅰ. Develop-ment of mathematical methods. J. Theor. Biol.,1992,155:201-214.
    [93]Savinell J M, Palsson B O. Optimal selection of metabolic fluxes for in vivo measurement. Ⅱ. Applica-tion to Escherichia coli and hybridoma cell metabolism. J. Theor. Biol.,1992,155:215-242.
    [94]Schilling C H, Edwards J S, Letscher D, et al. Combining pathway analysis with flux balance analysis for the comprehensive study of metabolic systems. Biotechnol. Bioeng.,2000,71:286-306.
    [95]Ronen M, Rosenberg R, Shraiman B I, et al. Assigning numbers to the arrows:Parameterizing a gene regulation network by using accurate expression kinetics. PNAS,2002,99:10555-10560.
    [96]Ingram P J, Stumpf M P H, Stark J. Network motifs:structure does not determine function. BMC Genomics,2006,7:108.
    [97]Steuer R, Nesi A N, Fernie A F, et al. From structure to dynamics of metabolic pathyways:Application to the plant mitochondrial TCA cycle. Bioinformatics,2007,23(11):1378-1385.
    [98]Gagneur J, Casari G. From molecular networks to qualitative cell behavior. FEBS Lett.,2005,579: 1867-1871.
    [99]Barbano Paolo E, Spivak M, Flajolet M, et al. A mathematical tool for exploring the dynamics of biological networks. PNAS,2007,104(49):19169-19174.
    [100]Wassim A J, Djomangan A O, Marcelle K. From structure to dynamics:frequency tuning in the p53-Mdm2 network, I. Logical approach. J. Theor. Biol.,2009,258(4):561-77.
    [101]Wassim A J, Djomangan A O, Marcelle K. From structure to dynamics:frequency tuning in the p53-Mdm2 network, Ⅱ. Differential and stochastic approaches. J. Theor. Biol.,2010,264(4):1177-1189.
    [1021 Zumsande M, Gross T. Bifurcations and chaos in the MAPK signaling cascade. J. Theor. Biol.,2010, 265(3):481-491.
    [103]Zeng A P, Rose A, Biebl H, et al. Multiple product inhibition and growth modeling of Clostridium butyricum and Klebsiella pneumoniae in fermentation. Biotechnol. Bioeng.,1994,44:902-911.
    [104]修志龙,曾安平,安利佳.甘油生物歧化过程动力学数学模拟和多稳态研究.大连理工大学学报,2000,40(4):428-433
    [105]修志龙,曾安平,安利佳等.甘油连续生物歧化过程的过渡行为及其数学模拟.高校化学工程学报,2000,14:53-58.
    [106]高彩霞,王宗涛,冯恩民等.微生物间歇发酵生产1,3-丙二醇过程的辨识与优化.大连理工大学学报,2006,46(5):771-774.
    [107]马永峰,孙丽华,修志龙.微生物连续培养过程中振荡的理论分析.工程数学学报,2003,20(1):1-6.
    [108]Lian H S, Feng E M, Li X F, et al. Oscillatory behavior in microbial continuous culture with discrete time delay. Nonlinear Analysis:Real World Applications,2009,10:2749-2757.
    [109]李晓红,冯恩民,修志龙.微生物连续培养过程平衡点的稳定分析.高校应用数学学报B辑,2005,20(4):377-383.
    [110]李晓红,冯恩民,修志龙.微生物间歇发酵非线性动力系统的性质及最优控制.运筹学学报,2005,9(4):89-96.
    [111]Gao C X, Lang Y H, Feng E M, et al. Nonlinear impulsive system of microbial production in fed-batch culture and its optimal control. Journal of Applied Mathematics and Computing,2005,19(1):203-214.
    [112]Gao C X, Feng E M, Wang Z T, et al. Nonlinear dynamical systems of bio-dissimilation of glycerol to 1,3-propanediol and their optimal controls. Journal of Industrial and Management Optiminization, 2005,1(3):377-388.
    [113]Wang G, Feng E M, Xiu Z L. Nonlinear hybrid kinetic system of microbial bioconversion in fed-batch culture. Nonlinear Analysis:Hybrid Systems,2008,2:65-73.
    [114]Liu C Y, Gong Z H, Feng E M. Modeling and optimal control of a nonlinear dynamical system in microbial fed-batch fermentation. Math. and Comput. Model.,2011,53(1-2):168-178.
    [115]Sun Y Q, Qi W, Teng H, et al. Mathematical modeling of glycerol fermentation by Klebsiella pneu-moniae:Concerning enzyme-catalytic reductive pathway and transport of glycerol and 1,3-propanediol across cell membrane. Biochem. Eng. J.,2008,38:22-32.
    [116]Chen X, Xiu Z L, Wang J F, et al. Stoichiometric analysis and experimental investigation of glycerol bioconversion to 1,3-propanediol by Klebsiella pneumoniae under microaerobic conditions. Enzyme and Microb. Tech.,2003,33:386-394.
    [117]Zhang Q R, Teng H, Sun Y Q, et al. Metabolic flux and robustness analysis of glycerol metabolish in Klebsiella pneumoniae. Bioprocess Biosyst. Eng.,2008,31:127-135.
    [118]Zhang Q R, Xiu Z L. Metabolic pathway analysis of glycerol metabolism in Klebsiella pneumoniae incorporating oxygen regulatory system. Biotechnol. Prog.,2009,25(1):103-115.
    [119]Gong Z H, Liu C Y, Feng E M, et al. Computational method for inferring objective function of glycerol metabolism in Klebsiella pneumoniae. Comput. Biol. Chem.,2009,33(1):1-6.
    [120]Ceragioli F. Finite valued feedback laws and piecewise classical solutions. Nonlinear Analysis,2006, 65:984-998.
    [121]Rafal G, Richrdo G S, Andraw R T. Hybrid dynamical systems:Robust stability and control for systems that combine continuous-time and discrete-time dynamics. IEEE Control Systems Maganize, 2009.
    [122]Clarke F H, Ledyaev Y S, Stern R J, et al. Nonsmooth analysis and control theory. Springer-Verlag, New York,1998.
    [123]马知恩,周义仓.常微分方程定性与稳定性方法.北京:科学出版社,2005.
    [124]Hsieh P F, Sibuya Y. Basic theory of ordinary differential equations. New York:Springer,1999.
    [125]Polak E. Optimization:Algorithms and consistent approximations. Springer-Verlag, New York,1997.
    [126]钱伟懿,徐恭贤,宫召华.最优控制理论及其应用.大连:大连理工大学出版社,2010.
    [127]Bock H G. Recent advances in parameter identification techniques for ordinary differential equations. Numerical treatment of inverse problems in differential and integral equations. Deuflhard P, Hairer E. (Eds.) Boston:Birkhauser,1983,95-121.
    [128]Victor J L, Yogeshwar S. Computation of the gradient and sensitivity coefficients in sum of squares minimization problems with differential equation models. Computers Chem. Engng.,1997,21(12): 1471-1479.
    [129]Gronwall T H. Note on the derivatives with respect to a parameter of the solutions of a system of differential equations. Ann. Math.,1919,20:292-296.
    [130]Anterion E, Eymard R., Karcher B. Use of parameter gradients for reservoir history matching. SPE Paper 18433 Presented at the 9th SPE Symposium on Reservoir Simulation. Houston, TX,1989.
    [131]Galan S, Feehery W F, Barton P I, Parametric sensitivity functions for hybrid discrete/continuous systems. Appl. Numer. Math.,1999,31:17-47.
    [132]Fischer E. Zamboni N, Sauer U. High-throughput metabolic flux analysis based on gas chromatography-mass spectrometry derived 13C constraints. Anal. Biochem.,2004,325:308-316.
    [133]Wiechert W, Mollney M, Petersen S, et al. A universal framework for 13C metabolic flux analysis. Metab. Eng.,2001,3:265-283.
    [134]Bonarius H P J, Hatzimanikatis V, Meesters K P H, et al. Metabolic flux analysis of hybridoma cells in different culture media using mass balances. Biotechnol. Bioeng.,1996,50:299-318.
    [135]Follstad B D, Balcarcel R R, Stephanopoulos G, et al. Metabolic flux analysis of hybridoma continuous culture steady state multiplicity. Biotechnol. Bioeng.,1999,63:675-683.
    [136]Nyberg G B, Balcarcel R R, Follstad B D, et al. Metabolism of peptide amino acids by Chinese hamster ovary cells grown in a complex medium. Biotechnol. Bioeng.,1999,62:324-335.
    [137]Gambhir A, Korke R, Lee J, et al. Analysis of cellular metabolism of hybridoma cells at distinct physiological states. J. Biosci. Bioeng.,2003,95:317-327.
    [138]Schwender J, Ohlrogge J, Shachar H Y. Understanding flux in plant metabolic networks. Curr. Opin. Plant Biol.,2004,7:309-317.
    [139]Ratcliffe R G, Shachar H Y. Measuring multiple fluxes through plant metabolic networks. Plant J., 2006,45:490-511.
    [140]Voit E O. Computational analysis of biochemical systems. A practial guide for biochemists and molec-ular biologists. Cambridge:Cambridge University Press,2000.
    [141]刘海军,王剑锋,张代佳等.用克雷伯氏菌批式流加发酵法生产1,3-丙二醇.食品与发酵工业,2001,27:4-7.
    [142]程可可,孙燕,刘卫斌人.底物流加策略对发酵法生产1,3-丙二醇的影响.食品与发酵工业,2004,30(4):1-5.
    [143]Hao J, Lin R H, Zheng Z M, et al.3-Hydroxypropionaldehyde guided glycerol feeding strategy in aerobic 1,3-propanediol production by Klebsiella pneumoniae. Journal of Industrial Microbiological Biotechnology,2008,35:1615-1624.
    [144]Holmberg A, Ranta J. Procedures for parameter and state estimation of microbial growth process models. Automatica,1982,18(2):191-193.
    [145]Menzel K, Zeng A P, Deckwer W D. High concentration and productivity of 1,3-propanediol from continuous fermentation of glycerol by Klebsiella pneumoniae. Enzyme Microb. Technol.,1997,20(2): 82-86.
    [146]Pielou E C. An introduction to mathematical ecology. New York: Wiley,1969.
    [147]党雄英.有关溶液pH的计算.甘肃高师学报,2007,12(2):45-48.
    [148]高彩霞.非线性脉冲动力系统的最优控制及应用:(博士学位论文).大连:大连理工大学,2005.
    [149]Bard Y. Nonlinear parameter estimation. New York:Academic Press,1974.
    [150]Wu J, Wang J S, You Z. An overview of dynamic parameter identification of robots. Robot. Comput.-Integr. Manuf.,2010,26:414-419.
    [151]Guay M, Mclean D D. Optimization and sensitivity analysis for multiresponse in systems of ordinary differential equations. Comput. Chem. Eng.,1995,19(12):1271-1285.
    [152]Papamichail I, Adjiman C S. A rigorous global optimization algorithm for problems with ordinary differential equations. J. Glob. Optim.,2002,24:1-33.
    [153]Lin Y, Stadtherr M A. Deterministic global optimization for parameter estimation of dynamic systems. Ind. Eng. Chem. Res.,2006,45:8438-8448.
    [154]Zhen X Y, Yang X Q. Lagrange multipliers in nonsmooth semi-Infinite optimization problems. Math. Oper. Res.,2007,32(1):168-181.
    [155]Kanzi N, Nobakhtian S. Necessary optimality conditions for nonsmooth generalized semi-infinite pro-gramming problems. Eur. J. Oper. Res.,2010,205:253-261.
    [156]Pang L P, Wang M Z, Xia Z Q. First-order optimality conditions for two classes of generalized non-smooth semi-infinite optimization. Computers and Mathematics with Applications,2008,56:1457-1464.
    [157]Corbacho E, Plichko A, Tarieladze V. A one-sided version of Alexiewicz-Orlicz's Differentiability Theorem. Rev. R. Acad. Cien. Serie A. Mat.,2005,99(2):167-181.
    [158]Stein O, Still G. Solving semi-infinite optimization problems with interior point techniques. SIAM J. Control Optim.,2003,42(3):769-788.
    [159]Ye J X, Feng E M, Lian H S, et al. Existence of equilibrium points and stability of the nonlinear dynamical system in microbial continuous cultures. Appl. Math. Comput.,2009,207:307-318.
    [1601 Kitano H. Biological robustness. Nat. Rev. Genetic,2004,5(11):826-837.
    [161]Kitano H. Towards a theory of biological robustness. Mol. Sys. Biol.,2007.
    [162]Barkai N, Leibler S. Robustness in simple biochemical networks. Nature,2007,387:913-917.
    [163]Bhalla U S, Iyengar R. Robustness of the bistable behavior of a biological signaling feedback loop. Chaos,2001,11:221-226.
    [164]von Dassow G, Meir E, Munro E M, et al. The segment polarity network is a robust developmental module. Nature,2000,406:188-192.
    [165]Tian T H. Robustness of mathematical models for biological systems. Austral. Mathematical Soc, 2004,45(E):C565-577.
    [166]Chen B S, Wang Y C, Wu W S, et al. A new measure of the robustness of biochemical networks. Bioinformatics,2005,21(11):2698-2705.
    [167]Alon U, Surette M G, Barkai N, et al. Robustness in bacterial chemotaxis. Nature,1999,397:168-171.
    [168]Kitano H. Cancer as a robust system:Implications for anticancer therapy. Nat. Rev. Cancer,2004, 4(3):227-235.
    [169]Stelling J, Sauer U, Szallasi Z, et al. Robustness of cellular functions. Cell,2004,118(6):675-685.
    [170]Zeng A P. Quantitative zellphysiologie, metabolic engineering und modellierung der glycerinfermen-tation zu 1,3-propandiol. habilitationschrift. Technical University of Braunschweig, Germany,2000.
    [171]刘树安,唐非.基于遗传算法的系统辨识方法研究.系统工程理论与实践,2007,3:134-139.
    [172]Hao J, Wang W, Tian J S, et al. Decrease of 3-hydroxypropionaldehyde accumulation in 1,3-propanediol production by over-expressing dhaT gene in Klebsiella pneumoniae TUAC01, J. Ind. Mi-crobiol. Biotechnol.,2008,35:735-741.
    [173]Zheng P, Wereath K, Sun J B, et al. Overexpression of genes of the dha regulon and its effects on cell growth, glycerol fermentation to 1,3-propanediol and plasmid stability in Klebsiella pneumoniae. Process Biochem.,2006,41:2160-2169.
    [174]Zhang Y P, Huang Z H, Du C Y, et al. Introduction of an NADH regeneration system into Klebsiella oxytoca leads to an enhanced oxidative and reductive metabolism of glycerol. Metab. Eng.,2009,11(2): 101-106.
    [175]Kurland C G, Dong H. Bacterial growth inhibition by overproduction of protein. Mol. Microbiol., 1996,21:1-4.
    [176]Mahadevan R, Anesiadis N, Cluett W R. Dynamic metabolic engineering for increasing bioprocess productivity. Metab. Eng.,2008,10:255-266.
    [177]Biebl H, Marten S, Hippe H, et al. Glycerol conversion to 1,3-propanediol by newly isolated clostridia. Appl. Microbiol. Biotechnol.,1992,36:592-597.
    [178]Hao J, Lin R H, Zheng Z M, et al. Isolation and characterization of microorganisms able to produce 1,3-propanediol under aerobic conditions. W. J. Microbiol. Biotechnol.,2008,24(9):1731-1740.
    [179]Hassard B D, Kazarinoff N D, Wan Y H. Theory and applications of Hopf Bifurcation. Cambridge University Press,1981.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700