用户名: 密码: 验证码:
铰接式混凝土砌块护坡稳定性数值分析及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着社会经济的快速发展和人民生活水平的逐步提高,人们对生态环境和景观的要求也越来越高。河道已不仅仅具有“泄洪、排涝、蓄水、引清、航运”等水道的基本功能,而且还具有“景观、旅游、生态、对周边环境的呼应”等功能,人们渴望见到水清天蓝、绿树夹岸、鱼虾洞游的河道生态景观。河道护坡是保证堤防安全的重要基础设施,也是堤防除险加固工程建设中的重要内容。传统的护坡形式,如浆砌石护坡、混凝土板护坡、模袋混凝土护坡等护坡形式在一定程度上改变了原有河道的自然生态环境,影响了河流的生态特性和功能,破坏了自然和环境的和谐统一。因此,在护坡结构设计中,人们开始逐渐考虑生态环境因素的影响。为了适应这种新形势的需要,护坡技术也由原来的纯工程性措施逐步向生态型护坡技术发展,生态护坡、植物护坡和景观护坡等更为环保的护坡形式将成为今后发展的必然趋势。在环境成为未来发展的大趋势下,一种新式的生态护坡形式,铰接式混凝土砌块护坡近些年来在水利工程建设中被逐渐开始采用。本文以实际工程——沈阳市鸟岛公园铰接式混凝土砌块护坡为例,对此种护坡形式的稳定性分析及计算、冻胀监测和社会综合效益等方面进行了较为全面系统的研究和分析,全文主要的研究内容包括以下几个方面:
     (1)通过理论计算和施工实践,验证了在护坡坡顶浇筑压重混凝土和坡底做浆砌石护脚会大大增加护坡安全稳定性的方法,为以后的工程提供了可靠的依据和经验。
     (2)利用极限平衡条分法对铰接式混凝土砌块护坡稳定性进行了分析,首先采用条分法计算了护坡土体(无砌块)的稳定性,然后对条分法加以改进(考虑砌块)计算了护坡整体(土体和砌块)的稳定性,通过两种方法的比较分析,表明毕肖普条分法更为适合。基于毕肖普条分法,进一步计算了不同坡度和不同砌块重量时护坡的稳定安全系数,结果表明不同坡度和砌块重量对护坡的稳定性有较小的影响,不是很敏感。
     (3)运用FLAC数值分析软件,建立铰接式混凝土砌块护坡的数值仿真计算模型,采用强度折减技术对护坡稳定性进行了计算分析。计算了不同参数下护坡的稳定安全系数,通过比较分析,利用此种方法可以得到更为精确的结果。
     (4)采用连续介质稳定渗流数学模型的有限差分法,详细讨论了不同水位对护坡稳定性的影响,通过计算分析了不同种因素在水位变化时对护坡稳定性的影响。
     (5)针对北方地区寒冷季节会产生冻胀问题,对铰接式混凝土砌块护坡具有代表性的区域进行了现场变形监测,通过对不同时段和不同位置的监测数据分析计算和对砌块进行多次冻融循环试验,结果证明了该种形式护坡能够满足和适应北方寒冷地区的抗冻性要求和冻胀变形,不会因冻胀问题发生破坏。
     (6)铰接式混凝土砌块护坡工程完工后,进行了几年的连续现场监测,结果表明:水土保持效益明显,节省了土地资源,又能满足绿化要求,增加了景观效益,并且较其他护坡形式节省了投资和后期维护费用,经济效益显著。
With the rapid development of social economy and the gradual improvement of living standards, people have much higher demand for the ecological environment and landscape. Rivers have not only basic functions of the watercourse such as flood control, drainage, water storage, clean water supply, shipping, etc, but also play an important role in landscape, tourism, ecology and enrichment of surrounding environment, people are eager to see the landscape of clear water and blue sky, river with green trees on both banks, fish and shrimp swimming in the water. Watercourse embankment protecting slope is critical infrastructure to ensure the safety of dike and is also an important part of dike risk elimination and reinforcement construction. The traditional ways of slope protection such as cement stone, concrete plates and molded concrete bag to some extent change the original natural ecological environment of rivers, affect the ecological features and functions of rivers, destroy the harmony and unity of nature and the environment. Therefore, ecological and environmental factors begin to be considered in design of slope structure. The development of slope protection technology has thus transformed from pure engineering measures into eco-friendly technologies in order to adapt to new situation. More environmental friendly ways of slope protection like Ecology, plant and landscape will be the inevitable trend of future development. As environment protection becomes the future trend, a new way of ecological slope protection, articulated concrete block, has been gradually applied in water conservancy project. In this paper, the project of articulated concrete block slope protection of Shenyang Bird Island Park is taken as an example; it is comprehensively studied and systematically analyzed to explore the analysis and calculation of slope stability, frozen and expansion monitor and social benefit etc. The paper mainly consists of following six parts:
     (1)It is verified by theoretical calculation and construction practice that concrete pouring and heavy pressure on the top of the protected slope and cement block reinforced at bottom of slope will greatly increase safety and stability of protection slope, which provide reliable basis and experience for future projects.
     (2)The stability of articulated concrete block protected slope is being analyzed by using limit equilibrium method. Firstly, calculated the stability of slope soil (no block) by using slice method, secondly, calculated the stability of slope (soil and block) by improving slice method (take block into consideration), it is proved that Bishop slice method is more suitable after comparisons and analysis of these two method. Based on Bishop Slice method, further calculated slope stability and safety coefficient with different slope angle and concrete block weight, it is showed that the different slope angle and blocks is not sensitive to the stability of protected slope.
     (3)Numerical simulation model of articulated concrete blocks protected slope is established by using FLAC data analysis software, Strength reduction techniques is used to calculate and analyze slope stability, more accurate results can be obtained by comparing and analyzing calculated slope stability and safety coefficients under different parameters.
     (4)Impact on stability of protected slop under different water level is thoroughly discussed by using finite difference method of continuous medium stable seepage mathematical model, which is to calculate and analyze influence on stability of protected slope under various parameters as water levels change.
     (5)As for frozen expansion in northern cold region, field deformation monitoring is conducted at typical part of articulated concrete block protected slope, by analyzing data collected at different location and in various time and multiple freeze-thaw cycle test of concrete block, it is proved that this protected slope can meet and suit the requirements of anti-frozen and frozen expansion deformation in northern cold region, and will not be damaged due to frozen expansion.
     (6)When project of the articulated concrete block protected slope was finished, field monitoring is conducted in following several consecutive years, it is shown that Soil and water conservation is obvious, land resources is saved, afforesting requirement is met, effectiveness of the landscape is increased, and it saves investment and ongoing maintenance costs compared with other ways of slope protection, it can be said that its economic benefits are significant.
引文
1.蔡美峰,何满潮,刘东燕.2002.岩石力学与工程[M].北京:科学出版社.
    2.陈昌富,龚小南,王贻荪.2003.自适应蚁群算法及其在边坡工程中的应用[J].浙江大学学报(工学版)
    3.陈小华,李小平,张利权.2007.河道生态护坡技术的水土保持效益研究[J].水土保持学报,21(2):32-35.
    4.陈肖柏,刘建坤,刘鸿绪,王雅卿.2006.土的冻结作用于地基[M].北京:科学出版社.
    5.陈杨辉,吴义锋,吕锡武.2007.生态混凝土在河道护坡中的应用[J].中国水土保持,6:42-43.
    6.陈祖煜.2003.土质边坡稳定分析—原理·方法·程序[M].北京:中国水利水电出版社.
    7.程龙飞,程卫国,姜志强.2005.新型连锁块护坡防冲系统[J].水利水电技术,36(11):65-66.
    8.程龙飞,孙树林,裴洪军.2005.香根草——铰接式混凝土块护岸系统机理分析[J].岩土工程学报,27(5):21-23.
    9.丁军,王兆赛,陈欣.2002.红壤丘陵区林地根系对土壤抗冲增强效应的研究[J].水土保持学报,16(4):9-12.
    10.董哲任.1998.堤防除险加固实用技术[M].北京:中国水利水电出版社.
    11.董哲任.1999.堤防抢险实用技术[M].中国水利水电出版社.
    12.段庆伟.2004.确定边坡潜在滑动面的新方法——变形应力场法及其应用[J].岩石力学与工程学报,23(3):530-536.
    13.耿灵生,巩向锋.2003.新型砌块水土保持系统的应用研究[J].中国地质灾害及防治学报,14(4):99-104.
    14.何蘅,陈德春,魏文白.2005.生态护坡及其在城市河道整治中的应用[J].水资源保护,11(6):56-58.
    15.姜志强,孙树林.2004.堤防工程生态固坡浅析[J].岩石力学与工程学报,23(2):233-236.
    16.李广信.2004.高等土力学[M].北京:清华大学出版社.
    17.李绍才,孙海龙.2004.中国岩石边坡植被护坡技术现状及发展趋势[J].资源科学,26:41-44.
    18.李涛章,叶松,廖小元,王建龙,刘雨泉,庄雪飞.2002.铰链混凝土板沉排新技术与施工实践[J].人民长江,8:43-45.
    19.连镇营,韩国城,孔宪京.2001.强度折减有限元法研究开挖边坡的稳定性[J].岩土工程学 报,12(2):120-123
    20.辽宁省防汛抗旱指挥部办公室.1999.辽宁省1995年大洪水[M].沈阳:辽宁省科技出版社.
    21.刘金龙,栾茂田,赵少飞,袁凡凡,王吉利.2005.关于强度折减有限元方法中边坡失稳判据的讨论[J].岩土力学,26(8):1345-1348.
    22.刘利.2006.芜申航道南京高淳段护坡结构形式的探讨[J].水运工程,2:79-82.
    23.栾茂田,黎勇,杨庆.2000.非连续变形计算力学模型在岩体边坡稳定性分析中的应用[J].岩石力学与工程学报,13(4):4-8.
    24.栾茂田,武亚军,年廷凯.2003.强度折减有限元分析方法中边坡失稳的塑性区判据及其应用[J].防灾减灾工程学报,23(3):1-8.
    25.潘军宁,王登婷,吴美安,杨正已.2005.波浪作用下混凝土砌块护坡稳定性试验研究[J].河海大学学报(自然科学版),33(7):476-481.
    26.钱德琳.2004.生态治河理念与设计思路探讨[J].中国水利,11:43-44.
    27.石根华.1997.数值流形方法与非连续变形分析[M].北京:清华大学出版社.
    28.时卫民,郑颖人,张鲁渝.2001.岩石高边坡的有限元分析及其简化分析方法.地下空间,21(5):455-460.
    29.水利部国际合作与科技司.1999.堤防加固技术研讨会论文集[C].北京:中国水利水电出版社.
    30.苏忖安,张登祥.2003.镶嵌铰接混凝土板式护坡加固长江千堤研究[J].人民长江,2:14-16.
    31.孙东亚,丁留谦,姚秋玲.2007.关于改进我国堤防工程护坡设计的建议[J].水利水电技术,38(2):46-48.
    32.王成华,夏绪勇,李广信,2003.基于应力场的土坡临界滑动面的蚂蚁算法搜索技术[J].岩石力学与工程学报,30(2):145-149.
    33.王家澄.1994.单向冻结时土颗粒位移的热筛效应及对流迁移[R].冻土工程国家重点实验室年报,4:37-40.
    34.吴美安,孙勇,李启涛.2006.混凝土砌块护坡护面层稳定厚度的计算方法[J].人民黄河,1:19-21.
    35.仵彦卿.2009.岩土水力学[M].北京:科技出版社.
    36.席跟战,李安国,杜应吉.1997.我国渠道防渗工程技术的发展趋势[J].西北水资源与水工程,4:52-54.
    37.夏继红,严忠民.2004.国内外城市河道生态型护岸研究现状及发展趋势[J].中国水士保持,3: 20-21.
    38.夏继红,严忠民.2004.生态河岸带研究进展与发展趋势[J].河海大学学报(自然科学版),32(5):252-255.
    39.夏继红,严忠民.2006.生态河岸带的概念及功能[J].水利水电技术,37(5):13-17.
    40.夏继红,严忠民,蒋传丰.2005.河岸带生态系统综合评价指标体系研究[J].水科学进展,16(5):345-348.
    41.徐海波,宗瑞英.2005.谈城市河道生态护坡技术[J].工程建设与设计,1:57-59.
    42.徐锡荣,唐洪武,宗竞,叶松.2004.长江南京河段护岸新技术探讨[J].水利水电科技进展,8:26-28.
    43.徐学祖,吴紫汪.1998.冻土缘的基本特征及特征参数确定方法[R].冻土工程国家重点实验室年报,4:28-35.
    44.杨文元,张奇,张建华.1997.紫色丘陵区土壤抗冲性研究[J].水土保持学报,2:22-28.
    45.杨学堂,王飞.2004.边坡稳定性评价方法及发展趋势[J].岩土工程技术,18(2):103-106.
    46.姚建国.1990.岩土力学数值方法的工程应用[M].上海:同济大学出版社.
    47.于生清.2005.堤防混凝土护坡冻胀破坏原因分析[J].东北水利水电,23(11):53-55.
    48.张伯平,牟过斌,闫宁霞.2003.渠道衬砌体冻胀破坏机理与防治对策[J].水利与建筑工程学报,3(1):10-12.
    49.张国祥.2002.潜在滑移线法分析边坡滑动面及稳定性[J].土木工程学报,35(6):82-85.
    50.张季如.2002.绿色生态护坡材料与边坡侵蚀防护技术的研究[M].武汉:武汉理工大学.
    51.张俊云,周德培.2000.岩石边坡生态护坡研究简介[J].水土保持学报,20(8):36-38.
    52.张孟喜.2007.土力学原理[M].武汉:华中科技大学出版社.
    53.张清.1998.岩石力学基础[M].北京:中国铁道出版社.
    54.张士卫,李廷高,彭鲁.2003.铰接式混凝土板块在黄河下游护岸工程中的应用[J].黄河水利职业技术学院学报,4(2):35-37.
    55.张咸恭,王思敬,张倬元.2000.中国工程地质学[M].北京:科学出版社.
    56.张勇,霍宏伟.2003.混凝土衬砌渠道产生冻害破坏的原因[J].东北水利水电,4:8-9.
    57.赵方莹,逢红,祁有祥,赵廷宁.2006.城市河渠生态护坡技术效益对比[J].中国水土保持科学,12:67-70.
    58.赵明阶,何光春,王多垠.2003.边坡工程处理技术[M].北京:人民交通出版社.
    59.赵尚毅,郑颖人,邓卫东.2003.用有限元强度折减法进行节理岩质边坡稳定性分析[J].岩石力学与工程学报,8(4):102-106.
    60.郑颖人,杨明成.2004.边坡稳定安全系数求解格式的分类统一[J].岩石力学与工程学报,10(2):112-116.
    61.中国市政工程东北设计院.1998.城市防洪工程设计规范CJJ50-92[S].北京:建设部和水利部.
    62.中华人民共和国水利部.1994.防洪标准GBS50201-94[S].北京:水利部.
    63.中华人民共和国水利部.1998.水利水电工程土工合成材料应用技术规范SLT225-98[S].北京:水利部.
    64.中华人民共和国水利部.2006.渠系工程抗冻胀设计规范SL23-2006[S].北京:水利部.
    65.中华人民共和国水利部.1999.新中国防洪50年[M].北京:水利部
    66.周德培,张俊云.2003.植被护坡工程技术[M].北京:人民交通出版社.
    67.朱勇,吴美安,朱一平.2005.水工护坡混凝土砌块的生产实践[J].建筑砌块与砌块建筑,6:32-36.
    68. Arild Palmstrom.1996.Characterizing Rock Masses by the RMI for Use in Practical Rock Engineering[J].Journal of Tunnelling and Underground Space Technology,23(3):12-18.
    69. Anna S K.1979.Stability analysis of embankments and slopes[J].Journal of Geoteeh,20(4):110-117.
    70. Barton N.1984.Rock Mass Classification and Tunnel Reinforcement Selection Using Engineering Purposes[J]. In:Rock Classification Systems for Engineering Purposes,(Louis Kirkaldie(Ed)),American Society for Testing and Materials,Philadelphia.
    71. Barton N.1984.Rock Mass Classification and Tunnel Reinforcement Selection Using the Q-system[J].In:Rock Classification Systems for Engineering Purposes,(Louis Kirkaldie(Ed)),American Society for Testing and Materials Philadelphia
    72. Barton N.,V.Choubey.1977. The Shear Strength of Rock Joints in Theory and Practice[J].Rock Mechanics, 11(3):180-185.
    73. Benko B.2001.Numerical modeling of complex slope deformation[J].University of Saskatehewan, 11(2):102-110.
    74. Bishop A W.1955.The use of the slip circle in the stability analysis of slopes[J]. Geotechnique,5: 55-60.
    75. Boutrup E,Lovell C W.1980. Search Technique in Slope Stability Analysis[J].Engineering Geology,13(4): 12-18.
    76. Catrin Edelbro.2004. Evaluation of Rock Mass Strength Criteria[J].Lulea University of Technology, 18(5):82-93.
    77. Chen Z Y.1992. Random Trials Used in Determining Global Minimum Factors of Safety of Slope[J].Canadian Geotechnical,15(3):32-39.
    78. Deere D U.1984.The Rock Quality Designation(RQD)index in Practice[J].In:Rock Classification Systems for Engineering Purposes,(Louis Kirkaldie(Ed)),91-101.American Society for Testing and Materials,Philadelphia.
    79. Evert Hoek,Bray J.1981. Rock Slope Engineering[J].Institution of Mining and Metallurgy,5:30-34.
    80. W Fellenius.1927.Erdstatiehe Berechnungen[M].Berlin:Ernst Sohn revised edition.
    81. Goh A T C.1999.Genetic Algorithm Search for Critical Slip Surface in Multiple-wedge Stability Analysis[J].Canadian Geotechnical Journal,25(2):213-219.
    82. Greco V R..1996. Efficient Mont Carlo Technique for Locating Critical Slip Surface[J].Journal of Geotechnical Engineering,20(5):229-238.
    83. Griffitys D V,Lane P A.1999.Slope stability analysis by finite elements[J].Canadian Geotechnical Journal,27(3):303-308.
    84. Hayhoe H N,Baichin D.1990.Field frost heave measurement and prediction during periods of seasonal frost[J].Canadian Geotechnical Journal,27(3):393-397.
    85. Hoek E., Brown E.T.1980. Underground Excavation in Rock[M].London:Institution of Mining and Metallurgy.
    86. HoekE B J.1973.The stability of a rock slope containing a Wedge restiongon two intersecting diseontinuities[J]. Engineering Geology,Quarterly J:90-94.
    87. Huang Y H.1983.Stability Analysis of Earth Slopes[M].New York:Van Nostrand Reinhold Company.
    88. Janbu N.1954. Application of Composite Slip Surface for Stability Analysis[C]. Sweden:Proceedings of European Conference on Stability of Earth Slopes.
    89. Laubscher D H, Taylor H W.1986. The Importance of Geo-mechanics Classification of Jointed Rock Masses in Mining Operations[J].In:Proceedings of the Symposium on Exploration for Rock Engineering, Johannesburg,A.A.Balkema,119-128.
    90. Li K S, White W.1987. Rapid Evaluation of The Critical Slip Surface in Slope Stability Problems[J].Joural for Numerical and Analytical Methods in Geo-mechanics,7(1):91-99.
    91. Malkawi A I H,Hassan W F,Sarma S K.2001. Global Search Method for Locating General Slip Surface Using Monte Carlo Techniques[J].Journal of Geotechnical and Geo-environmental Engineering, 11(4):123-129.
    92. Morgenstern N R,Price V.1965. The Analysis of the Stability of General Slip Surface[J]. Geotechnique, 9(1):88-93.
    93. Pilarczyk K W.1990.Design of Seawalls and Dikes—Including Overview of Revetments.Coastal Engineering,9(2):28-35.
    94. Pilarczyk K W.1999.Design of Dikes and Revetments—Dutch Practice[J].Coastal Engineering, 18(4):102-105.
    95. Revilla J, Castillo E.1977.The calculus of variation applied to stability of slope.
    96. Robert Hack.1997. Rock Mass Strength by Rock Mass Classification[C].Johannesburg,RSA:South African Rock Engineering Congress.
    97. SarmaS.K.1979.Stability analysis of embankments and slopes.Journal of Geoteeh,9:48-53.
    98. SHI Genhua.1988.Diseontinuous deformation analvsis— a new numerical model for the statics and dynamics of block systems[J].University of California,19(5):128-139.
    99. Siegel R A,Kovacs W D,Lovell C W.1981. Random Surface Generation in Stability Analysis [J] Journal of Geotechnical Engineering,10(3):85-89.
    100. Spencer E.1967. A Method of Analysis of Embankments Assuming Parallel Inter-slice Forces[J]. Geotechnique,12(2):61-69.
    101. Still H.2003. Arild Palmstrom.Classification as A Tool in Rock Engineering[J].Tunnelling and Underground Space Technology,21 (3):181-187.
    102. Still H,Groth,T., Fredriksson,A.1989.FEM-analysis of Rock Mechanical Problems with JOBFEM[J]. Soils and Foundations,20(2):198-205.
    103. Takeda K,OkamuraA.1997.Maicrostruture of Freezing Front in Freezing Soils[A].Ground Freezing 97[C].Netherlands:Lulea University of Technology.
    104. Ugai K.1989.A method of calculation of total factor of safety of slopes by elasto-plastic FEM[J]. Soils and Foundations,29(2):190-195.
    105. Vesa Penttala,Fahim Neshawy.2002.Stress and state of concrete during freezing and thawing cycles[J]. Cement and Concrete Rearch,32:1407-1420.
    106. Won J,You K,Jeong S.2005.Coupled effects in stability analysis of pile-slope systems[J]. Computers and Geotechnics,32(2):304-315.
    107. Willy A.2007.Lacerda.Landslide initiation in saprolite and colluvium in southern Brazil:Field and laboratory observations[J].Geomorphology,87:104-119.
    108. Y.M.Cheng,T.Lansivaara.2007.Two-dimensional slope stability analysis by limit equilibrium and strength reduction methods[J].Computers and Geotechnics,34:137-150.
    109. Zeng S,Liang R.2002.Stability analysis of drilled shafts reinforced slope[J].Soils and Foundations,42(2):93-102.
    110. Zienkiewicz C,Humpheson C,Lewis R W.1975.Associated and non-associated visco-plasticity and plasticity in soil mechanics[J].Geotechnique,25(4):671-689.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700