用户名: 密码: 验证码:
骨架钌催化剂母合金的制备及添加载体的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
催化剂在化学反应中起着非常重要的作用。骨架金属作为一类重要的催化剂已被人们广泛认识,它的制备过程是先将铝与活性金属熔炼得到合金,然后用碱液活化浸出其中的铝,得到的具有海绵状结构的活性金属就是骨架金属催化剂。其中,骨架镍催化剂的制备和研究是最早也是最多的,很多材料制备技术如机械合金化、快速凝固技术等被用到了铝镍母合金的制备上,不同的制备技术会对母合金的结构产生影响,从而影响最终骨架镍催化剂的性能。
     骨架钌是一类高度活泼的加氢催化剂,它能够在较低温度和较低压力下,催化多种不饱和键的加氢反应,在医药、精细化学品等许多高经济附加值产品工业领域具有十分广阔的应用前景。但是由于金属钌价格昂贵、熔点高,制备骨架钌催化剂母合金(铝钌合金)比较困难,文献报导主要集中于骨架钌催化剂在加氢反应中的应用方面,而对铝钌合金具体的制备方法以及不同的制备过程对铝钌母合金结构的影响却鲜有报导。另一方面,骨架钉催化剂母合金中钉的含量一般在50Wt%左右,与负载型催化剂相比,骨架钌催化剂的成本太高,能否找到合适的途径来降低其成本,直接关系到骨架钌催化剂能否推广应用。
     本文主要以铝钌合金为研究对象,但由于钌是贵金属,所以在工艺探索过程中会用铝镍合金作为替代物进行分析考察。首先采用高频感应熔炼和机械合金化以及后续热处理的方法制备了铝钌合金,考察了制备工艺对合金相组成的影响。然后,结合本实验室的优势,将电磁搅拌技术引入到了铝镍合金的制备过程中,通过变化磁场强度来改变铝镍合金的晶粒尺寸,考察能否获得只有晶粒尺寸单一因素变化的母合金锭,为深入研究母合金结构与对应催化剂结构和活性的构效关系提供基础。最后考察了几种添加载体的方法,以期来降低骨架金属催化剂的成本。取得的主要研究成果如下:
     由高频感应熔炼得到的铝钌合金(50wt% Ru)中主要存在Al13Ru4和Al2Ru两相。对对烷基苯甲酸加氢实验结果表明,由水淬后的铝钌合金制得的骨架钌催化剂具有更高的活性。相对于随炉冷却的试样,水淬后的试样中的Al2Ru相含量更高,而且晶粒尺寸也有变小趋势,这可能是其具有更高活性的原因之一。在高频感应熔炼过程中向铝钌合金中引入镍进行改性后,合金中除了Al3Ni2相外,其他为铝镍钌三元合金相,继续添加石墨粉热处理后混合粉中的合金相变为Al2Ru和铝镍钌三元合金相。Al-Ru-Ni-C合金粉经NaOH浸取活化后制得的骨架钌镍碳催化剂用于对硝基苯甲醚的加氢反应制备对氨基苯甲醚,使用寿命超过63小时,反应温度低于100℃,目的产物的选择性高达99.4%,这可以归因于催化剂中骨架钌和骨架钌镍两种共存结构的配合以及石墨的分散和稳定作用。
     以纯铝粉和钌粉为原料通过机械合金化球磨20、30和50小时后并没有直接得到铝钌金属间化合物,而是得到亚稳的Ru(Al)过饱和固溶体,经过550℃和700℃热处理后Ru(Al)过饱和固溶体完全转变为铝钌金属间化合物。此过程大大降低了生成铝钌金属问化合物的温度,最低相转变温度为394.3℃。研究结果表明工艺控制剂乙醇参与了机械合金化进程,热处理时消耗了一部分铝,使得最终合金成分发生变化,致使Al5Ru2相意外地出现在热处理后的样品中。本实验条件下制得的Al5Ru2在550℃下可以稳定存在,而在700℃下分解而消失。由于文献中对此相的稳定性存在争议,为了进一步验证Al5Ru2的存在不是由乙醇造成的,采用电弧熔炼制备了铝钌成分在5:2附近(原子百分比)的合金。结果表明,在成分允许的条件下,Al5Ru2可以在激冷条件下与Al13Ru4、Al2Ru竞争形核长大而出现,也可以在凝固速度缓慢的条件下由液相与Al2Ru相包晶反应而得到。
     将电磁场引入到了骨架金属催化剂母合金的制备过程中。研究结果表明,施加80A和140A电磁搅拌后铝镍合金中较大的Al3Ni2树枝晶消失,变为细小的等轴晶,Al3Ni2相的平均尺寸由64.5μm变为37.2μm和35.5μm。而且合金中Al3Ni2相含量略有减少,而Al3Ni相含量略有增加。这主要是由于电磁搅拌过程中,Al3Ni2枝晶被打碎,增加了Al3Ni2相与液相的接触机会,有利于生成Al3Ni的包晶反应的进行。加氢活性测试结果表明,由施加电磁搅拌后得到的铝镍合金制备出的骨架镍催化剂具有更高的催化活性。
     为降低骨架贵金属催化剂的成本,我们首先考虑了添加载体来负载母合金的工艺。实验结果表明,直接将合金粉与无机微粉混合进行高温处理并不能使合金有效分散于无机微粉上,而且在高温条件下合金粉容易被氧化而转变为尖晶石结构。采用特殊的磁控溅射设备可以将铝钌合金镀在SiC、MgO、SiO2微粉和空心微球上,但这种方法对设备要求较高,制备周期长,产量低。
     通过分析铝镍合金中Al3Ni和Al3Ni2相的活化过程以及对比常规纳米金属粒子的制备方法,我们指出制备骨架金属催化剂的过程实际上就是制备具有特殊结构纳米金属催化剂的过程。常规浸取活化方法制得的骨架金属催化剂是母合金活化过程中产生的一次纳米金属粒子聚集长大后的产物,通过添加载体可以防止纳米金属粒子的团聚,选择合适的载体将可以制备出廉价的负载型骨架金属催化剂。提出了向铝镍合金粉中添加拟薄水铝石来降低成本的方法,采用5-6%的硝酸溶液进行胶溶,热处理适宜温度为550℃,可以得到γ-Al2O3结合铝镍合金的混合粉,活化结果显示,γ-Al2O3的存在不会阻碍活化过程的进行,而且活化出的纳米镍粒子可以有效地分散在}-Al2O3载体上。
Catalysts play a very important role in chemical reactions. Skeletal metal have been well known as a kind of important catalyst. It can be obtained by alkali leaching the alloy of Al and the active metal. When Al is removed from the alloy, the left active metal with a sponge like structure can be used as skeletal metal catalyst. Skeletal Ni catalyst has been used and studied for a long time. Many materials production processes such as mechanical alloying, rapid solidification are used to produce the precursor alloys. Different production process has a very important influence on the alloy structure which finally affects the performance of skeletal Ni catalyst.
     Skeletal Ru is a kind of catalyst with high activity for hydrogenation. It can be used for hydrogenation of unsaturated bonds under very mild conditions. And it has a very wide application prospect in the production of high value added medicine, fine chemicals. However, skeletal Ru catalyst can not be widely used because ruthenium is a noble metal. Moreover, ruthenium has a high melting point which makes the production of precursor Al-Ru alloy difficult. Previous reports mainly concerned about the application of skeletal Ru catalyst and had very few reports on the details of the production of Al-Ru alloy and the relationship between the production process and the alloy structure. Compared with supported catalysts, precursor alloy of skeletal Ru catalyst is too expensive since it has a very high content of ruthenium (50wt%). Therefore, a method which can cut the cost of skeletal metal catalyst is urgently needed for its application in industry.
     Al-Ru alloy is the main research subject in this dissertation. Al-Ni alloy is used as a substitution for Al-Ru alloy in the process of technical investigation because Ru is too expensive. The first part is about the production of Al-Ru alloy by high frequency induction melting and mechanical alloying with subsequent heat treatment, and the influence of preparation process on phase composition was studied. In the second part, rotating magnetic field (RMF) is introduced in the production process of Al-Ni precursor alloy of skeletal Ni catalyst to study the influence of RMF on the microstructure and phase content of Al-Ni alloy, because it is well known that the alloy grain size can be effectively refined when electromagnetic field (EMF) is introduced in the solidification process. Therefore, it is interesting to investigate whether the introduction of EMF in the solidification of Al-Ni alloy can only change the grain size or not. The last part is about several exploratory experiments in which support is added to reduce the cost of skeletal metal catalysts. Main research details and results are as follows.
     The Al-Ru alloy with 50 wt% Ru produced by high frequency induction melting contains two main phase:Al13Ru4 and Al2Ru. When the melt was quenched by water, the content of Al2Ru increased, and its grain size decreased. Skeletal Ru catalyst obtained from quenched samples shows higher hydrogenation activity. Al-Ni-Ru alloy with 50 wt% Ni and 50 wt% Ru was produced by the same method, and it contains Al3Ni2 and several ternary phases. When graphite powder was added into the Al-Ni-Ru alloy powder and heat treated at high temperature, the phases transformed to Al2Ru and several ternary phases. The skeletal Ru-Ni-C produced by leaching Al-Ru-Ni-C powder shows very high activity in the hydrogenation of p-nitroanisole to produce p-aminoanisole. It could be used for more than 63 hrs at temperature lower than 100℃and the selectivity for desired product was higher than 99.4%. It can be attributed to the synergy of skeletal Ru and skeletal Ru-Ni and the dispersion of graphite.
     Metastable Ru(Al) solid solution was the only phase obtained after milling elemental Al and Ru powders (50wt% Ru) for 20,30 and 50 hours. It transformed to Al-Ru intermetallics after heat treatment at 550℃and 700℃. Al5Ru2 phase was appeared accidentally in the samples. The results showed that the process control agent ethanol participated in alloying and consumed part of aluminium which finally changed the alloy composition. Al5Ru2 phase is stable at 550℃and disappear at 700℃. The lowest phase transformation temperature is 394.3℃, which is very low compared with that in metallurgy production process. To clarify the controversy in the references and verify that the appearance of Al5Ru2 was not induced by ethanol, Al-Ru alloys with almost the same composition of Al5Ru2 was produced by arc melting. It showed that Al5Ru2 can be obtained not only via competitively nucleation with Al13Ru4 and Al2Ru and growing under rapid solidification circumstance but also via peritectic reaction of fluid and Al2Ru under low solidification circumstance.
     Rotating magnetic field (RMF) was introduced in the production process of Al-Ni precursor alloy of skeletal Ni catalyst. The results showed that the big dendrites of Al3Ni2 disappeared, the size of Al3Ni2 decreased from 64.5μm to 37.2 and 35.5μm, phase content of Al3Ni2 decreased while Al3Ni increased after applying field current of 80A and 140 A, respectively. The change of phase content is probably caused by the increase of surface area between the Al3Ni2 phase and fluid which is favorable to the peritectic reaction. Skeletal Ni catalysts obtained from samples with RMF showed higher hydrogenation activity.
     As to the methods to reduce the cost of skeletal metal catalysts, we first thought about adding support to carry precursor alloy. The results showed that the alloy powder was not effectively dispersed on inorganic micro powder by heat treating the mixture of both powders and it can be readily oxidized and transformed to spinel at high temperature. Then we plated Al-Ru alloy on the surface of SiC, MgO, SiO2 micro powder and cenosphere particles using a special magnetron sputtering equipment, but this method has several disadvantages, like highly requirement on equipment, long production period and low outcome.
     By analyzing the leaching process of Al3Ni and Al3Ni2 and comparing the conventional production of nano metal particles, we conclude that the production process of raney metal catalyst is a production process of nano metal particles with special structure. The skeletal metal catalyst obtained by conventional leaching process is a product after the aggregation of the first nano metal particles obtained by leaching. Adding support can prevent the aggregation of the first nano metal particles, and cheap supported metal catalyst can be produced by choosing an appropriate support. Therefore, we proposed a method to produceγ-Al2O3 supported skeletal Ni catalyst. The mixture of Al-Ni alloy powder and pseudo-boehmite was first peptized using 5-6% HNO3 and then it was heat treated at 550℃. Pseudo-boehmite transformed toγ-Al2O3. The results showed that the presence ofγ-Al2O3 would not hinder the leaching process and nano Ni particles produced in the leaching process can be effectively dispersed onγ-Al2O3.
引文
[1]储伟.催化剂工程[M].四川:四川大学出版社,2006.
    [2]黄仲涛.工业催化剂手册[M].北京:化学工业出版社,2004.
    [3]袁忠义.骨架钌基加氢催化剂的制备及应用[D].大连:大连理工大学,2005.
    [4]Raney M. Method of preparing catalytic material:US,1563587 [P].1925.
    [5]Raney M. Method of producing finely-divided nickel:US,1628190 [P].1927.
    [6]Smith A J. Skeletal catalysts [M]//Richards R. Surface and Nanomolecular Catalysis. Taylor & Francis Group,2006:141-159.
    [7]胡爽.骨架结构钌、镍、铜的催化活性研究[D].大连:大连理工大学,2005.
    [8]江志东,陈瑞芳,王金渠.雷尼镍催化剂[J].化学工业与工程.1997,14(2):23-32.
    [9]Freel J, Pieters W J M, Anderson R B. The structure of Raney nickel:II. Electron microprobe studies [J]. Journal of Catalysis.1970,16(3):281-291.
    [10]Fouilloux P. The nature of raney nickel, its adsorbed hydrogen and its catalytic activity for hydrogenation reactions (review) [J]. Applied Catalysis.1983,8(1):1-42.
    [11]Fouilloux P, Martin G A, Renouprez A J, et al. A study of the texture and structure of Raney nickel [J]. Journal of Catalysis.1972,25(2):212-222.
    [12]Birkenstock U, Holm R, Reinfandt B, et al. Surface analysis of Raney catalysts [J]. Journal of Catalysis.1985,93(1):55-67.
    [13]张文忠,苏桂琴,焦凤英,等.骨架镍催化剂活性本质的研究[J].催化学报.1992,13(1):13-18.
    [14]Robertson S D, Freel J, Anderson R B. The nature of Raney nickel:VI. Transmission and scanning electron microscopy studies [J]. Journal of Catalysis.1972,24(1):130-145.
    [15]Robertson S D, Anderson R B. The structure of Raney nickel:V. Partial activation of the catalyst [J]. Journal of Catalysis.1976,41(3):405-411.
    [16]Sane S, Bonnier J M, Damon J P, et al. Raney metal catalysts:I. comparative properties of raney nickel proceeding from Ni-Ai intermetallic phases [J]. Applied Catalysis.1984,9(1):69-83.
    [17]雷浩.快凝Ni-Al合金结构及衍生骨架Ni催化剂加氢特性的研究[D].大连:中国科学院大连化学物理研究所,2003.
    [18]Bonnier J M, Damon J P, Masson J. New approach to skeletal nickel catalysts catalytic properties of the nickel-chromium system [J]. Applied Catalysis.1988,42(2): 285-297.
    [19]Montgomery S R. Catalysis of Organic Reactions [M]. New York:Marcel Dekker,1981.
    [20]Kukula P, Cerveny L. Characterization of chirally modified Raney nickel and compounds of tartaric acid and nickel [J]. Applied Catalysis A:General.2002,223(1-2): 43-55.
    [21]Smith A J, Trimm D L. The preparation of skeletal catalysts [J]. Annual Review of Materials Research.2005,35(1):127-142.
    [22]陈振华,陈鼎.机械合金化与固液反应球磨[M].北京:化学工业出版社,2006.
    [23]Ivanov E, Grigorieva T, Golubkova G, et al. Synthesis of nickel aluminides by mechanical alloying [J]. Materials Letters.1988,7(1-2):51-54.
    [24]Ivanov E, Grigorieva T, Golubkova G, et al. Raney nickel catalysts from mechanical Ni-Al alloys [J]. Materials Letters.1988,7(1-2):55-56.
    [25]滕荣厚,柳学全,徐教仁,等.高能球磨制备的纳米晶RANEY镍催化剂的结构特性[J].金属功能材料.1994,(6):15-18.
    [26]Smith G V, Brower W E, Matyjaszczyk M S. Proceedings of the Seventh International Congress on Cataysis [C], Tokyo,1980.
    [27]Molnar A, Smith A J, Bartok M. New Catalytic Materials from Amorphous Metal Alloys [J]. Advances in Catalysis.1989,36:329-382.
    [28]巴发海,沈宁福.快速凝固Ni-Al合金中的组成相[J].金属学报.2001,37(8):845-851.
    [29]Lei H, Song Z, Bao X, et al. XRD and XPS studies on the ultra-uniform Raney-Ni catalyst prepared from the melt-quenching alloy [J]. Surface and Interface Analysis.2001, 32(1):210-213.
    [30]Hu H, Qiao M, Pei Y, et al. Kinetics of hydrogen evolution in alkali leaching of rapidly quenched Ni-Al alloy [J]. Applied Catalysis A:General.2003,252(1):173-183.
    [31]巴发海,沈宁福,虞钢.Ni25Al75合金快速凝固过程中的包晶反应与凝固进程[J].中国有色金属学报.2003,13(2):335-338.
    [32]叶金文,刘颖,李军,等.纳米镍基催化剂母合金的快速凝固过程微观结构研究[J].工业催化.2004,12(9):51-53.
    [33]Hu H, Qiao M, Wang S, et al. Structural and catalytic properties of skeletal Ni catalyst prepared from the rapidly quenched Ni50A150 alloy [J]. Journal of Catalysis.2004, 221(2):612-618.
    [34]Qi Z, Zhang Z H, Jia H L, et al. Alloy composition dependence of formation of porous Ni prepared by rapid solidification and chemical dealloying [J]. Journal of Alloys and Compounds.2009,472(1-2):71-78.
    [35]Pisarek M, Lukaszewski M, Winiarek P, et al. Catalytic activity of Cr-or Co-modified Ni-based rapidly quenched alloys in the hydrogenation of isophorone [J]. Applied Catalysis A:General.2009,358(2):240-248.
    [36]胡华荣.淬冷骨架Ni样品的制备、表征、催化及吸附脱硫性质研究[D].上海:复旦大学,2005.
    [37]左佳齐.一个新的平台技术的诞生——记中国石化“非晶态合金催化剂和磁稳定床反应工艺的创新与集成”获2005年度国家技术发明一等奖[J].中国石化.2006,(2):13-16.
    [38]宗保宁,慕旭宏,孟祥堃,等.非晶态合金催化剂和磁稳定床反应工艺的创新与集成[J].石油学报(石油加工).2006,22(2):1-6.
    [39]Jarvis D J, Voss D. IMPRESS Integrated Project--An overview paper [J]. Materials Science and Engineering:A.2005,413-414:583-591.
    [40]Devred F, Gieske A H, Adkins N, et al. Influence of phase composition and particle size of atomised Ni-Al alloy samples on the catalytic performance of Raney-type nickel catalysts [J]. Applied Catalysis, A:General.2009,356(2):154-161.
    [41]Calvo-Dahlborg M, Chambreland S, Bao C M, et al. Identification of phases in gas-atomised droplets by combination of neutron and X-ray diffraction techniques with atom probe tomography [J]. Ultramicroscopy.2009,109(5):672-676.
    [42]Bao C M, Dahlborg U, Adkins N, et al. Structural characterisation of Al-Ni powders produced by gas atomisation [J]. Journal of Alloys and Compounds.2009,481(1-2):199-206.
    [43]Helmut B, Werner B, Hans-Werner H, et al. Wet Chemistry Synthesis of beta-Nickel Aluminide NiAl [J]. Angewandte Chemie International Edition.2002,41(4):599-603.
    [44]Richards R, Geibel G, Hofstadt W, et al. Nanoscale skeletal nickel catalysts prepared via "bottom up" method [J]. Applied Organometallic Chemistry.2002,16(7): 377-383.
    [45]Modrow H, Rahman M 0, Richards R, et al. Structural Characterization of a Novel Catalyst Obtained from Nanoscopic NiAlx by X-ray Absorption Spectroscopy [J]. The Journal of Physical Chemistry B.2003,107(44):12221-12226.
    [46]Obrowski W. [J]. Metallwiss und Technik.1963,17:108.
    [47]Fleisher R L. High-strength, high-temperature intermetallic compounds [J]. Journal of Materials Science.1987,22(7):2281-2288.
    [48]Fleischer R L. Substitutional solutes in AlRu--I. Effects of solute on moduli, lattice parameters and vacancy production [J]. Acta Metallurgica et Materialia.1993,41(3): 863-869.
    [49]Anlage S M, Nash P, Ramachandran R, et al. Phase equilibria for the aluminum-rich region of the Al-Ru system [J]. Journal of the Less-Common Metals.1988,136:237-247.
    [50]Edshammar L E. The crystal structure of Ru4Ali3 [J]. Acta Chemica Scandinavica. 1965,19(9):2124.
    [51]Edshammar L E. An X-ray investigation of ruthenium-aluminium alloys [J]. Acta Chemica Scandinavica.1966,20(2):427-431.
    [52]Edshammar L E. The crystal structure of RuAle [J]. Acta Chemica Scandinavica.1968, 22(7):2374-2375.
    [53]Boniface T D, Cornish L A. Investigation of the high aluminium end of the aluminium-ruthenium phase diagram [J]. Journal of Alloys and Compounds.1996,233(1-2): 241-245.
    [54]Boniface T D, Cornish L A. Investigation of the aluminium-ruthenium phase diagram above 25 at.% ruthenium [J]. Journal of Alloys and Compounds.1996,234(2):275-279.
    [55]Mi S, Balanetskyy S, Grushko B. A study of the Al-rich part of the Al-Ru alloy system [J]. Intermetallics.2003,11(7):643-649.
    [56]Wen B, Zhao J J, Bai F D, et al. First-principle studies of Al-Ru intermetallic compounds [J]. Intermetallics.2008,16(2):333-339.
    [57]Morikawa K, Hirayama S, Ishimura Y, et al. Process for hydrogenating an aromatic ring containing compound using a ruthenium Raney catalyst:EP,0724908 B1[P].1996.
    [58]Vedenyapin A A, Zubareva N D, Akimov V M, et al. Phase composition of skeletal ruthenium catalyst [J]. Russian Chemical Bulletin (Translation of Izvestiya Akademii Nauk, Seriya Khimicheskaya).1976,10:2184-2187.
    [59]Urabe K, Yoshioka T, Ozaki A. Ammonia Synthesis Activity of a Raney Ruthenium Catalyst [J]. Journal of Catalysis.1978,54:52-56.
    [60]Yano T, Ogata Y, Aika K, et al. Selective formation of methanol over water-treated Raney ruthenium [J]. Chemistry Letters.1986,3:303-306.
    [61]Ogata Y, Aika K, Onishi T. Isotopic equilibration reaction of dinitrogen over Raney ruthenium:importance of the structural factor [J]. Journal of Catalysis.1988,112: 469-477.
    [62]Aika K-i, Ogata Y, Takeishi K, et al. Characterization of Raney Ru:Effect of heat treatment [J]. Journal of Catalysis.1988,114(1):200-205.
    [63]Takeishi K, Aika K. Study of Raney ruthenium catalyst for methanol synthesis [J]. Journal of Catalysis.1992,136:252-257.
    [64]Takeishi K, Yamashita Y, Aika K. Comparison of carbon dioxide and carbon monoxide with respects to hydrogenation on Raney ruthenium catalysts under 1.1 and 2.1 MPa [J]. Applied Catalysis a-General.1998,168(2):345-351.
    [65]Morikawa K, Hirayama S, Ishimura Y, et al. Noble metal Raney catalysts and preparation of hydrogenated compounds using such catalysts:EP Patent, EP724908 [P].1996.
    [66]Morikawa K, Hirayama S, Ishimura Y, et al. Noble metal raney catalysts and preparation of hydrogenated compounds therewith:US patent, US6018048 [P].2000.
    [67]金文中.K417高温合金真空熔铸凝固过程的电磁控制[D].大连:大连理工大学,2008.
    [68]Jin W Z, Bai F D, Li T J, et al. Grain refinement of superalloy IN100 under the action of rotary magnetic, fields and inoculants [J]. Materials Letters.2008,62(10-11): 1585-1588.
    [69]阎志明.铜及铜合金管坯水平电磁连续铸造技术研究[D].大连:大连理工大学,2009.
    [70]江尧中.工业电炉[M].北京:清华大学出版社,1993.
    [71]唱鹤鸣,杨晓平,张德惠.感应炉熔炼与特种铸造技术[M].北京:冶金工业出版社,2002.
    [72]储少军,宋耀欣.中间产物Al2OC对SiAlFe自然粉化的影响[J].铁合金.2007,(06):15-17.
    [73]杨建明,王户生,吕剑,等.对烷基苯甲酸的催化加氢及其取代基效应[J].应用化学.2002,19(04):364-368.
    [74]袁忠义,胡爽,吕荣文,等.骨架钌镍炭选择性催化加氢制备对氨基苯甲醚[J].精细化工.2006,23(05):514-517.
    [75]吕连海,胡爽,袁忠义,等.一种高活性加氢催化剂骨架钌的制备和应用方法:中国,200510200434.7[P].2005.
    [76]王树清,高崇.由对硝基苯甲醚制备对氨基苯甲醚的工艺研究[J].应用化工.2003,32(6):27-29.
    [77]Hellstern E, Fecht H J, Fu Z, et al. Structural and thermodynamic properties of heavily mechanically deformed Ru and AlRu [J]. Journal of Applied Physics.1989,65(1): 305-310.
    [78]许应凡,E. Ivanov,隅山兼治,等.B2结构纳米晶Ru40Al60和Ru的制备[J].科学通报.1996,(16):1454-1456.
    [79]Liu K W, Mucklich F, Birringer R. Synthesis of nano-RuAl by mechanical alloying [J]. Intermetallics.2001,9(1):81-88.
    [80]de Medeiros S N, Machado F L A, Zampiere R B, et al. Preparation of AlRu intermetallic compounds by mechanical alloying [J]. Journal of Non-Crystalline Solids.2006, 352(32-35):3718-3720.
    [81]Suryanarayana C. Mechanical alloying and milling [J]. Progress in Materials Science.2001,46(1-2):1-184.
    [82]晁建平,焦玉海,杨春育.分子筛型促渗透材料加入膜中后对渗透蒸发过程的影响[J].石油炼制与化工.1997,28(5):47-50.
    [83]柴宗霞.机械合金化-退火法制备铝钌金属间化合物[D].大连:大连理工大学,2008.
    [84]柴宗霞,白富栋,李廷举,等.机械合金化法制备Al-Ru合金[J].稀有金属材料与工程.2009,38(05):909-913.
    [85]柴宗霞,白富栋,李廷举,等.机械合金化-退火法制备两相区铝钌合金粉[J].机械工程材料(Materials for Mechanical Engineering).2009,33(4):10-13.
    [86]Schubert K, Rosler U, Kluge M, et al. Kristallographische Ergebnisse an Phasenmit Durchdringungsbindung [J]. Naturwissenschaften.1953,40(16):437.
    [87]Burkhardt U, Grin Y, Ellner M, et al. Structure Refinement of the Iron-Aluminium Phase with the Approximate Composition Fe2A15 [J]. Acta Crystallographica, Section B: Structural Science.1994,50:313-316.
    [88]Smith A J, Wainwright M S. Skeletal Metal Catalysts [M]//Ertl G., et al. Handbook of Heterogeneous Catalysis. Weinheim:Wiley,2008:92-100.
    [89]孙祥云,魏海荣,郭东章,等.雷尼镍铝合金组织与其催化剂性能的关系[J].东北大学学报(自然科学版).1998,(03).
    [90]Yan Z, Li X, Cao Z, et al. Grain refinement of horizontal continuous casting of the CuNilOFelMn alloy hollow billets by rotating magnetic field (RMF) [J]. Materials Letters. 2008,62(28):4389-4392.
    [91]Rietveld H M. A profile refinement method for nuclear and magnetic structures [J]. Journal of Applied Crystallography.1969,2(2):65-71.
    [92]Onuoha N I, Tomsett A D, Wainwright M S, et al. Preparation and properties of raney copper foraminate catalysts [J]. Journal of Catalysis.1985,91(1):25-35.
    [93]Scharringer P, Muller T E, Jentys A, et al. Identification of reaction intermediates during hydrogenation of CD3CN on Raney-Co [J]. Journal of Catalysis.2009, 263(1):34-41.
    [94]Fan J G, Zong B N, Zhang X X, et al. Rapidly Quenched Skeletal Fe-Based Catalysts for Fischer-Tropsch Synthesis [J]. Industrial & Engineering Chemistry Research.2008, 47(16):5918-5923.
    [95]Kerzenmacher S, Schroeder M, Bramer R, et al. Raney-platinum film electrodes for potentially implantable glucose fuel cells. Part 1:Nickel-free glucose oxidation anodes [J]. Journal of Power Sources.195(19):6516-6523.
    [96]Druz V A, Sadchikova L N. Shift of the catalyst potential as a function of the rate of liquid-phase hydrogenation. IV. Comparison of activities of Raney nickel, and platinum and palladium blacks [J]. Journal of Catalysis.1968,10(2):205-205.
    [97]沈志刚,俞晓正,徐政.微颗粒表面真空镀金属膜工艺及其设备:中国,200510014639.6[P].2005.
    [98]Xu Z, Yu X, Shen Z. Coating metals on micropowders by magnetron sputtering [J]. China Particuology.2007,5(5):345-350.
    [99]Yu X, Shen Z, Xu Z, et al. Fabrication and structural characterization of metal films coated on cenosphere particles by magnetron sputtering deposition [J]. Applied Surface Science.2007,253(17):7082-7088.
    [100]李鸿珍.镍铝合金粉中镍、钌的ICP光谱测定法[J].冶金分析.1988,8(6):51-52.
    [101]阎子峰.纳米催化技术[M].北京:化学工业出版社,2003.
    [102]Csuros Z, Petro J. Process for the preparation of Raney-metal catalysts having high activity:US,3809658 [P].1974.
    [103]德尔蒙等编,李大东等译.催化剂的制备:制备非均相催化剂的科学基础[M].北京:化学工业出版社,1988.
    [104]Petro J, Bota A, Laszlo K, et al. A new alumina-supported, not pyrophoric Raney-type Ni-catalyst [J]. Applied Catalysis a-General.2000,190(1-2):73-86.
    [105]张明海,叶岗,李光辉,等.薄水铝石与拟薄水铝石差异的研究[J].石油学报(石油加工).1999,15(2):29-32.
    [106]严加松,龙军,田辉平.拟薄水铝石胶溶性能的研究[J].石油炼制与化工.2004,35(9):38-41.
    [107]赵会吉,白锐,商红岩,等.新型固定床Raney镍(I)成型合金的组成与焙烧条件[J].化工学报.2005,56(8):1492-1497.
    [108]赵会吉,白锐,徐永强,等.新型固定床Raney镍(Ⅱ)成型合金的浸取过程[J].化工学报.2005,56(8):1498-1503.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700