用户名: 密码: 验证码:
结缕草(Zoysia japonica)抗寒相关转录因子ZjDREB1基因的克隆、表达模式及功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
结缕草(Zoysia japonica)是目前正在国内外广泛应用的主要暖季型草坪草之一,具有弹性好、耐践踏、养护投入低等优良坪用特性,是绿化、足球场草坪和高尔夫球场草坪的主要建群种。由于我国结缕草相关研究工作起步较晚,其功能基因的发掘和分子育种有待进一步深入研究。为了揭示草坪草抗逆分子机制,获得具有自主知识产权的优良抗逆基因,本文在筛选抗寒性强的结缕草品种的基础上,克隆其抗寒相关转录因子ZjDREB1基因,并对其表达模式和功能进行了分析。主要研究内容和结果如下:
     1.以美国引进的并在国内外草坪生产上普遍应用的结缕草三个优良品种——Meyer、Palisades和兰引3号为试验材料,通过叶片电解质外渗法,利用半致死温度(LT50)为评价指标,鉴定各品种的抗寒性。结果表明,三种结缕草品种的半致死温度(LT50)分别为Meyer的-10.3℃、Palisades的-8.9℃和兰引3号的-7.2℃。LT50值由低到高,推断出抗寒性由强到弱依次为Meyer> Palisades>兰引3号。
     2.根据结缕草近缘植物DREB转录因子的AP2/EREBP保守结构域序列,通过RT-PCR和RACE的方法从冷诱导的抗寒结缕草品种Meyer中扩增到了一个新的DREB同源基因,命名为ZjDREB1 (GenBank登录号:GQ848096)。该基因的开放阅读框(ORF)为774 bp,编码257个氨基酸,分子量和等电点(pI)分别为28.85 kDa和5.53。序列分析表明,ZjDREB1推测的蛋白具备DREB类转录因子的三个典型特征:AP2/EREBP保守DNA结合域、碱性核定位信号(NLS)和酸性激活区。根据氨基酸序列相似性构建的系统进化树显示,结缕草ZjDREB1与狗牙根BeDREB1、BeDREB2同源性最高,达84%,属于DREB基因家族的A-2亚群。进一步分离克隆了ZjDREB1的基因组DNA序列(GenBank登录号为GQ864011),分析发现其由2个外显子和1个内含子组成。这是首个从结缕草中分离得到的DREB类转录因子基因。
     3.为在研究ZjDREB1基因的表达模式时提供分子内参,采用RT-PCR和RACE技术扩增出1560 bp的结缕草肌动蛋白基因全长cDNA序列。序列分析表明,该基因的开放阅读框(ORF)为1134 bp,编码377个氨基酸,5,非编码区117 bp,3,非编码区309 bp,分子量和等电点(pI)分别为41.72 kDa和5.23。所得序列与GenBank中收录的其它植物肌动蛋白核苷酸序列的一致性均在85%以上,氨基酸序列的一致性高达97%以上。将其命名为ZjACT, GenBank登录号为GU290545。根据高等植物肌动蛋白相似性构建的系统进化树显示,结缕草肌动蛋白ZjACT与大麦Hvactin和圆锥小麦TtACT-1肌动蛋白之间的亲缘关系最为密切,在进化中分化时间最为接近。进一步分离克隆了结缕草Actin基因的基因组DNA序列(GenBank登录号GU290546),分析发现其由4个外显子和3个内含子组成。本研究有助于揭示植物Actin基因家族的进化历史,为研究植物Actin基因家族功能和进化上的多样性奠定理论基础,同时也为开展草坪草和牧草Actin基因的功能分析和利用研究提供参考。
     4.以克隆得到的结缕草肌动蛋白基因ZjACT为内参,利用实时定量PCR方法分析了三个结缕草品种ZjDREB1基因在冷胁迫处理下的表达差异。结果表明,室温下ZjDREB1基本没有表达。4℃处理1 h后,该基因开始被诱导,并在持续的冷胁迫下表达量快速增加,处理6 h后,表达量达峰值。抗寒性强的品种ZjDREB1基因的表达量始终高于抗寒性弱的品种。随着温度的降低, ZjDREB1的表达水平也随之增高,0℃时的表达量要大于8℃的。进一步的序列结构分析表明,三个结缕草品种ZjDREB1基因的cDNA序列、基因组DNA序列和氨基酸序列都存在差异,推测是导致品种间表达模式显著变化的可能原因之一。对不同品种间基因表达差异与冷耐受性的相关性研究,为揭示结缕草抗寒分子机制提供了依据。
     5.以已克隆得到的结缕草ZjDREB1全长cDNA为模板,用引入了BamHⅠ和HindⅢ酶切位点的引物,通过PCR方法获得该基因的编码框全长,并将其构建到原核表达载体pET-30a(+)上。重组载体pET-ZjDREB1转化大肠杆菌BL21(DE3),获得含ZjDREB1基因的重组工程菌,进而分析它在冷胁迫下可能具有的功能。经IPTG诱导表达,SDS-PAGE检测获得了分子量约为36 kDa的融合蛋白,大小与预期一致。在大肠杆菌的抗寒性试验中,与对照菌相比,表达ZjDREB1融合蛋白的重组菌在低温条件下表现出显著提高的细胞活力,提示ZjDREB1蛋白可能具有提高大肠杆菌(很可能还包括其他生物)对低温的抗性。由此推断,ZjDREB1是潜在的可用于改良植物对环境胁迫耐受性的候选基因。
     6.将结缕草ZjDREB1基因导入植物表达载体pCAMBIA1301中,构建了重组表达载体pCAM-ZjDREB1,转入农杆菌LBA4404,并通过浸花法转化模式植物拟南芥。T0代植株经潮霉素抗性筛选得到10株抗性苗。利用PCR和半定量RT-PCR技术再对抗性苗进行分子鉴定,最终获得5株阳性植株。结果表明,结缕草ZjDREB1基因已整合到拟南芥基因组中,并在转录水平上表达。以电解质渗漏法检测了植株的抗寒性,结果显示过表达ZjDREB1基因的拟南芥转基因植株(LT50=-8.6℃)的抗寒能力较野生型对照植株(LT50=-5.5℃)有明显的提高。这些结果说明ZjDREB1基因具有在草坪草和牧草抗逆基因工程改良中应用的潜力。
     7.为了改良重要的多年生暖季型草坪草假俭草(Eremochloa ophiuroides)的抗逆性,以茎段侧芽来源的胚性愈伤组织为受体材料,通过农杆菌介导法将结缕草耐逆相关转录因子ZjDREB1基因导入假俭草优良种质E126中。分别就转化体系中适宜的筛选剂浓度、抑菌素浓度、菌液浓度、侵染时间以及共培养时间等对转化效率的影响进行了研究,建立了高效的假俭草遗传转化和再生体系。各种影响转化效率因素的优化试验表明,愈伤筛选和再生苗筛选的最佳潮霉素浓度均为30 mg/L,头孢霉素作为抑菌素的最佳浓度为400 mg/L,转化时菌液浓度OD600为0.1-0.3、侵染30 min、共培养3 d为最优转化条件,在侵染和共培养期间加入100μM乙酰丁香酮可提高转化频率。经PCR、半定量RI-PCR和叶片的潮霉素抗性检测,获得了5株阳性转基因植株。抗寒性鉴定表明,过表达ZjDREB1基因的假俭草转基因植株的半致死温度(LT50=-4.4℃)显著低于野生型对照植株(LT5o=-1.9℃)。初步证明,ZjDREB1基因已整合到假俭草基因组中,可以作为后期转基因假俭草植株抗性研究及培育转基因假俭草新抗性品种的材料。
     8.为进一步研究结缕草胁迫响应信号转导途径中除DREB以外的其他关键基因(如COR、ICE、AREB/ABF、MYC/MYB、bZIP等),揭示结缕草抗逆分子机制,建立结缕草功能基因组学研究基础平台,构建了首个结缕草低温和干旱诱导的标准cDNA文库。以经低温、干旱处理的结缕草为材料,取其叶片提取总RNA并分离纯化mRNA,反转录合成双链cDNA后,采用Gateway(?)技术构建结缕草低温和干旱诱导的标准cDNA文库。原始文库滴度1.76×106pfu/ml,库容7.04×106pfu,重组率90%,插入片段平均长度大于1 kb。文库质量优良,可能包含大量新基因,不仅为结缕草基因组资源提供了材料,也为后期进行大规模EST测序、发掘新抗逆相关基因、制作基因芯片等研究奠定了基础。
Zoysiagrass (Zoysia japonica) is one of the major warm-season grasses widely utilized both at home and abroad, with excellent attributes of a very dense turf by means of slow growing underground rhizomes and rapid developing above-ground stolons, well adapted for lawns and golf turfs in the transitional and warm climatic regions, besides requiring minimal maintenance inputs. As the studies regarding zoysiagrass just got off to a late start in China, novel functional gene discovery and molecular breeding remain to be further researched. In order to reveal the molecular mechanisms involved in stress tolerance of turfgrass and obtain favorable genes of proprietary intellectual property, we isolated the ZjDREBl gene encoding a DRE-binding transcription factor from a cold-tolerant zoysiagrass cultivar on the basis of freeze tolerance evaluation, and analyzed its expression pattern as well as function. The main results are given as follows:
     1. Low temperature is one of the primary limiting factors for distribution and widespread use of released zoysiagrass(Zoysia spp.) cultivars in the transition zones and temperate regions. Three cultivars of zoysiagrass used in this study (Meyer, Palisades and Lanyin 3) were all introduced from the United States, and in common use both at home and abroad. Low-temperature tolerance was evaluated by measuring leaf electrolyte leakage (EL). The temperature at which 50% of the plants were killed (LT50) was determined. Our results showed that the lethal temperature (LT50) of the three zoysiagrass accessions predicted by EL was respectively -10.3℃in Meyer,-8.9℃in Palisades and -7.2℃in Lanyin 3. According to LT50 values, it was concluded that the freeze tolerance of the three cultivars ranked as:Meyer> Palisades> Lanyin 3.
     2. Dehydration-responsive element binding (DREB) proteins, specifically interacting with the DRE cis-acting element, have been identified as a group of important transcription factors that regulate the expression of many stress-inducible genes in plants. In this work, a novel DREB ortholog, designated as ZjDREBl (GenBank accession no.:GQ848096), from the cold-tolerant zoysiagrass cultivar Meyer was isolated using RT-PCR and RACE methods. It contained an open reading frame (ORF) of 774 bp encoding 257 amino acid residues. The predicted molecular mass of the deduced protein was 28.85 kDa and theoretical isoelectric point (pI) was 5.53. The deduced protein sequence featured a conserved AP2/EREBP DNA-binding domain, and comprised of a nuclear localization signal (NLS) and an acidic activation region, showing the typical characteristics of the DREB gene family. The phylogenetic tree constructed on the basis of amino acid sequences suggested that ZjDREBl from zoysiagrass and BeDREBl,2 from bermuda grass shared the highest 84% identity, and ZjDREB1 was classified into the A-2 group of DREB proteins. A comparison of the cDNA and its genomic counterpart (GenBank GU290546) demonstrated that the gene consisted of 2 exons and 1 intron. To our knowledge, this is the first report on isolation of DREB-like genes in zoysiagrass.
     3. In order to be used as an internal control in subsequent expression analysis of ZjDREB1, a 1560-bp full-length cDNA of actin was cloned from the leaves of zoysiagrass using RT-PCR and RACE methods. The sequence analysis revealed that it contained an ORF of 1134 bp encoding a protein composed of 377 amino acids, a 5'-UTR of 157 bp and a 3'-UTR of 495 bp. The predicted molecular mass of the deduced protein was 41.72 kDa and theoretical isoelectric point (pI) was 5.23. Homologous alignment showed that it shared over 85% of nucleotide identities and 97% of amino acid identities with actins from other plants in GenBank. The full-length cDNA was designated as ZjACT with its accession number GU290545. The phylogenetic tree constructed on the basis of amino acid sequences suggested that the relationship of ZjACT from zoysiagrass was most intimate with Hvactin from barley and TtACT-1 from poulard wheat, and they might have the same differential time in evolution. A comparison of the cDNA and its genomic counterpart (GenBank accession no. GU290546) demonstrated that the gene consisted of 4 exons and 3 introns. These results provided clues for studies on evolution of Actin gene family, and laid the foundation of researches into its functional and evolutionary diversity, as well as served as references for functional analysis and utilization of Actin gene from turf and forage grasses.
     4. Using Actin gene ZjACT as the internal control, expression profiling of ZjDREB1 genes from three zoysiagrass cultivars in response to cold was quantitatively analyzed by Real Time PCR. The results showed that there was no expression of ZjDREBl in room temperature. Its transcripts started to rise after 1 h at 4℃, rapidly and strongly up-regulated by chilling treatment, then reached a maximum level after 6 h of exposure to low temperature. The expression level of ZjDREB1 in the cold-tolerant cultivar was higher than that of the cold-susceptible one. A decreasing positive temperature resulted in higher accumulation of ZjDREBl transcripts with a dramatic increase below 8℃and peaking at 0℃. Further sequence analysis on ZjDREB1 genes from the three cultivars showed differences among cDNA sequence, genomic DNA sequence and the deduced amino acid sequence, inferring one of the possible reasons why their expression patterns differed significantly. Studies on the correlation of the function of the differentially expressed genes and the cold tolerance in different cultivars may provide some new insights into the molecular mechanism of zoysiagrass in response to cold stress.
     5. Based on the full cDNA sequence, two primers were designed with the flanking restriction sites of BamHⅠand HindⅢ. Using the zoysiagrass cDNA isolated previously as template, the complete coding sequence for the ZjDREB1 ORF was PCR amplified, and inserted into the prokaryotic expression vector pET-30a(+). Recombinant pET-ZjDREB1 vector was then introduced into Escherichia coli BL21(DE3) host strain to analyze its possible function under cold stress. A fusion protein about 36 kDa was expressed in E.coli cells harboring pET-ZjDREB1 after the induction of IPTG by SDS-PAGE analysis. Compared with control cells, those recombinant ones expressing ZjDREB1 fusion protein showed significantly improved cell viability at low temperature, implying that the protein may play an important role in resistance of E. coli (and probably other organisms) to low temperatures. It is concluded that ZjDREB1 is suggested to be potentially useful for improving plant tolerance to environmental stresses.
     6. The ZjDREB1 gene isolated from zoysiagrass was inserted into the plant expression vector pCAMBIA1301 to construct the recombinant pCAM-ZjDREB1 plasmid. It was introduced into Agrobacterium tumefaciens LBA4404 host strain, and then transformed into wild type Arabidopsis thaliana through floral-dip method. A total of 10 resistant plants were obtained in T0 generation via hygromycin screening. Among them 5 positive seedlings were further verified by PCR and semi-quantitative RT-PCR analysis. The results indicated that exogenous ZjDREB1 gene had been integrated into the Arabidopsis genome and expressed at the transcription level. Low-temperature tolerance was evaluated by measuring leaf electrolyte leakage. Our results demonstrated that transgenic plants overexpressing ZjDREB1 gene (LT50=-8.6℃) had a significantly greater cold tolerance than that of wild-type control plants (LT50=-5.5℃). It implied a promising future of the applications of ZjDREB1 gene in genetic engineering for stress tolerance improvement of turf and forage grasses.
     7. In order to improve stress tolerance of centipedegrass(Eremochloa ophiuroides), an important perennial warm-season grass, Agrobacterium tumefaciens strain LBA4404 harboring the plasmid pCAMBIA1301 containing stress tolerance-related transcription factor ZjDREB1 gene from zoysiagrass was used to transform axillary bud-derived embryogenic calluses of the good selection 'E126'. So as to systematically optimize the conditions for centipedegrass transformation, several factors known to influence Agrobacterium-mediated DNA transfer were examined, including concentration of selective agent and bacteriostat, bacterial culture OD600, duration of infection and co-cultivation. Consequently, an efficient and reproducible transformation system for the production of transgenic centipedegrass plants was established. It was found that the efficiency of transformation highly relied on the following optimal conditions:30 mg/L hygromycin for selection,400 mg/L cefotaxime for bacteriostasis, bacterial culture OD600 of 0.1-0.3, infection for 30 min and co-cultivation for 3 d. Furthermore, the inclusion of 100 mM acetosyringone in both the infection and co-cultivation media led to an increase in transformation frequency. Thus, the hygromycin-selected plants were obtained and 5 putative transgenic plants were confirmed by PCR, semi-quantitative RT-PCR analysis and test of leaf-dip in hygromycin, preliminarily indicating the integration of exogenous ZjDREB1 gene into the genome of centipedegrass. The low-temperature tolerance assessment demonstrated that LT50 of transgenic plants overexpressing ZjDREB1 gene (-4.4℃) was significantly lower than that of wild-type control plants (-1.9℃). It suggested that the positive plants could be used for the subsequent studies on their stress tolerance and cultivation of new varieties of transgenic centipedegrass with improved resistance.
     8. For a better understanding of orther key genes from zoysiagrass in signal transduction pathways under stress conditions (e.g. COR, ICE, AREBIABF, MYC/MYB, bZIP), exploring molecular mechanism involved in stress response of zoysiagrass, and developing a functional genomics platform, the first cold- and drought-induced cDNA library of zoysiagrass was constructed. Plants of zoysiagrass were subjected to cold and drought stress respectively. Total RNA was extracted from their leaves. Then mRNA was isolated and purified, reverse transcribed into double-stranded cDNA. The directional cDNA library enriched for full-length sequences was constructed using Gateway(?) technology. The results indicated that the titer of the original library was 1.76×106 pfu/ml, the capacity was 7.04×106 pfu, and the average insert size was larger than 1 kb with the recombination efficiency of 90%. It is suggested that the cDNA library was successfully established in high quality, most likely containing lots of novel genes. Providing resources for zoysiagrass genomics, the library can be an effective tool for further studies on high-throughput EST sequencing, new stress-responsive genes screening, gene chips preparing etc.
引文
1.爱蒙斯著冯钟粒,张守先等译(1992)草坪科学与管理[M].北京:中国林业出版社
    2.安宝燕.(2005)紫花苜蓿Na+/H+逆向转运蛋白基因的分离与鉴定[D].山东:山东农业大学
    3.奥斯伯,布伦特主编金由辛,包慧中,赵丽云等译校(2008)精编分子生物学实验指南(第五版)[M].北京:科学出版社
    4.班巧英.(2009)二色补血草LbDREB基因的克隆及功能分析[D].黑龙江:东北林业大学
    5.毕瑞明(2008)负压处理对农杆菌介导小麦成熟胚转化效率的影响[J].生物技术,18(1):47-49
    6.蔡宁波,黄湘文,庄伟建.(2007)花生种子全长cDNA文库的构建和鉴定[J].花生学报,36(2):1-5
    7.曹丽霞,马有志,杨俊英.(2005)应答非生物胁迫的植物转录因子[J].内蒙古农业科技,(5):10-14
    8.曹晓风,王荣臣,阎隆飞,鲁治滨,潘乃穟,陈章良.(1993)豌豆卷须cDNA文库构建及肌动蛋白基因序列分析[J].科学通报,38(19):1804-1808
    9.柴明良,钮友民.(1996)若干暖季型草坪草育种和组织培养研究进展[J].科技通报,12(3):162-167
    10. 常青(2007)转录因子DREB1基因的克隆及其在大豆、苜蓿中的表达[D]吉林:东北师范大学
    11.陈德富,陈喜文.(2006)现代分子生物学实验原理与技术[M].北京:科学出版社
    12. 陈建康,邹万忠,由江峰.(1996)半定量RT-PCR方法在基因表达研究中的应用[J].北京医科大学学报,28(3):171-173
    13. 陈鹏飞,刘雪梅,宋福南,宋兴舜,刘霓,金微微,刘威.(2009)白桦肌动蛋白(Actin)基因全长cDNA克隆与序列分析[J]植物研究,29(3):339-345
    14. 陈宣,郭海林,薛丹丹,刘建秀(2008)结缕草属植物杂交后代的SRAP分子标记鉴定[J].分子植物育种,6(6):1233-1238
    15. 陈宣.郭海林,薛丹丹,郑轶琦,刘建秀.(2009a)结缕草属植物耐盐性SRAP分子标记研究[J]草业学报,18(2):66-75
    16. 陈宣,薛丹丹,郭海林,刘建秀.(2009b)结缕草属植物RAPD反应体系的优化[J].草地学报,17(2):181-186
    17. 程萍,冯仁军,袁克华,张银东.(2009)香蕉红素氧还蛋白酵母双杂交cDNA文库的构建及鉴定[J]生命科学研究,13(4):349-353
    18. 崔百明,任艳利,乐锦华,彭明,周鹏.(2007)水杨酸诱导表达AtCBF1的转基因烟草研究[J]西北农业学报,16(6):90-93
    19. 代旭兰.(2007)播娘蒿DREB1/CBF基因克隆与表达及其转基因拟南芥植株的筛选[D].成都:四川大学
    20. 邓雪柯(2005)播娘蒿抗寒性鉴定及其CBF基因的克隆、序列分析和蛋白的表达纯化[D]成都:四川大学
    21. 董厚德,宫莉君.(2001)中国结缕草生态学及其资源开发与应用[M].北京:中国林业出版社
    22. 杜永吉,于磊,孙吉雄,鲁为华.(2008)结缕草3个品种抗寒性的综合评价[J]草业学报,17(3):6-16
    23. 段红英,丁笑生,周延清,周春娥(2008)根癌农杆菌介导油菜CBF1基因转化拟南芥[J]安徽农业科学,36(14):5775-5776
    24. 段红英,丁笑生(2007)油菜抗逆基因CBF1植物表达载体的构建及对拟南芥的转化[J]河南农业科学,(11):43-46
    25. 范玉清,刘恒,任伟,夏光敏(2007)拟南芥DREB1A转录因子的原核表达和多克隆抗体制备[J].植物生理学通讯,43(3):533-537
    26. 冯连荣.(2008)山葡萄CBF3基因克隆、载体构建及原核表达[D]哈尔滨:东北林业大学
    27. 付晓燕,彭日荷,章镇,乔玉山,周军,朱波,高峰,田永生,赵伟,熊爱生,姚泉洪(2009)八棱海棠中转录因子基因MrDREBA6的克隆及表达分析[J].果树学报,26(6):761-768
    28. 付杨,高翔,敖曼,王钦美,王丽(2008)香雪兰花瓣总RNA的提取和cDNA文库的构建[J]东北师大学报(自然科学版),40(3):118-121
    29. 高景慧.(2009)冬牧70黑麦EAPP基因遗传分析与CBF3基因导入牧草提高抗寒性的研究[D]陕西:西北农林科技大学
    30. 高世庆,徐惠君,程宪国,陈明,徐兆师,李连城,杜丽璞,叶兴国.郝晓燕,马有志.(2005)转大豆GmDREB基因增强小麦的耐旱及耐盐性[J].科学通报,50(23):2617-2625
    31. 高小丽,李芳,岳鹏,李天红.(2010)欧李叶片全长cDNA文库的构建和部分克隆的序列分析[J]农业生物技术学报,18(1):156-162
    32. 高银.(2007)植物抗逆机制与基因工程研究进展[J].内蒙古农业科技,(5):75-78
    33. 郭海林,陈宣,薛丹丹,郑轶琦,王志勇,刘建秀(2009a)结缕草属植物青绿期的遗传分析[J].草业学报,18(4):147-153
    34. 郭海林,高雅丹,薛丹丹,陈宣,刘建秀(2009b)结缕草属植物抗寒性的遗传分析[J].草业学报,18(3):53-58
    35. 郭海林,刘建秀,高鹤,何秋,胡化广(2007)结缕草属优良品系SSR指纹图谱的构建[J].草业学报,16(2)53-59
    36. 郭海林,刘建秀,周志芳,宣继萍.(2008a)结缕草属植物种间关系和遗传多样性的SSR标记分析[J]草地学报,16(6):552-558
    37. 郭海林,刘建秀,朱雪花,郭爱桂.(2006)结缕草属杂交后代抗寒性评价[J].草地学报.14(1):24-28
    38. 郭海林,刘建秀(2004)结缕草属植物育种进展概述[J].草业学报,13(3):106-112
    39. 郭海林,王志勇,薛丹丹,陈宣,刘建秀.(2008b)结缕草属植物种间关系的SSR分析[J].植物遗传资源学报,9(2):138-143
    40. 郭海林,郑轶琦,陈宣,薛丹丹,刘建秀.(2009c)结缕草属植物种间关系和遗传多样性的SRAP标记分析[J].草业学报,18(5):201-210
    41. 郭海林(2008)结缕草属植物种质资源多样性及重要性状的遗传分析与分子标记[D]南京:南京农业大学
    42. 郭晋隆,阙友雄,刘金仙,郑益凤,陈如凯,许莉萍(2009)利用改进的Oligo-Capping法构建甘蔗茎全长cDNA文库[J].热带作物学报,30(5):672-676
    43. 郭景康,陈青云,戢茜,张亮生王健(2009)拟南芥、水稻和杨树ACTIN家族全基因组分析[J].上海大学学报(自然科学版),15(4):426-431
    44. 郭喜英.(2007)百脉根中脱氧葡萄糖筛选表达载体的构建和转录因子CBF1的转化研究fD]吉林:东北师范大学
    45. 韩红岩,崔德才,张岳民,刘天臻(2003)Dip法获得转反义磷脂酶Dy(PLDγ)(?)基因拟南芥植株[J]山东农业大学学报(自然科学版),34(1):19-23
    46. 韩烈保,信金娜,刘君,曾会明(2006)影响草地早熟禾(Poa pratensis L.)基因枪转化的关键因素研究[J]中国生物工程杂志,26(8):1-4
    47. 韩烈保,杨碚,邓菊芬.(1999)草坪草种及其品种[M].北京:中国林业出版社
    48. 韩烈保.(1994)草坪管理学[M]北京:北京农业大学出版社
    49. 韩兆雪,曹墨菊,朱祯,荣廷昭.(2004)DREB基因双T-DNA植物表达载体的构建及验证[J].分子植物育种,2(1):7-12
    50. 郝贵霞,朱祯,朱之悌.(1999)毛白杨遗传转化系统优化的研究[J]植物学报,41(9):]1-14
    51. 郝晓燕,陈明,徐惠君,高世庆,程宪国,李连成,杜丽璞,叶兴国,马有志(2005)GH-DREB基因转化小麦及转基因植株后代的抗旱生理指标鉴定[J].西南农业学报,18(5):616-620
    52. 何飞,康菊清,周鑫,苏震,瞿礼嘉,顾红雅.(2008)中国野生拟南芥居群冷胁迫下的表达谱变异[J].科学通报,53:2206-2215
    53. 何惠琴,干友民,吴彦奇,吴勇刚.(2003)低温胁迫对暖季型草坪草细胞膜系统的影响[J]中国草地,25(3):72-76
    54. 贺杰(2005)结缕草组织培养再生体系建立及转基因研究[D]海南:华南热带农业大学
    55. 胡化广,刘建秀,宣继萍,何秋,程晓丽,郭爱桂.(2007)结缕草属植物的抗旱性初步评价[J]草业学报,16(1):47-51
    56. 胡晓艳.(2007)野牛草的有性繁殖特性研究及其抗旱转录因子DREB的克隆[D]陕西:西北农林科技大学
    57. 胡中华,刘师汉(1995)草坪与地被植物[M]北京:中国林业出版社
    58. 黄波,金龙国,刘进元(2006)棉花中一个类DREB1/CBF基因(GhDREBIL)的分子克隆及其功能分析[J].中国科学(C辑:生命科学),36(5):390-397
    59. 黄方,何慧,迟英俊,盖钧镒,喻德跃.(2009)大豆GmTINY1基因的克隆与表达分析[J]作物学报,35(12):2174-2179
    60. 黄剑(2002)紫花苜蓿高频再生体系的建立及农杆菌介导的甜菜碱醛脱氢酶基因转化的研究[D]甘肃:甘肃农业大学
    61. 黄金光(2009)棉花GhDREB1调节低温抗性与生长发育的分子机理[D]山东:山东农业大学
    62. 黄先忠,张鹏,吕新华,刘彤,崔百明.(2009)新疆小拟南芥ApCBF1基因的克隆及其过量表达转基因的研究[J]石河子大学学报(自然科学版),27(3):265-268
    63. 霍朝霞.(2008)拟南芥DREB1A基因转化紫花苜蓿的研究[D]内蒙古:内蒙古大学
    64. 江福英,李延,翁伯琦.(2002)植物低温胁迫及其抗性生理[J].福建农业学报,17(3):190-195
    65. 姜玲, Maoka Tetsuo, Komori Sadao, Fukamachi Hiroshi, Kato Hidenori, Ogawa Kazunori. (2004)超声波辅助农杆菌介导CP基因转化番小瓜(Carioca papaya L.)的有效方法[J].实验生物学报,37(3):189-198
    66. 江香梅,黄敏仁,王明庥.(2001)植物抗盐碱、耐干旱基因工程研究进展[J].南京林业大学学报(自然科学版),25(5):57-62
    67. 蒋玉宝,于元杰.(2005)农杆菌在单子叶植物上的研究进展[J].中国农学通报,21(10):47-52
    68. 金戈,王洪春.(1991)未结冰低温胁迫下小麦叶细胞质膜透性的变化进程及性质[J].植物生理学报,17(3):295-300
    69. 孔英珍,周功克,王根轩,王亚馥.(2000)影响根癌农杆菌转化的因素及其在单子叶作物上的应用[J].应用生态学报,11(5):791-794
    70. 李冬花,姚丽娟,余有本,江昌俊,周天山,伍丽.(2009)特异茶树种质紫阳1号cDNA文库构建及ESTs初步分析[J].安徽农业大学学报,36(3):347-350
    71. 李慧.(2008)外来入侵植物紫茎泽兰耐低温种群生理分化的分子生态适应机制[D].南京:南京农业大学
    72. 李继平.(2009)利用转基因技术改良紫花苜蓿抗寒性的初步研究[D].北京:中国农业科学院
    73. 李庆芝,尚志华,房玉洁,李玲.(2006)姜基因转化系统的建立及优化[J].山东农业科学,(3):11-14
    74. 李西,毛凯.(2000)假俭草研究概况[J].草业科学,17(5):13-17
    75. 李晓红,宗俊勤,佘建明,刘建秀.(2009)结缕草'Zenith(?)离体培养植株再生体系优化研究[J].草业科学,26(4):110-116
    76. 李啸浪.(2005)耐寒相关基因ω3、CBF3、AtGoLS3的分离克隆及ω3转化拟南芥和柱花草[D].海南:华南热带农业大学
    77. 李煦,王荣春,何影,杨爱芳.(2007)多基因双T-DNA植物表达载体的构建及拟南芥转化[J].山东大学学报(理学版),42(9):1-6
    78. 李雪.(2008)多年生黑麦草基因转化与抗旱性遗传改良研究[D].北京:北京林业大学
    79. 李亚,凌萍萍,刘建秀,向其柏.(2002a)中国结缕草属植物(Zoysia spp.)地下部分分布和形态类型的多样性[J].植物资源与环境学报,11(2)39-44
    80. 李亚,刘建秀,向其伯.(2002b)结缕草属种质资源研究进展[J].草业学报,11(2):7-14
    81. 李亚,谢晓金,宣继萍,刘建秀.(2003)中国结缕草属(Zoysia spp.)植物抗寒性评价[J].草地学报.11(3):240-245
    82. 李园莉,江元清,赵武玲,阎隆飞.(2002)谷子肌动蛋白基因的克隆及序列分析[J].植物学通报,19(3):310-316
    83. 李志亮.(2004)高羊茅抗渗透胁迫基因工程改良的研究[D].河北:河北师范大学
    84. 李子东,赵翠珠,周玲君,刘艳玲,向凤宁,夏光敏.(2008)农杆菌介导的DREB1A基因转化多花黑麦草及其转化体系的优化[J].山东大学学报(理学版),43(9):11-17
    85. 梁慧敏.(2004)狗牙根耐盐性高效育种技术的研究[D].北京:中国农业大学
    86. 梁蕊芳.(2005)利用基因枪轰击法将NHX1、CBF耐逆相关基因导入高羊茅(Festuca arundinacea Schreb.)[D]内蒙古:内蒙古农业大学
    87. 梁卫红,唐朝荣,吴乃虎.(2004)一种新的水稻肌动蛋白基因Act的分子克隆及特征分析[J].自然科学进展,14(6):646-654
    88. 梁哲,姜三杰,未丽,唐益雄,吴燕民.(2009)三叶草基因工程研究进展[J].草业学报,18(2):205-211
    89. 林海妹,郭安平,王晓玲,郭运玲,孔华,贺立卡.(2009)长雄野生稻地下茎cDNA文库的构建及EST分析[J].热带作物学报,30(5):683-687
    90. 林秀锋,郭喜英,刘志明,韦正乙,邢少辰.(2008)转CBF1基因提高水稻抗寒能力的初步研究[J].吉林农业科学,33(5):6-8
    91. 凌键,陈永文,龚一富,方平,高峰.(2004)甘薯离体遗传转化体系的优化[J].西南师范大学学报(自然科学版),29(3):466-470
    92. 刘博.(2008)农杆菌介导bdDREB2基因转化紫花苜蓿的研究[D].重庆:重庆大学
    93. 刘建秀,贺善安,刘永东.(1997)华东地区暖地型草坪草特征特性及其经济价值[J].中国草地,(4):62-66
    94. 刘建秀,贺善安.(1996)暖季草坪草种质资源的研究与改良[J].草原与草坪,(3):12-21
    95. 刘建秀,刘永东,贺善安,陈守良.(1998)中国暖季型草坪草物种多样性及其地理分布特点[J].草地学报,6(1):45-52
    96. 刘鹏,孟庆伟,赵世杰.(2001)冷敏感植物的低温光抑制及其生化保护机制[J].植物生理学通讯,37(1):76-82
    97. 刘强,张贵友,陈受宜(2000a)植物转录因子的结构与调控作用[J].科学通报,45(14):1465-1474
    98. 刘强.赵南明Yamaguchi-Shinozaki K, Shinozaki K. (2000b) DREB转录因子在提高植物抗逆性中的作用[J].科学通报,45(1):11-16
    99. 刘巧泉,陈秀花,王兴稳,彭凌涛,顾铭洪.(2001)一种快速检测转基因水稻中潮霉素抗性的简易方法[J].农业生物技术学报,9(3):264
    100. 刘庆法,唐克轩,叶建明,郝峥嵘,何艺园,沈大棱(1998)农杆菌介导的小麦遗传转化条件的研究[J].复旦学报(自然科学版),37(4):569-572
    101. 刘小琳,王继峰,胡晓艳,刘艳昆,熊军波,康俊梅,杨青川.(2007)根癌农杆菌介导的紫花苜蓿遗传转化体系的建立与优化[J].中国草地学报,29(2):102-106
    102. 刘雄.阎隆飞.(1994)植物肌动蛋白研究的过去及现状[J].生物化学与生物物理进展,21(3):203
    103. 刘艳香,董宽虎.(2009)转录因子CBF及其抗寒作用机制[J].草业科学,25(5):86-94
    104. 刘艳芝,韦正乙,邢少辰,谭化,王中伟,董英山(2007)逆境相关转录因子DREB2A转化紫花苜蓿的研究[J].吉林农业科学,32(6):27-29
    105. 刘燕,胡鸢蕾,董静,田自华,陈梅香,金万梅(2007)转基因草莓向栽培草莓中转移CBF1基因的研究[J].分子植物育种,5(3):309-313
    106. 刘昀,孙秀珍,张王刚,冯向莉.(2006)葎草花粉cDNA表达文库的构建和初步鉴定[J].西安交通大学学报(医学版),27(4):327-329
    107. 刘志伟.张智俊,韩国民,何沙娥,杨丽.(2010)毛竹笋全长cDNA文库构建[J].生物技术通报,(2):98-101
    108. 刘志学,马向前,何艺园,徐亚南,叶鸣明,唐克轩.(1999)农杆菌介导遗传转化中辅助处理方法的改良[J].复旦学报(自然科学版),38(5):601-604
    109. 柳后起,周守标,谢传俊.(2008)假俭草种质资源研究进展[J].草业科学,25(1):59-65
    110. 龙松华,陈信波,邓欣,高原.(2008)SMART技术构建亚麻韧皮部全长cDNA文库[J].中国麻业科学,30(3):128-130
    111. 卢圣栋.(1999)现代分子生物学实验技术(第2版)[M].北京:中国协和医科大学出版社338-339
    112. 罗莉(2005)草地早熟禾再生体系的建立及其遗传转化的研究[D].北京:北京林业大学
    113. 罗赛男,杨国顺,石雪晖,卢向阳,徐萍.(2005)转录因子在植物抗逆性上的应用研究[J].湖南农业大学学报(自然科学版),31(2):219-223
    114. 罗正荣,章文才(1994)应用Logistic方程测定柑桔抗冻力的探讨[J].果树科学,11(2):100-102
    115. 吕彦,王平荣,孙业盈,董春林,陈德西,邓晓建.(2005)农杆菌介导遗传转化在水稻基因工程育种中的应用[J].分子植物育种,3(4):543-549
    116. 马炳田,朱祯,李平,周开达.(2003)水稻遗传转化选择系统优化初探[J].西南农业学报,16(1):28-31
    117. 马晖玲,卢欣石,曹致中,余密密.(2006)紫花苜蓿基因转化的影响因素分析[J].草业学报,15(5):94-102
    118. 马生健,曾富华,刘菊华,卢向阳(2003)草坪草育种研究进展(综述)[J].亚热带植物科学,32(1):60-64
    119. 马欣荣(2006)根癌农杆菌(Agrobacterium tumefaciens)介导的多年生黑麦草(Lolium perenne L)遗传转化[D]四川:四川大学
    120. 毛新国,景蕊莲,孔秀英,赵光耀,贾继增.(2006)几种全长cDNA文库构建方法比较[J].遗传,28(7)865-873
    121. 孟庆瑞,杨建民,樊英利(2002)果树抗寒机制研究进展[J].河北农业大学学报,25(8):87-91
    122. 孟玉平,张洁,张春芬,孙海峰,曹秋芬.(2009)枣树肌动蛋白基因cDNA片段的克隆及其表达分析[J].生物技术通报,(11):98-102
    123. 莫惠栋.(1983)Logistic方程及其应用[J].江苏农学院学报,4(2):53-57
    124. 牛一丁.(2008)苜蓿DREB类转录因子基因的研究[D].内蒙古:内蒙古大学
    125. 裴熙祥,郭惠明,程红梅.(2009)紫茎泽兰cDNA文库的构建及RuBP羧化酶基因的筛选[J].核农学报,23(5):785-788
    126. 彭学贤(2006)植物分子生物技术应用手册[M].北京:化学工业出版社
    127. 齐春辉,韩烈保,梁小红,曾会明,刘君.(2006)以基因枪法转化日本结缕草获得转基因植株[J].北京林业大学学报,28(3): 71-75
    128. 齐春辉.(2005)日本结楼草(Zoysia japonica Steud.)植株再生体系建立与DREB1A基因转化研究[D]北京:北京林业大学
    129. 齐刚,苏智先,李劲涛,阮期平.(2009)休眠期珙桐种子cDNA文库构建及EST分析[J]l林业科学,45(10):69-73
    130. 任健,毛凯,范彦.(1998)假俭草的抗性[J].草业科学,15(5):62-65
    131. 任清.(2005)早熟禾中DREB基因的克隆及特性分析[D],北京:中国农业科学院
    132. 任伟.(2006)AtDREBIA基因转化高羊茅获得抗旱牧草株系[D]山东:山东大学
    133. 荣红颖,张立全,杨凤萍,陈绪清,张晓东,郭新梅.(2009)DREB1B基因在转基因小麦后代的稳定表达[J]分子植物育种,7(3):437-443
    134. 萨姆布鲁克,拉塞尔主编黄培堂等译.(2002)分子克隆实验指南(第三版)[M]北京:科学出版社
    135. 邵巍,赖钟雄,陈义挺,蔡英卿,林玉玲.(2008)龙眼胚性愈伤组织肌动蛋白基因(actin)片段的克隆与序列分析[J].农业生物技术科学,24(3):40-43
    136. 佘建明,张保龙,何晓兰,陈志一,倪万潮.(2005)草地早熟禾农杆菌介导法基因转化条件[J].草地学报,13(1):39-41
    137. 盛慧,朱延明,李杰,柏锡,才华.(2007)DREB2A基因对苜蓿遗传转化的研究[J]草业科学,24(3)40-45
    138. 盛慧.(2006)DREB2A、SCMRP基因双价植物表达载体的构建及对苜蓿的遗传转化[D]哈尔滨:东北农业大学
    139. 孙静文.(2006)构树DREB转录因子及木质素台成代谢相关基因的克隆及功能分析fD]北京:中国科学院植物研究所
    140. 孙鹏,郭玉海,祁建军.(2008)地黄肌动蛋白基因片段的克隆与序列分析[J].安徽农业科学,36(20):8470-8471
    141. 孙伟.(2007)拟南芥CBF3等位基因AtCRAP2的克隆及抗寒功能研究[D]北京:首都师范大学
    142. 王呈玉,张明哲,万甡,李彦舫.(2007)短芒大麦DREB2基因的克隆及其转基因烟草的鉴定[J].吉林农业大学学报,29(6):643-646
    143. 王呈玉.(2007)短芒大麦抗逆性相关基因DREB1和CDPK的克隆与特性分析[D].吉林:吉林大学
    144. 王春燕,夏冰,李晓丹,江玉梅,穆红梅,彭峰,汪仁(2009)石蒜叶片全长cDNA文库的构建[J]江苏农业学报,25(3):542-546
    145. 王翠亭,卫志明.(2003)根癌农杆菌介导小麦幼胚遗传转化的影响因素[J].植物生理与分子生物学学报,29(6):521-529
    146. 王丹.(2010)三种暖季型草坪草抗寒性的季节性动态变化研究[D]南京:江苏省中国科学院植物研究所
    147. 王关林,方宏筠.(2002)植物基因工程(第二版)fM]北京:科学出版社
    148. 王桂花,米福贵,刘娟,霍秀文,杨宏雁,董淑君(2008)共转化CBF4和bar基因蒙农杂种冰草植株的分子检测[J].内蒙古大学学报(自然科学版),39(1):61-65
    149. 王国良(2004)农杆菌介导的紫花苜蓿BADH基因高效转化体系的优化和转基因植株的检测[D]甘肃:甘肃农业大学
    150. 王家保,徐碧玉,金志强,冯超.(2009)利用SMART技术构建荔枝果皮cDNA文库[J].热带作物学报,30(8):1109-1112
    151. 王丽娟,金治平,王能飞,李晓峰,刘公社(2009)羊草叶片cDNA文库的构建及部分表达序列标签的分析[J].草业学报,18(1):65-71
    152. 王凭青,李志中,晁跃辉,鲁浪,张宝云.(2007)拟南芥转录因子CBF1基因杂交狼尾草的转化[J]重庆大学学报(自然科学版),30(10):134-137
    153. 王平荣,邓晓建,高晓玲,陈静,万佳,姜华,徐正君.(2006)DREB转录因子研究进展[J].遗传,28(3):369-374
    154. 王全伟,张海玲,白晶,徐香玲(2008)农杆菌介导的大豆植株整体转化[J].大豆科学,27(2):190-198
    155. 王善平,许智宏,卫志明(1990)毛白杨叶外植体的遗传转化[J].植物学报,32(3):172-177
    156. 王少峡,王振英,彭永康.(2004)DREB转录因子及其在植物抗逆中的作用[J].植物生理学通讯,40(1):7-12
    157. 王维飞.(2007)高羊茅(Festuca arundinacea Schreb.)转DREB1A基因的研究[D]北京:北京林业大学
    158. 王渭霞,朱廷恒,胡张华,陈锦清,玄松南.(2005)农杆菌介导的CBF1基因对松南结缕草的遗传转化[J].园艺学报,32(5)953
    159. 王渭霞,朱廷恒,玄松南(2006)农杆菌介导的匍匐翦股颖胚性愈伤组织的转化和转CBF1基因植株的获得[J].中国草地学报,28(4):59-64
    160. 王文恩,包满珠,张俊卫(2009)60Co-γ射线对日本结缕草干种子的辐射效应研究[J].草业科学,26(5):155-160
    161. 王文强,李志丹,白昌军.(2006)结缕草属种质资源及其应用研究进展[J]草原与草坪.(2):3-8
    162. 王晓飞,程宪国,王迎波,吴庆钰,白由路,梁永超(2008)Floral-dip法大豆GmDREB转录因子转拟南芥研究[J].生物技术通报,(5):103-107
    163. 王晓晔,普颖颖,宋杰,王国丰,钱虹妹,林娟,赵凌侠,唐克轩(2006)利用烟草表达一种新型鲑鱼降钙素的初步研究[J].扬州大学学报(农业与生命科学版),27(1):9-13
    164. 王兴娥,巩振辉,李大伟,陈儒钢,运明辉,黄炜.(2009)冷诱导基因C-重复基序结合因子4(CBF4)在辣椒中的遗传转化及抗寒性分析[J].农业生物技术学报,17(5):830-835
    165. 王艳,张绵.(2000)结缕草和早熟禾解剖结构与其抗旱性、耐践踏性和弹性关系的对比研究[J]辽宁大学学报(自然科学版),27(4)371-375
    166. 王义强,谭晓风,陈介南,周小慧,孙吉康.(2009)银杏雌树成熟叶cDNA文库的构建[J]中南林业科技大学学报,29(1):6-9
    167. 王涌鑫.(2008)根癌农杆菌介导的DREB1C基因转化苜蓿的研究[D]北京:中国农业科学院
    168. 王志勇,袁学军.郭海林,刘建秀,程晓丽,周志芳(2008)结缕草属植物ISSR-PCR反应体系研究[J].草地学报,17(1):48-5]
    169. 韦善君,孙振元,巨关升,韩蕾,余龙江.(2005)冷诱导基因转录因子CBF1的组成型表达对植物的抗寒性及生长发育的影响[J].核农学报,19(6):465-468
    170. 韦善君(2006)结缕草抗寒性及转录因子CBF1的转化研究[D].湖北:华中科技大学
    171. 魏臻武,范占炼,王槐三(1997)不同类型草坪草的抗寒锻炼[J].草业科学,14(3):60-65
    172. 吴东,刘俊杰,喻树迅,范术丽,宋美珍.(2009)中棉所36均一化全长cDNA文库的构建与鉴定[J].作物学报,35(4):602-607
    173. 吴关庭,陈锦清,胡张华,郎春秀,陈笑芸,王伏林,金卫,夏英武.(2005)根癌农杆菌介导转化获得耐逆性增强的高羊茅转基因植株[J].中国农业科学,38(12):2395-2402
    174. 吴关庭,郎春秀,胡张华,陈笑芸,王伏林,金卫,陈锦清(2006)转CBF1基因增强水稻的耐逆性[J]核农学报,20(3):169-173
    175. 吴关庭.(2004)农杆菌介导高羊茅遗传转化体系的建立及CBF耐逆相关基因的导入[D]浙江:浙江大学
    176. 肖雪,张秀海,杨清,邹华文,吴忠义,于荣,曹鸣庆,黄丛林(2006)玉米蛋白激酶ZmSPK1在转基因拟南芥中的定位[J].华北农学报,21(3):1-4
    177. 谢永丽,王自章.刘强,张淑平(2005)草坪草狗牙根中抗逆基因BeDREB的克隆及功能鉴定[J]中国生物化学与分子生物学报,21(4):521-527
    178. 信金娜,韩烈保,刘君,韩秀宾.(2006)基因枪转化法获得草地早熟禾(Poa pratensis L.)转基因植株[J].中国生物工程杂志,26(8):10-14
    179. 信金娜.(2006)草地早熟禾(Poa pratensis L.)抗旱耐盐基因遗传转化[D]北京:北京林业大学
    180. 徐春波.(2005)利用基因工程技术改良冰草抗旱性的初步研究[D].内蒙古:内蒙古农业大学
    181. 徐纪明,向太和(2008)全雌性黄瓜中3个肌动蛋白基因片段的克隆和表达分析[J]细胞生物学杂志,30(1):125-130
    182. 徐礼根,谭志坚,谭继清.(2004)美国结缕草品种来源和应用区域[J]园艺学报,31(1):124-129
    183. 徐柱.(1997)中国禾草属志[M].呼和浩特:内蒙古人民出版社
    184. 许耀,贾敬芬,郑国锠.(1988)酚类化合物促进根癌农杆菌对植物离体外植体的高效转化[J].科学通报,33(22):1745-1748
    185. 宣继萍,高鹤,刘建秀(2004)结缕草品种(系)的抗寒性鉴定[J].江苏农业学报,20(1):44-46
    186. 宣继萍,刘建秀(2003)坪用狗牙根(Cynodon spp.)优良品种(选系)的抗寒性初步鉴定[J]植物资源与环境学报,12(2):28-32
    187. 宣继萍,周志芳,刘建秀,郭海林(2008)结缕草属植物种间关系的SSR分析[J]西北植物学报,28(2):249-255
    188. 宣继萍.(2008)结缕草属(Zoysia willd.)植物种质资源多样性研究[D]南京:南京农业大学
    189. 薛丹丹,郭海林,郑轶琦,陈宣,刘建秀(2009)结缕草属植物杂交后代杂种真实性鉴定——SRAP分子标记[J].草业学报,18(1)72-79
    190. 薛丹丹,郑轶琦,王志勇,郭海林,陈宣,刘建秀(2008)结缕草属植物SRAP-PCR体系的建立和优化[J]草业学报,17(6):93-101
    191. 薛丹丹.(2009)利用杂交育种技术培育结缕草属植物优质抗寒新品种[D].南京:南京农业大学
    192. 杨春霞,李火根,程强,陈英(2009)南林895杨抗旱耐盐基因DREB1C的转化[J].林业科学,45(2):17-21
    193. 杨凤萍,梁荣奇,张立全,陈绪清,张晓东,王国英,孙振元.(2006a)抗逆调节转录因子CBF1基因提高多年生黑麦草的抗旱能力[J].华北农学报,21(1):14-18
    194. 杨凤萍,梁荣奇,张立全,张晓东,孙振元.(2006b)抗逆调节转录因子DREB1B基因转化多年生黑麦草的研究[J]西北植物学报,26(7):1309-1315
    195. 杨凤萍(2005)利用抗逆调节转录因子(DREB1B和CBF1)基因转化多年生黑麦草提高其抗旱性[D]北京:中国农业大学
    196. 杨贵春,刘海龙,王世发,刘淑莲,韦正乙,蔡勤安,邢少辰.(2009)大豆干旱和低温cDNA文库的构建与检测[J].黑龙江农业科学,(2):1-3
    197. 杨华,唐茜,黄毅,罗学平.(2006)用电导法配合Logistic方程鉴定茶树的抗寒性[J].福建茶叶,(3):30-32
    198. 阳文龙,刘敬梅,刘强,公衍道,赵南明(2006a)高羊茅DREB类转录因子基因的分离及鉴定分析[J]核农学报,20(3):187-192
    199. 阳文龙,刘敬梅,刘强,公衍道,赵南明(2006b)高羊茅中一个DREB类转录因子基因的分离及鉴定分析[J]应用与环境生物学报,12(2)145-150
    200. 姚娜,韩烈保,曾会明,徐冰.(2008)草坪草转基因育种技术的应用和发展[J]生物技术通报,(3):66-70
    201. 冶晓芳(2009)植物抗逆相关基因的分离及功能分析[D]北京:首都师范大学
    202. 易自力,曹守云,王力,储成才,李祥,何锶洁,唐祚舜,周朴华,田文忠(2001)提高农杆菌转化水稻频率的研究[J]遗传学报,28(4):352-358
    203. 袁维风,尹淑萍,金万梅,徐凯,高贵珍.(2006)根癌农杆菌介导转录因子CBF1基因对草莓的转化[J]生物学杂志,23(4):37-40
    204. 袁学军,刘建秀,张婷婷,郭爱桂.(2007)硝酸钾对假俭草抗寒性和草绿期的影响[J].草地学报,15(4):363-366
    205. 袁学军,王志勇,郭爱桂,宗俊勤,刘建秀,佘建明(2008)假俭草侧芽愈伤诱导和植株再生[J].草业学报,17(6):128-133
    206. 袁学军.(2008)假俭草种质资源综合评价及其抗寒性的改良与调控[D]南京:南京农业大学
    207. 张翅,戴国飞,刘军立,夏炎枝,甘南琴,红凌.(2009)盐胁迫下杜氏盐藻(Dunaliella salina)cDNA文库的构建与新表达序列标签(EST)的获取、分析[J].武汉大学学报(理学版),55(3):348-353
    208. 张飞(2009)霸王、沙冬青、小叶锦鸡儿CBF/DREB1转录因子cDNA全长的克隆及生物信息学分析[D]内蒙古内蒙古农业大学
    209. 张国增,白玲,宋纯鹏(2009)低温胁迫下拟南芥CBF1超表达突变体胞质中Ca2+浓度的变化[J]植物学报,44(3)283-289
    210. 张国珍,肖向阳.(1997)八种引种草坪植物的抗寒性比较研究[J].植物研究,17(2):200-206
    211. 张晗,信月芝,郭惠明,程红梅.(2006)CBF转录因子及其在植物抗冷反应中的作用[J]核农学报,20(5):406-409
    212. 张巨明,赵鸣.(1996)兰引号草坪型结缕草与日本结缕草的比较研究[J].草业科学,13(2):47-50
    213. 张磊,胡繁荣,沈希宏,马传喜,吴殿星(2004)草坪草生物技术进展及研究热点明核农学报,18(5):372-375
    214. 张霖,牛瑞芳.(2002)cDNA文库构建方法的进展[J]生命的化学.22(6):577-580
    215. 张倩.(2009)中华芦荟抗逆基因A1DREB2和A1TONY的克隆与功能的初步分析[D]重庆:西南大学
    216. 张庆祝,韩天富.(2004)植物非组培遗传转化方法研究的进展[J]分子植物育种,2(1):85-91
    217. 张少斌,任东涛,徐小静,刘国琴.(2004)豌豆肌动蛋白异型体(PEAc1)与绿色荧光蛋白融台基因的原核表达与特性分析[J]科学通报,47(6):563-569
    218. 张玉宝,谢忠奎,李同祥,王亚军,郭志鸿,王志力(2007)DREB1A转录因子蛋白的原核表达[J].武汉植物学研究,25(4):326-330
    219. 张震,王教瑜,杜新法,柴荣耀,毛雪琴,邱海萍,孙国昌(2008)稻曲病菌cDNA文库的构建[J].植物病理学报,38(5): 462-467
    220. 张振霞,符义坤,储成才.(2002)豆科牧草基因工程研究进展[J].遗传,24(5):607-612
    221. 张振霞.杨中艺,储成才.(2004)禾本科牧草与草坪草转基因研究进展[J].草业学报,13(6):92-98
    222. 张振霞(2002)几种牧草和草坪草植物遗传转化体系的建立及其转基因研究[D].甘肃: 甘肃农业大学
    223. 赵桂嫒,魏志刚,刘关君,张凯旋,刘桂丰,杨传平.(2010)SMART策略构建小黑杨茎形成层全长cDNA文库[J].北京林业大学学报,32(1)52-56
    224. 赵金梅.(2006)百脉根DREB转录因子基因部分序列的克隆及desC基因转化[D].北京:中国农业大学
    225. 郑善清,段瑞军,郭建春.(2010)盐生植物海马齿盐胁迫全长cDNA文库的构建与分析[J].基因组学与应用生物学,29(1):155-159
    226. 郑轶琦,符心童,郭海林,刘建秀.(2009a)假俭草杂交后代部分外部性状的遗传分析[J].草业学报,18(6):264-269
    227. 郑轶琦,刘建秀.(2009)草坪草分子遗传图谱的构建与应用研究进展[J].草业学报,18(1):155-162
    228. 郑轶琦,王志勇,郭海林,薛丹丹,刘建秀.(2008)正交设计优化假俭草SRAP-PCR反应体系及引物筛选[J].草业学报,17(4):110-117
    229. 郑轶琦,宗俊勤,薛丹丹,陈宣,刘建秀.(2009b)SRAP分子标记在假俭草杂交后代真实性鉴定中的应用[J].草地学报,17(2):135-140
    230. 郑银英,崔百明,常明进,彭明.(2009)转拟南芥ICE1基因增强烟草抗寒性的研究[J].西北植物学报,29(1):75-79
    231. 郑玉红,刘建秀.(2004)假俭草(Eremochloa ophiuroides (Munro.) Hack.)种质资源改良研究进展[J].植物学通报,21(5):587-594
    232. 中国植物志编委.(1990)中国植物志10卷1分册[M].北京:科学出版社
    233. 钟克亚,叶妙水,胡新文,郭建春.(2006)转录因子CBF在植物抗寒中的重要作用[J].遗传,28(2):249-254
    234. 钟克亚.(2006)抗寒相关基因AtGoLS3、CBF3转化柱花草和拟南芥[D]海南:华南热带农业大学
    235. 钟胜,段瑞军,郭建春,胡新文,符少萍.(2008)单基因及联合双基因转化拟南芥的抗寒性比较[J].江西农业学报,20(6):31-33
    236. 周冠,汪阳东,陈益存,李鹏,张姗姗,张小平.(2009)油桐种仁cDNA文库的构建及其油体蛋白oleosin基因的生物信息学分析[J].林业科学研究,22(2):177-181
    237. 周海飞,赵武玲,阎隆飞.(2001)玉兰肌动蛋白基因的克隆与序列分析[J].农业生物技术学报,9(3):274-278
    238. 周丽英,杨丽涛,郑坚瑜.(2001)植物抗寒冻基因工程研究进展[J].植物学通报,18(3):325-331
    239. 周玲艳,姜大刚,吴豪,庄楚雄.(2003)农杆菌介导水稻转化条件的优化[J].华南农业大学学报(自然科学版),24(3):43-45
    240. 朱常香,宋云枝,亓苏伟,郑成超,温孚江.(2000)农杆菌介导水稻幼胚转化获转基因植株[J].山东农业大学学报(自然科学版),31(1): 1-7
    241. 朱根海,朱培仁.(1984)小麦抗冻性的季节变化以及温度对脱锻炼的效应[J].南京农学院学报,2:9-16
    242. 朱筱娟,曾宪录.宋朝霞,郝水.(2004)细胞核内肌动蛋白及其功能研究进展[J].科学通报,49(11):1031-1035
    243. 朱玉贤,李毅,郑晓峰.(2007)现代分子生物学(第3版)[M].北京:高等教育出版社
    244. Agarwal P K, Agarwal P, Reddy M K, Sopory S K. (2006) Role of DREB transcription factors in abiotic and biotic stress tolerance in plants[J]. Plant Cell Reports,25:1263-1274
    245. Agarwal P, Agarwal P K, Nair S, Sopory S K, Reddy M K. (2007) Stress-inducible DREB2A transcription factor from Pennisetum glaucum is a phosphoprotein and its phosphorylation negatively regulates its DNA-binding activity[J]. Molecular Genetics and Genomics,277: 189-198
    246. Akiyoshi M, Yaneshita M, Nagasawa R, Endo N. (1998) Sea water tolerance of zoysiagrasses in relation to morphological and genetic classification[J]. Grassland Science,44:7-13
    247. Allen M D, Yamasaki M, Ohme-Takagi M, Tatenol M, Suzuki M. (1998)A novel mode of DNA recognition by a β-sheet revealed by the solution structure of the GCC-box binding-domain in complex with DNA[J]. The EMBO Journal,17:5484-5496
    248. Alonso-Blanco C, Gomez-Mena C, Llorente F, Koornneef M, Salinas J, Martinez-Zapater J M. (2005) Genetic and molecular analyses of natural variation indicate CBF2 as a candidate gene for underlying a freezing tolerance quantitative trait locus in Arabidopsis[J]. Plant Physiology,139:1304-1312
    249. An G, Ebert P R, Mitra A, Ha S B. (1988) Binary vectors. In:Gelvin S B, Schilperoort R A. Plant Molecular Biology Manual[M]. Kluwer Academic Publishers, Dordrecht, Netherlands. A3/1-A3/19
    250. Anderson J A, Taliaferro C M, Martin D L. (2002) Freeze tolerance of bermudagrasses:vegetatively propagated cultivars intended for fairway and putting green use, and seed-propagated cultivars[J]. Crop Science,42:975-977
    251. Anderson J A, Taliaferro C M. (2002) Freeze tolerance of seed-producing turf bermudagrasses[J]. Crop Science,42.190-192
    252. Anderson S J. (2000) Taxonomy of Zoysia (Poaceae):Morphological and molecular variation[D]. Texas A&M University, College Station, TX
    253. Badawi M, Danyluk J, Boucho B, Houde M, Sarhan F. (2007) The CBF gene family in hexaploid wheat and its relationship to the phylogenetic complexity of cereal CBFs[J]. Molecular Genetics and Genomics,277:533-554
    254. Bajaj S, Ran Y, Phillips J, Kularajathevan G, Pal S, Cohen D, Elborough K, Puthigae S. (2006) A high throughput Agmbacterium tumefaciens-mediated transformation method for functional genomics of perennial ryegrass (Lolium perenne L.)[J]. Plant Cell Reports,25: 651-659
    255. Baker S S, Wilhelm K S, Thomashow M F. (1994) The 5'-region of Arabidopsis thaliana corl 5a has cis-acting elements that confer cold-, drought and ABA-regulated gene expression[J]. Plant Molecular Biology,24:701-713
    256. Bartels D, Sunkar R. (2005) Drought and salt tolerance in plants[J]. Critical Reviews in Plant Sciences,24:23-58
    257. Beard J B, Sifers S I, Griggs S D. (1991) Genetic diversity in low temperature hardiness among 35 major warm-season turfgrass genotypes. In:Texas Turfgrass Research:1989-1990[M]. PR-4898. Texas Agricultural Experiment Station, College Station:56-58
    258. Beard J B. (1966) Direct low temperature injury of nineteen turfgrasses[J]. Quarterly Bulletin of Michigan Agricultural Experiment Station,48:377-383
    259. Beard J B. (1973) Science and culture. In:Hall P, Cliffs E. Turfgrass[M]. American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, NJ.
    260. Bechtold N, Bouchez D. (1994) In planta Agrobacterium-mediated transformation of adult Arabidopsis thaliana plants by vacuum infiltration. In:Potrykus I, Spangenberg G. Gene Transfer to Plants[M]. Springer-Verlag, Heidelberg,19-23
    261. Bechtold N, Ellis J, Pelletier G (1993) In planta Agrobacterium mediated gene transfer by infiltration of adult Arabidopsis thaliana plants[J]. Comptes Rendus de I'Academie des Sciences, Serie Ⅲ, Sciences de la Vie,316:1194-1199
    262. Bechtold N, Pelletier G. (1998) In planta Agrobacterium-mediated transformation of adult Arabidopsis thaliana plants by vacuum infiltration[J]. Methods in Molecular Biology,82:259-266
    263. Benedict C, Skinner J S, Meng R, Chang Y, Bhalerao R, Huner N A, Finn C E, Chen T H H, Hurry V. (2006) The CBF1-dependent low temperature signaling pathway, regulon and increase in freeze tolerance are conserved in Populus spp[J]. Plant, Cell and Environment,29: 1259-1272
    264. Bematzky R, Tanksley S D. (1986) Genetics of actin-related sequences in tomato[J]. Theoretical and Applied Genetics,72:314-321
    265. Bolton G W, Nester E W, Gordon M P. (1986) Plant phenolic compounds induce expression of the Agrobacterium tumefaciens loci needed for virulence[J]. Science,232:983-985
    266. Bouton J H, Dudeck A E, Smith R L, Green R L. (1983) Plant breeding characteristics relating to improvement of centipedegrass. Soil and Crop Science Society of Florida Proceedings,42:53-58
    267. Bowman J L. (1994) Arabidopsis:An Atlas of Morphology and Development[M]. Springer-Verlag, New York
    268. Brautigam M, Lindlof A, Zakhrabekova S, Gharti-Chhetri G, Olsson B, Olsson O. (2005) Generation and analysis of 9792 EST sequences from cold acclimated oat, Avena sativa[J]. BMC Plant Biology,5:18
    269. Bray E A. (1997) Plant responses to water deficit[J]. Trends in Plant Science,2:48-54
    270. Brede A D. Sun SC. (1995) Diversity of turfgrass germplasm in the Asian Pacific rim countries and potential for reducing genetic vulnerabiliry[J].Crop Science,35:317-321
    271. Brencic A, Angert E R, Winans S C. (2005) Unwounded plants elicit Agrobacierium vir gene induction and T-DNA transfer: transformed plant cells produce opines yet are tumour free[J]. Molecular Microbiology,57:1522-1531
    272. Campbell W H, Gown G. (1990) Condon usage in higher plant, green alga and cyanobacteria[J]. Plant Physiology,92:1-11
    273. Cao MX, Huang JQ, He YL, Liu SJ, Wang CL, Jiang WZ, Wei ZM. (2006) Transformation of recalcitrant turfgrass cultivars through improvement of tissue culture and selection regime[J]. Plant Cell, Tissue and Organ Culture,85:307-316
    274. Cao XF, WANG RC, Yan LF, Lu ZB, Pan NS. Chen ZL. (1994) Construction of a pea tendril cDNA library and sequence analysis of a pea Actin cDNA, PEAcl[J]. Chinese Science Bulletin,39:332-337
    275. Cao ZF, Li J, Chen F, Li YQ, Zhou HM, Liu Q. (2001) Effect of two conserved amino-acid residues on DREB1A function[J]. Biochemistry,66:623-627
    276. Cardona C A, Duncan R R, Lindstrom O. (1997) Low temperature tolerance assessment in Paspalum[J]. Crop Science,37: 1283-1291
    277. Caminci P, Shibata Y, Hayatsu N, Sugahara Y, Shibata K, ltoh M, Konno H, Okazaki Y, Muramatsu M, Hayashizaki Y. (2000) Normalization and subtraction of cap-trapper-selected cDNAs to prepare full-length cDNA libraries for rapid discovery of new genes[J]. Genome Research,10:1617-1630
    278. Chabaud M, Passiatore J E, Cannon F, Buchanan-Wollaston V. (1988) Parameters affecting the frequency of kanamycin resistant alfalfa obtained by Agrobacterium tumefaciens mediated transformation[J]. Plant Cell Reports,7:512-516
    279. Chai BF, Liang AH, Nielsen K K. Gao CX, Wang W, Hu W. (2003a) Stable Transformation of Three Cultivars of Kentucky Bluegrass (Poa pratensis L.) by Particle Bombardment of Mature Seed-Derived Highly Regenerative Callus[J]. Agricultural Sciences in China,2: 27-34
    280. Chai BF, Liang AH, Wang W, Hu W. (2003b) Agrobacterium-mediated transformation of Kentucky bluegrass[J]. Acta Botanica Sinica,45:966-973
    281. Chai ML, Senthil KX, Kim DH. (2004) Transgenic plants of colonial bentgrass from embryogenic callus via Agrobacterium-mediated transformation[J]. Plant Cell, Tissue and Organ Culture,77:165-171
    282. Chakrabartty A, Ananthanarayanan V S, Hew C L.(1989a) Structure-function relationships in a winter flounder antifreeze polypeptide. I. Stabilization of an alpha-helical antifreeze polypeptide by charged-group and hydrophobic interactions[J]. The Journal of Biological Chemistry,264:11307-11312
    283. Chakrabartty A, Yang D S, Hew C L.(1989b) Structure-function relationship in a winter flounder antifreeze polypeptide. Ⅱ. Alteration of the component growth rates of ice by synthetic antifreeze polypeptides[J]. The Journal of Biological Chemistry,264:11313-11316
    284. Chan H T J, Sanxter S. Couey H M. (1985) Electrolyte leakage and ethylene production induced by chilling injury of papayas[J]. HortScience,20:1070-1072
    285. Chattopadhyay S, Ang L H, Puente P, Deng XW, Wei N. (1998) Arabidopsis bZIP protein HY5 directly interacts with light-responsive promoters in mediating light control of gene expression[J]. The Plant Cell,10:673-684
    286. Chen JH, Xia XL, Yin WL. (2009a) Expression profiling and functional characterization of a DREB2-type gene from Populus euphratica[J]. Biochemical and Biophysical Research Communications,378:483-487
    287. Chen JQ, Dong Y, Wang YJ, Liu Q, Zhang JS, Chen SY (2003) An AP2/EREBP-type transcription-factor gene from rice is cold-inducible and encodes a nuclear-localized protein[J]. Theoretical and Applied Genetics,107:972-979
    288. Chen M, Wang QY, Cheng XG, Xu ZS, Li LC, Ye XG, Xia LQ, Ma YZ. (2007) GmDREB2, a soybean DRE-binding transcription factor, conferred drought and high-salt tolerance in transgenic plants[J]. Biochemical and Biophysical Research Communications,353:299-305
    289. Chen M, Xu ZS, Xia LQ, Li LC, Cheng XG, Dong JH, Wang QY, Ma YZ. (2009b) Cold-induced modulation and functional analyses of the DRE-binding transcription factor gene, GmDREB3, in soybean (Glycine max L.)[J]. Journal of Experimental Botany,60:121-135
    290. Cheng M, Lowe B A, Spencer T M, Ye XD, Armstrong C L. (2004) Factors influencing Agrobacterium-mediated transformation of monocotyledonous species[J]. In Vitro Cellular and Developmental Biology-Plant,40:31-45
    291. Chilton. (1993) Agrobacterium gene transfer:progress on a "poor man's vector" for maize[J]. Proceedings of the National Academy of Sciences of the USA,90:3119-3120
    292. Chinnusamy V, Ohta M, Kanrar S, Lee BH, Hong XH, Agarwal M, Zhu JK. (2003) ICE1:a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis[J]. Genes and Development,17:1043-1054
    293. Chinnusamy V, Zhu J, Zhu J K. (2006) Salt stress signaling and mechanisms of plant salt tolerance[J]. Genetic Engineering,27: 141-177
    294. Chinnusamy V, Zhu JH, Zhu JK. (2007) Cold stress regulation of gene expression in plants[J] Trends in Plant Science,12:444-451
    295. Cho H, Winans S C. (2005) VirA and VirG activate the Ti plasmid repABC operon. elevating plasmid copy number in response to wound-released chemical signals[J]. Proceedings of the National Academy of Sciences of the USA,102:14843-14848
    296. Choi D W, Rodriguez E M, Close T J. (2002) Barley Cbf3 gene identification, expression pattern, and map location[J]. Plant Physiology,129:1781-1787
    297. Church G M, Bulyk M L, Choo Y. (2002) Analysis of binding interactions:International Patent Application, WO 02/18648 A2 [P/OL].2002-03-07. http://the_brain.bwh.harvard.edu/PCT2002.pdf
    298. Clarke L, Carbon J. (1976) A colony bank containing synthetic Col El hybrid plasmids representative of the entire E. coli genome[J]. Cell,9:91-99
    299. Clough S J, Bent A F. (1998) Floral dip:a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana[J]. The Plant Journal,16:795-743
    300. Coen E S. (1991) The role of homeotic genes in flower development and evolution[J]. Annual Review of Plant Physiology and Plant Molecular Biology,42:241-279
    301. Comai L, Young K, Till B J, Reynolds S H. Greene E A, Codomo C A, Enns L C, Johnson J E. Burtner C, Odden A R, Henikoff S. (2004) Effcient discovery of DNA polymorphisms in natural populations by ecotilling[J]. The Plant Journal,37:778-786
    302. Cummings H S, Hershey J W B. (1994) Translation initiation factor IF1 is essential for cell viability in Escherichia coli[J]. Journal of Bacteriology,176:198-205
    303. Curtis I S, Nam H G. (2001) Transgenic radish (Raphanus sativus L. longipinnatus Bailey) by floral-dip method-plant development and surfactant are important in optimizing transformation efficiency[J]. Transgenic Research,10:363-371
    304. Cushman J C, Bohnert H J. (2000) Genomic approaches to plant stress tolerance[J]. Current Opinion in Plant Biology,3:117-124
    305. Dalton S J, Bettany A J E, Timms E, Morris P. (1998) Transgenic plants of Lolium multiflorum, Lolium perenne, Festuca arundinacea and Agrostis stolonifera by silicon carbide fibre-mediated transformation of cell suspension cultures[J]. Plant Science,132:31-43
    306. Davis D L, Gilbert W B. (1970) Winter hardiness and changes in soluble protein fractions of bermudagrass[J]. Crop Science,10:7-9
    307. Desfeux C, Clough S J, Bent A F. (2000) Female reproductive tissues are the primary target of Agrobacterium-mediated transformation by the Arabidopsis floral-dip method[J]. Plant Physiology,123:895-904
    308. Drobyshev A L, Zasedatelev A S, Yershov G M, Mirzabekov A D. (1999) Massive parallel analysis of DNA-Hoechst 33258 binding specificity with a generic oligodeoxyribonucleotide microchip[J]. Nucleic Acids Research,1999,27:4100-4105
    309. Drouin G, Dover G A. (1987) A plant processed pseudogene[J]. Nature,328:557
    310. Dubouzet J G, Sakuma Y, Ito Y, Kasuga M, Dubouzet E G, Miura S, Seki M, Shinozaki K, Yamaguchi-Shinozaki K. (2003) OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold responsive gene expression[J]. The Plant Journal,33:751-763
    311. Dunn J H, Bughrara S S, Warmund M R, Fresenburg B F. (1999) Low temperature tolerance of zoysiagrasses[J]. HortScience,34: 96-99
    312. Dunn J H, Diesburg K. (2004) Turf management in the transition zone[M]. John Wiley & Sons, Hoboken, NJ
    313. Engelke M C, Anderson S J. (2003)Zoysiagrasses. In Casler M D, Duncan R R. Turfgrass biology, genetics, and breeding[M]. John Wiley & Sons,Hoboken, NJ:271-286
    314. Engelke M C. (2000) Widely used for centuries, zoysiagrass is a time-tested reservoir of genetic diversity[J].Diversity,16:48-49
    315. Firtel RA. (1981) Multigene families encoding actin and tubulin[J]. Cell,24:6-7
    316. Fletcher L D, McDowell J M, Tidwell R R, Meagher R B, Dykstra C C. (1994) Structure, expression and phylogenetic analysis of the gene encoding Actin I in Pneumocystis carinii[J]. Genetics,137:743-750
    317. Foolad M R, Zhang LP, Lin GY.(2001) Identification and validation of QTLs for salt tolerance during vegetative growth in tomato by selective genotyping[J]. Genome,44:444-454
    318. Fowler S, Thomashow M F. (2002) Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the cbf cold response pathway[J].The Plant Cell,14:1675-1690
    319. Fry J D, Lang N S, Clifton R G P, Maier F P. (1993) Freezing tolerance and carbohydrate content of low temperatureacclimated and non-acclimated centipedegrass[J]. Crop Science,33:1051-1055
    320. Fujimoto S Y, Ohta M, Usui A, Shinshi H, Ohme-Takagi M. (2000) Arabidopsis ethylene-responsive element binding factors act as tanscriptional activators or repressors of GCC box-mediated gene expression[J]. The Plant Cell,12:393-404
    321. Galaud JP, Carriere M, Pauly N, Canut H, Chalon P, Caput D, Pont-Lezica R F. (1999) Construction of two ordered cDNA libraries enriched in genes encoding plasmalemma and tonoplast proteins from a high-efficiency expression library[J]. The Plant Journal,17:111-118
    322. Gamboa M C. Rasmussen-Poblete S, Valenzuela P DT, Krauskopf E. (2007) Isolation and characterization of a cDNA encoding a CBF transcription factor from E. globulus[J]. Plant Physiology and Biochemistry,45:1-5
    323. Gao MJ, Allard G, Byass L, Flanagan A M, Singh J. (2002) Regulation and characterization of four CBF transcription factors from Brassica napus[J]. Plant Molecular Biology,49:459-471
    324. Gao SQ, Xu HJ, Cheng XG, Chen M, Xu ZS, Li LC, Ye XG, Du LP, Hao XY, Ma YZ. (2005) Improvement of wheat drought and salt tolerance by expression of a stress-inducible transcription factor GmDREB of soybean (Glycine max)[J]. Chinese Science Bulletin,50: 2714-2723
    325. Gaxiola R A, Fink G R, Hirschi K D. (2002) Genetic manipulation of vacuolar proton pumps and transporters[J]. Plant Physiology, 129:967-973
    326. Ge YX, Norton T, Wang ZY (2006) Transgenic zoysiagrass (Zoysia japonica) plants obtained byy Agrobaccerium-mediated transformation[J]. Plant Cell Reports,25:792-798
    327. Gelvin S B, Liu CN. (1994) Genetic manipulation of Agrobacterium tumefaciens strains to improve transformation of recalcitrant species. In:Gelvin S B, Schilperoort R A. Plant Molecular Biology Manual,2nd edn[M].Dordrecht:Kluwer Academic Publishers. Dordrecht, Netherlands. B4/1-B4/13
    328. Gilmour S J, Fowler S G, Thomashow M F. (2004) Arabidopsis transcriptional activators cbf1, cbf2, and cbf3 have matching functional activities[J].Plant Molecular Biology,54:767-781
    329. Gilmour S J, Sebolt A M, Salazar M P, Everard J D, Thomashow M F. (2000) Overexpression of the Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation[J]. Plant Physiology,124:1854-1865
    330. Gilmour S J, Zarka D G, Stockinger E J, Salazar M P, Houghton J M, Thomashow M F.(1998) Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression[J].The Plant Journal,16: 433-442
    331. Goff S A, Cone K C, Chandler V L. (1992) Functional analysis of the transcriptional activator encoded by the maize B gene: evidence for a direct functional interaction between two classes of regulatory proteins[J]. Genes and Development,6:864-875
    332. Grau F V, Radko A M. (1951) Meyer (Z-52) zoysia[J]. USGA Journal and Turf Management,4(6):30-31
    333. Grau F V. (1952) Report on two improved turf grasses[J]. USGA Journal and Turf Management,5(3):31-32
    334. Green R L, Sifers S I, Atkins C E, Beard J B. (1991) Evapotranspiration rates of eleven zoysia genotypes[J]. HortScience,26: 264-266
    335. Gubler U, Hoffman B J. (1983) A simple and very efficient method for generating cDNA libraries[J]. Gene,25:263-269
    336. Guo GQ, Maiwald F, Lorenzen P, Steinbiss H H. (1998) Factors influencing T-DNA transfer into wheat and barley cells by Agrobacterium tumefaciens[J]. Cereal Research Communications,26:15-22
    337. Guo ZJ, Chen XJ, Wu XL, Ling JQ, Xu P. (2004) Overexpression of the AP2/EREBP transcription factor OPBPI enhances disease resistance and salt tolerance in tobacco[J]. Plant Molecular Biology,55:607-618
    338. Gusta L V, Butler J D, Rajashekar C, Burke M J. (1980) Freezing resistance of perennial turfgrasses[J]. HortScience,15:494-496
    339. Ha C D, Lemaux P G, Cho MJ. (2001) Stable transformation of a recalcitrant kentucky bluegrass (Poa pratensis L.) cultivar using mature seed-derived highly regenerative tissues[J]. In Vitro Cellular and Developmental Biology-Plant,37:6-11
    340. Haake V, Cook D, Riechmann J L, Pineda O, Thomashow M F, Zhang JZ. (2002) Transcription factors CBF4 is a regulator of drought adaptation in Arabidopsis[J]. Plant Physiology,130:639-648
    341. Haas B J, Volfovsky N, Town C D, Troukhan M, Alexandrov N, Feldmann K A, Flavell R B, White O, Salzberg S L. (2002) Full-length messenger RNA sequences greatly improve genome annotation[J]. Genome Biology,3(6):research0029.1-research0029.12
    342. Hanna W W. (1995) Centipedegrass-diversity and vulnerability[J]. Crop Science,35:332-334
    343. Hanson A A, Juska F V, Burton G W. (1969) Species and varieties. In:Hanson A A, Juska F V. Turfgrass science[M]. Agronomy Monograph No.14. American Society of Agronomy, Madison, WI, USA.370-409
    344. He F, Kang JQ, Zhou X. Su Z, Qu LJ, Gu HY. (2008) Variation at the transcriptional level among Chinese natural populations of Arabidopsis thaliana in response to cold stress[J]. Chinese Science Bulletin,53:2989-2999
    345. Herrera-Estrella L, Van den Broeck G, Maenhaut R, Van Montagu M, Schell J, Timko M, Cashmore A. (1984) Light-inducible and chloroplast-associated expression of a chimaeric gene introduced into Nicotiana tabacum using a Ti plasmid vector[J]. Nature,310:115-120
    346. Hiei Y, Ohta S, Komari T, Kumashiro T. (1994) Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA[J]. The Plant Journal,6:271-282
    347. Hightower R C, Meagher R B. (1986) The molecular evolution of Actin[J]. Genetics,114:315-332
    348. Hong JP, Kim W T. (2005) Isolation and functional characterization of the Ca-DREBLP1 gene encoding a dehydration-responsive element binding-factor-like protein 1 in hot pepper (Capsicum annuum L. cv. Pukang)[J]. Planta,220:875-888
    349. Hsieh TH, Lee JT, Chamg YY, Chan MT. (2002a) Tomato plants ectopically expressing Arabidopsis CBF1 show enhanced resistance to water deficit stress[J]. Plant Physiology,130:618-626
    350. Hsieh TH, Lee JT, Yang PT, Chiu LH, Chamg YY, Wang YC, Chan MT. (2002b) Heterology expression of the Arabidopsis C-repeat/dehydration response element binding factor 1 gene confers elevated tolerance to chilling and oxidative stresses in transgenic tomato[J]. Plant Physiology,129:1086-1094
    351. Hu ZH, Chen JQ, Wu GT, Jin W, Lang CX, Huang RZ, Wang FL, Liu ZH, Chen XY.(2005) Highly efficient transformation and plant regeneration of tall fescue mediated by Agrobacterium tumefaciens[J]. Journal of Plant Physiology and Molecular Biology,31:149-159
    352. Huang B, Duncan R R, Carrow R N. (1997) Drought-resistance mechanisms of seven warm-season turfgrasses under surface soil drying:1. Shoot response[J]. Crop Science,37:1858-1863
    353. Huang B, Jin LG, Liu JY. (2007) Molecular cloning and functional characterization of a DREB1/CBF-like gene (GhDREB1L) from cotton[J]. Science in China Series C:Life Sciences,50:7-14
    354. Huang B, Liu JY. (2006) A cotton dehydration responsive element binding protein functions as a transcriptional repressor of DRE-mediated gene expression[J]. Biochemical and Biophysical Research Communications,343:1023-1031
    355. Hughes M A, Dunn M A. (1996) The molecular biology of plant acclimation to low temperature[J]. Journal of Experimental Botany, 47:291-305
    356. Ishitani M, Xiong LM, Lee H, Stevenson B, Zhu JK. (1998) HOS1, a genetic locus involved in cold-responsive gene expression in Arabidopsis[J].The Plant Cell,10:1151-1162
    357. Iwasaki T, Kiyosue T, Yamaguchi-Shinozaki K, Shinozaki K (1997) The dehydration-inducible rd17 (cor47) gene and its promoter region in Arabidopsis thaliana[J].Plant Physiology.115:1287
    358. Jaglo K R, Kleff S, Amundsen K L, Zhang X, Haake V, Zhang J Z, Deits T, Thomashow M F. (2001) Components of the Arabidopsis C-repeat/dehydration-responsive element binding factor cold-response pathway are conserved in Brassica napus and other plant species[J]. Plant Physiology,127:910-917
    359. Jaglo-Ottosen K R, Gilmour S J, Zarka D G, Schabenberger O. Thomashow M F. (1998) Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance[J]. Science,280:104-106
    360. James V A, Neibaur 1, Altpeter F. (2008) Stress inducible expression of the DREB1A transcription factor from xeric, Hordeum spontaneum L. in turf and forage grass (Paspalum notatum Flugge) enhances abiotic stress tolerance[J]. Transgenic Research,17:93-104
    361. Jia JP, Fu JJ, Zheng J, Zhou X, Huai JL, Wang JH, Wang M. Zhang Y, Chen XP, Zhang JP, Zhao JF. Su Z, Lv YP, Wang GY. (2006) Annotation and expression profile analysis of 2073 full-length cDNAs from stress-induced maize (Zea mays L.) seedlings[J]. The Plant Journal, 48:710-727
    362. Jiang C, Iu B, Singh J. (1996) Requirement of a CCGAC cis-acting element for cold induction of the BNI15 gene from winter Brassica napus[J]. Plant Molecular Biology,30:679-684
    363. Jiang TL, Li YX, Yang ZS, Han SJ, Chen GD. (2007) Construction and identification of a cDNA library for the flower buds of Epimedium brevicornu Maxim[J]. Journal of Wuhan Botanical Research,25:105-108
    364. Joe M K, Park S M, Lee Y S, Hwang D S, Hong C B. (2000) High temperature stress resistance of Escherichia coli induced by a tobacco class ⅰ low molecular weight heat-shock protein[J]. Molecules and Cells,10:519-524
    365. Jofuku K D, Boer BGWd, Montagu M V, Okamuro J K. (1994) Control of Arabidopsis flower and seed development by the homeotic gene APETALA2[J]. The Plant Cell,6:1211-1225
    366. Kagaya Y. Ohmiya K, Hattori T. (1999) RAV1, a novel DNA-binding protein, binds to bipartite recognition sequence through two distinct DNA-binding domains uniquely found in higher plants[J]. Nucleic Acids Research.27:470-478
    367. Kandasamy M K, McKinney E C, Meagher R B. (1999) The late pollen-specific actins in angiosperms[J]. The Plant Journal,18: 681-691
    368. Kandasamy M K, McKinney E C, Meagher R B. (2002) Functional nonequivalency of actin isovariants in Arabidopsis[J]. Molecular Biology of the Cell,13:251-261
    369. Kandror O, DeLeon A, Goldberg A L. (2002) Trehalose synthesis is induced upon exposure of Escherichia coli to cold and is essential for viability at low temperatures[J]. Proceedings of the National Academy of Sciences of the USA,99:9727-9732
    370. Kandror O. Goldberg A L. (1997) Trigger factor is induced upon cold shock and enhances viability of Escherichia coli at low temperatures[J]. Proceedings of the National Academy of Sciences of the USA,94:4978-4981
    371. Kasuga M, Liu Q, Miura S, Yamaguchi-Shinozaki K, Shinozaki K. (1999) Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor[J]. Nature Biotechnology,17:287-291
    372. Kasuga M, Miura S, Shinozaki K, Yamaguchi-Shinozaki K. (2004) A combination of the Arabidopsis DREB1A gene and stress-inducible rd29A promoter improved drought- and low-temperature stress tolerance in tobacco by gene transfer[J]. Plant and Cell Physiology, 45:346-350
    373. Kayal W E, Navarro M, Marque G, Keller G, Marque C, Teulieres C. (2006) Expression profile of CBF-like transcriptional factor genes from Eucalyptus in response to cold[J]. Journal of Experimental Botany,57:2455-2469
    374. Kaye C, Neven L, Hofig A, Li QB. Haskell D, Guy C. (1998) Characterization of a gene for spinach CAP160 and expression of two spinach cold-acclimation proteins in tobacco[J]. Plant Physiology; 116:1367-1377
    375. Kenna M R, Horst G L. (1993) Turfgrass water conservation and quality[J]. International Turfgrass Society Research Journal,7: 99-113
    376. Kikuchi S, Satoh K, Nagata T, Kawagashira N, Doi K, Kishimoto N, Yazaki J, Ishikawa M, Yamada H, Ooka H, Hotta 1, Kojima K, Namiki T, Ohneda E, Yahagi W, Suzuki K, Li C J, Ohtsuki K, Shishiki T, Otomo Y, Murakami K, Iida Y Sugano S, Fujimura T, Suzuki Y, Tsunoda Y, Kurosaki T, Kodama T, Masuda H, Kobayashi M, Xie Q, Lu M, Narikawa R, Sugiyama A, Mizuno K, Yokomizo S, Niikura J, Ikeda R, Ishibiki J, Kawamata M, Yoshimura A, Miura J, Kusumegi T, Oka M, Ryu R, Ueda M, Matsubara K, Kawai J, Caminci P, Adachi J, Aizawa K, Arakawa T, Fukuda S, Hara A, Hashidume W, Hayatsu N, Imotani K, Ishii Y Itoh M. Kagawa I, Kondo S, Konno H, Miyazaki A, Osato N, Ota Y, Saito R, Sasaki D, Sato K, Shibata K, Shinagawa A, Shiraki T, Yoshino M, Hayashizaki Y. (2003) Collection, mapping, and annotation of over 28,000 cDNA clones from japonica rice[J]. Science,301:376-379
    377. Kim DH, Chai ML, Senthil K, Lee JM, Park MH, Kim JY. (2001) Factors affecting the transformation of bentgrass (Agrostis spp.) based on Agrobacterium tumefaciens[J]. Journal of the Korean Society for Horticultural Science,42:243-248
    378. Kitashiba H, Ishizaka T, Isuzugawa K, Nishimura K, Suzuki T. (2004) Expression of a sweet cherry DREB1/CBF ortholog in Arabidopsis confers salt and freezing tolerance[J]. Journal of Plant Physiology,161:1171-1176
    379. Kizis D, Lumbreras V, Pages M. (2001) Role of AP2/EREBP transcription factors in gene regulation during abiotic stress[J]. FEBS Letters,498:187-189
    380. Knight H, Zarka D G, Okamoto H, Thomashow M F, Knight M R. (2004) Abscisic acid induces CBF gene transcription and subsequent induction of cold-regulated genes via the CRT promoter element[J]. Plant Physiology,135:1710-1717
    381. Koichi T, Bae CH, Seo MS, Song IJ, Lim YP, Song PS, Lee HY. (2002) Overcoming of barriers to transformation in monocot plant[J]. Journal of Plant Biotechnology,4:135-141
    382. Kosmala A, Zwierzykowski Z, Gasior D, Rapacz M, Zwierzykowska E, Humphreys M W. (2006) GISH/FISH mapping of genes for freezing tolerance transferred from Festuca pratensis to Lolium muliflorum[J] Heredity,96:243-251
    383. Koukolikova-Nicola Z, Shillito R D, Hohn B, Wang K, van Montagu M, Zembryski P. (1985) Involvement of circular intermediates in the transfer of T-DNA from Agrobacterium tumefaciens to plant cells[J]. Nature,313:191-196
    384. Krylov A S, Zasedateleva O A, Prokopenko D V, Rouviere-Yaniv J, Mirzabekov A D. (2001) Massive parallel analysis of the binding specificity of histone-like protein HU to single- and double-stranded DNA with generic oligodeoxyribonucleotide microchips[J]. Nucleic Acids Research,29:2654-2660
    385. Kumar S, Dudley J, Nei M, Tamura K. (2008) MEGA:A biologist-centric software for evolutionary analysis of DNA and protein sequences[J]. Briefings in Bioinformatics,9:299-306
    386. Labra M, Savini C, Bracale M, Pelucchi N, Colombo L, Bardini M, Sala F. (2001) Genomic changes in transgenic rice (Oryza sativa L.) plants produced by infecting calli with Agrobacterium tumefaciens[J]. Plant Cell Reports,20:325-330
    387. Lange B M, Wildung M R, Stauber E J, Sanchez C, Pouchnik D, Croteau R. (2000) Probing essential oil biosynthesis and secretion by functional evaluation of expressed sequence tags from mint glandular trichomes[J]. Proceedings of the National Academy of Sciences of the USA,97:2934-2939
    388. Lee G J, Yoo Y K, Kim K S. (1994) Comparative salt tolerance study in zoysiagrasses-Ⅱ. Interspecific comparison among eight zoysiagrasses (Zoysia spp.)[J]. Journal of the Korean Society for Horticultural Science,35(2):178-185
    389. Lee H, Xiong LM, Gong ZZ, Ishitani M, Stevenson B, Zhu JK. (2001) The Arabidopsis HOS1 gene negatively regulates cold signal transduction and encodes a RING finger protein that displays cold-regulated nucleo-cytoplasmic partitioning[J]. Genes and Development,15: 912-924
    390. Lee L. (1996) Turfgrass biotechnology[J]. Plant Science,115:1-8
    391. Lee SC, Huh KW, An K, An G, Kim SR. (2004) Ectopic expression of a cold-inducible transcription factor, CBF1/DREB1b, in transgenic rice (Oryza sativa L.)[J]. Molecules and Cells,18:107-114
    392. Lee SH, Lee DG, Woo HS, Lee KW, Kim DH, Kwak SS, Kim JS, Kim H, Ahsan N, Choi MS, Yang JK, Lee BH. (2006) Production of transgenic orchardgrass via Agrobacterium-mediated transformation of seed-derived callus tissues[J]. Plant Science,171:408-414
    393. Li F, Jin Z, Qu W, Zhao D, Ma F. (2006a) Cloning of a cDNA encoding the Saussurea medusa chalcone isomerase and its expression in transgenic tobacco[J]. Plant Physiology and Biochemistry,44:455-461
    394. Li P, Chen F, Quan C, Zhang GY. (2005) OsDREB1 gene from rice enhances cold tolerance in tobacco[J]. Tsinghua Science and Technology,10:478-483
    395. Li RF, Wei JH, Wang HZ, He J, Sun ZY. (2006b) Development of highly regenerable callus lines and Agrobacterium-mediated transformation of Chinese lawngrass (Zoysia sinica Hance) with a cold inducible transcription factor, CBF1[J]. Plant Cell, Tissue and Organ Culture,85:297-305
    396. Liang DC, Wu CY, Li CS, Xu CG, Zhang JW, Kilian A, Li XH, Zhang QF, Xiong LZ. (2006) Establishment of a patterned GAL4-VP16 transactivation system for discovering gene function in rice[J]. The Plant Journal,46:1059-1072
    397. Liu LQ, Zhu K, Yang YF, Wu J, Chen FD, Yu DY. (2008) Molecular cloning, expression profiling and trans-activation property studies of a DREB2-like gene from chrysanthemum (Dendranthema vestitum)[J]. Journal of Plant Research,121:215-226
    398. Liu N, Zhong NQ, Wang GL, Li LJ, Liu XL, He YK, Xia GX. (2007) Cloning and functional characterization of PpDBF1 gene encoding a DRE-binding transcription factor from Physcomitrella patens[J]. Planta,226:827-838
    399. Liu Q, Kasuga M. Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K. (1998) Two transcription factors, DREB1 and DREB2, with an AP2/EREBP DNA-binding domain separate two cellular signal transduction pathways in drought and low-temperature-responsive gene expression in Arabidopsis[J]. The Plant Cell,10:1391-1406
    400. Liu Q, Zhang GY, Chen SY. (2001) Structure and regulatory function of plant transcription factors[J]. Chinese Science Bulletin,46: 271-278
    401. Liu Q, Zhao NM, Yamaguch-Shinozaki K, Shinozaki K. (2000) Regulatory role of DREB transcription factors in plant drought, salt and cold-tolerance[J]. Chinese Science Bulletin,45:970-975
    402. Liu RL, Liu MQ, Liu J, Chen YZ, Chen YY, Lu CF. (2010) Heterologous expression of a Ammopiptanthus mongolicus late embryogenesis abundant protein gene (AmLEA) enhances Escherichia coli viability under cold and heat stress[J]. Plant Growth Regulation,60: 163-168
    403. Livak K J, Schmittgen T D. (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCt method[J].Methods,25:402-408
    404. Logemann E, Birkenbihl R P, Ulker B, Somssich I E. (2006) An improved method for preparing Agrobacterium cells that simplifies the Arabidopsis transformation protocol[J]. Plant Methods,2:16
    405. Lyons J M. (1973) Chilling injury in plants[J]. Annual Review of Plant Physiology,24:445-466
    406. Magome H, Yamaguchi S, Hanada A, Kamiya Y, Oda K. (2004) Dwarf and delayed-flowering 1, a novel Arabidopsis mutant deficient in gibberellin biosynthesis because of overexpression of a putative AP2 transcription factor[J]. The Plant Journal,37:720-729
    407. Maier F P, Lang N S, Fry J D.(1994) Evaluation of an electrolyte leakage technique to predict St. Augustinegrass freezing tolerance[J]. HortScience,29:316-318
    408. Marcum K B, Anderson S J, Engelke M C. (1998) Salt gland ion secretion:a salinity tolerance mechanism among five zoysiagrass species[J].Crop Science,38:806-810
    409. Marcum K B, Murdoch C L. (1990) Growth responses, ion relations, and osmotic adaptations of eleven C4 turfgrasses to salinity[J]. Agronomy Journal,82:892-896
    410. Marcum K B, Murdoch C L.(1994) Salinity tolerance mechanisms of six C4 turfgrasses[J].Journal of the American Society for Horticultural Science,119:779-784
    411. Marone M, Mozzetti S, De Ritis D,Pierelli L, Scambia G. (2001) Semiquantitative RT-PCR analysis to assess the expression levels of multiple transcripts from the same sample[J]. Biological Procedures Online,3:19-25
    412. Maruyama K, Sakuma Y, Kasuga M, Ito Y, Seki M, Goda H, Shimada Y, Yoshida S, Shinozaki K, Yamaguchi-Shinozaki K. (2004) Identification of cold-inducible downstream genes of the Arabidopsis DREB1A/CBF3 transcriptional factor using two microarray systems[J]. The Plant Journal,38:982-993
    413. Mascarenhas J P. (1993) Molecular mechanisms of pollen tube growth and differentiation[J]. The Plant Cell,5:1303-1314
    414. Matsuba K, Imaizumi N, Kaneko S, Samejima M, Ohsugi R. (1997) Photosynthetic responses to temperature of phosphoenolpyruvate carboxykinase type C4 species differing in cold sensitivity[J]. Plant, Cell and Environment,20:268-274
    415. Matthysse A G. (1986) Initial interactions of Agrobacterium tumefaciens with plant host cells[J]. Critical Reviews in Microbiology, 13:281-307
    416. McDonnell R E, Conger B V. (1984) Callus induction and plantlet formation from mature embryo explants of Kentucky bluegrass[J]. Crop Science,24:573-578
    417. Meadus W J. (2003) A semi-quantitative RT-PCR method to measure the in vivo effect of dietary conjugated linoleic acid on porcine muscle PPAR gene expression[J]. Biological Procedures Online,5:20-28
    418. Meagher R B, McKinney E C, Vitale A V. (1999) The evolution of new structures:clues from plant cytoskeletal genes[J]. Trends in Genetics,15:278-284
    419. Meagher R B. (1991) Divergence and differential expression of actin gene families in higher plants[J]. International Review of Cytology,125:139-163
    420. Medina J, Bargues M, Terol J, Perez-Alonso M, Salinas J. (1999) The Arabidopsis CBF gene family is composed of three genes encoding AP2 domain-containing proteins whose expression is regulated by low temperature but not by abscisic acid or dehydration[J]. Plant Physiology,119:463-469
    421. Miao Y, Lv D, Wang P, Wang XC, Chen J, Miao C, Song CP. (2006) An Arabidopsis glutathione peroxidase functions as both a redox transducer and a scavenger in abscisic acid and drought stress responses[J]. The Plant Cell,18:2749-2766
    422. Miller J, Stagljar I. (2004) Using the yeast two-hybrid system to identify interacting proteins[J]. Methods in Molecular Biology,261: 247-262
    423. Mockler T C, Yu X, Shalitin D, Parikh D, Michael T P, Liou J, Huang J, Smith Z, Alonso J M, Ecker J R, Chory J, Lin C. (2004) Regulation of flowering time in Arabidopsis by K homology domain proteins[J]. Proceedings of the National Academy of Sciences of the USA, 101:12759-12764
    424. Moffat A S. (2002) Finding new ways to protect drought-stricken plants[J]. Science,296:1226-1229
    425. Mohapatra S S, Poole R J, Dhindsa R S. (1987) Changes in protein patterns and translatable messenger RNA populations during cold acclimation of alfalfa[J]. Plant Physiology,84:1172-1176
    426. Moniz de Sa M, Drouin G.(1996) Phylogeny and substitution rates of angiosperm actin genes[J]. Molecular Biology and Evolution, 13:1198-1212
    427. Muchowski P J, Clark J I. (1998) ATP-enhanced molecular chaperone functions of the small heat-shock protein human aB crystallin[J]. Proceedings of the National Academy of Sciences of the USA,95,1004-1009
    428. Murray J J, Engelke M C. (1983) Exploration for zoysiagrass in Eastern Asia[J]. USGA Green Section Record,21:8-12
    429. Nakashima K, Ito Y, Yamaguchi-Shinozaki K. (2009) Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and grasses[J]. Plant Physiology,149:88-95
    430. Nakashima K, Shinwari Z K, Sakuma Y, Seki M, Miura S, Shinozaki K, Yamaguchi-Shinozaki K. (2000) Organization and expression of two Arabidopsis DREB2 genes encoding DRE-binding proteins involved in dehydration- and high-salinity-responsive gene expression[J]. Plant Molecular Biology,42:657-665
    431. Nakashima K, Yamaguchi-Shinozaki K. (2006) Regulons involved in osmotic stress-responsive and cold stress-responsive gene expression in plants[J]. Plant Physiology,126:62-71
    432. Novillo F, Alonso J M, Ecker J R, Salinas J. (2004) CBF2/DREB1C is a negative regulator of CBF1/DREB1B and CBF3/DREB1A expression and plays a central role in stress tolerance in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the USA,101: 3985-3990
    433. Ogihara Y, Mochida K, Kawaura K, Murai K, Seki M, Kamiya A, Shinozaki K, Caminci P, Hayashizaki Y, Shin-I T, Kohara Y, Yamazaki Y (2004) Construction of a full-length cDNA library from young spikelets of hexaploid wheat and its characterization by large-scale sequencing of expressed sequence tags[J].Genes and Genetic Systems,79:227-232
    434. Oh SJ, Song SI, Kim YS, Jang HJ, Kim SY, Kim M, Kim YK, Nahm B H, Kim J K. (2005) Arabidopsis CBF3/DREB1A and ABF3 in transgenic rice increased tolerance to abiotic stress without stunting growth[J]. Plant Physiology,138:341-351
    435. Ohme-Takagi M, Shinshi H.(1995) Ethylene-inducible DNA binding proteins that interact with an ethylene-responsive element[J] The Plant Cell,7:173-182
    436. Oishi H, Ebina M. (2005) Isolation of cDNA and enzymatic properties of betaine aldehyde dehydrogenase from Zoysia temiifolia[J]. Journal of Plant Physiology,162:1077-1086
    437. Okamuro J K, Caster B, Villarroel R, Montagu M V, Jofuku K D. (1997) The AP2 domain of APETALA2 defines a large new family of DNA binding-proteins in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the USA,94:7076-7081
    438. Okawara R, Kaneko S. (1995) Reduction of chlorophyll fluorescence in zoysiagrasses at chilling and high temperatures with moderate light[J]. Grassland Science,41:31-36
    439 Okker R J H, Spaink H. Hille J, van Brussel T A N, Lugtenberg B, Schilperoort R A. (1984) Plant-inducible virulence promoter of the Agrobacterium tumefaciens Ti plasmid[J]. Nature,312:564-566
    440. Ouellet F, Vazquez-Tello A, Sarhan F. (1998) The wheat wcs120 promoter is cold-inducible in both monocotyledonous and dicotyledonous species[J]. FEBS Letters,423:324-328
    441. Owens C L, Thomashow M F, Hancock J F, Iezzoni A F. (2002) CBF1 orthologs in sour cherry and strawberry and the heterologous expression of CBFI in strawberry[J]. Journal of the American Society for Horticultural Science,127:489-494
    442. Patton A J, Cunningham S M, Volenec J J, Reicher Z J. (2007a) Differences in freeze tolerance of zoysiagrasses:Ⅰ. Role of proteins[J]. Crop Science,47:2162-2169
    443. Patton A J, Cunningham S M, Volenec J J, Reicher Z J. (2007b) Differences in freeze tolerance of zoysiagrasses:II. Carbohydrate and proline accumulation[J]. Crop Science,47:2170-2181
    444. Patton A J, Reicher Z J. (2007a) Zoysiagrass species and genotypes differ in their winter injury and freeze tolerance[J]. Crop Science, 47:1619-1627
    445. Patton A, Reicher Z. (2007b) Zoysiagrass winter hardiness[J].Golf Course Management,75:119-123
    446. Pearce R S. (1999) Molecular analysis of acclimation to cold[J]. Plant Growth Regulation,29:47-76
    447. Pennisi E. (1998) Transferred gene helps plants weather cold snaps[J].Science,280:36
    448. Philley H W, Watson C E, Krans Jr J V, Goatley J M, Maddox Jr V L, Tomaso-Peterson M. (1998) Inheritance of cold tolerance in St. Augustinegrass[J]. Crop Science,38:451-454
    449. Qi JL, Zhang WJ, Liu SH, Wang H, Sun DY, Xu GH, Shi MW, Liu Z, Zhang MS, Zhang HM, Yang YH. (2008) Expression analysis of light-regulated genes isolated from a full-length-enriched cDNA library of Onosma paniculatum cell cultures[J]. Journal of Plant Physiology, 165:1474-1482
    450. Qian YL. Engelke M C, Foster M J V. (2000) Salinity effects on zoysiagrass cultivars and experimental lines[J]. Crop Science,40: 488-492
    451. Qian YL, Fry J D, Upham W S. (1997) Rooting and drought avoidance of warm-season turfgrasses and tall fescue in Kansas[J]. Crop Science,37:905-910
    452. Qin F, Kakimoto M, Sakuma Y, Maruyama K, Osakabe Y, Tran L P, Shinozaki K, Yamaguchi-Shinozaki K. (2007) Regulation and functional analysis of ZmDREB2A in response to drought and heat stresses in Zea mays L[J]. The Plant Journal,50:54-69
    453. Qin F, Li J, Zhang GY, Zhao J, Chen SY, Liu Q. (2003) Isolation and structural analysis of DRE-binding transcription factor from Maize (Zea mays L.)[J]. Acta Botanica Sinica,45:331-339
    454. Qin F, Sakuma Y, Li J, Liu Q, Li YQ, Shinozaki K, Yamaguchi-Shinozaki K. (2004) Cloning and functional analysis of a novel DREB1/CBF transcription factor involved in cold-responsive gene expression in Zea mays L[J]. Plant and Cell Physiology,45:1042-1052
    455. Rahman S M L, Mackay W A, Ebina M, Hitoshi N, Quebedeaux B.(2003) Genetic transformation of Zoysia japonica using Agrobacterium tumefaciens[J]. Subtropical Plant Science,55:11-17
    456. Ramani B, Reeck T, Debez A, Stelzer R, Hucbzermeyer B, Schmidt A, Papenbrock J. (2006) Aster tripolium L. and Sesuvium portulacastrum L.:two halophytes, two strategies to survive in saline habitats[J]. Plant Physiology and Biochemistry,44:395-408
    457. Reece K S, McElroy D. Wu R (1990) Genomic nucleotide sequence of four rice (Oryza sativa) actin genes[J]. Plant Molecular Biology,14:621-624
    458. Riechmann J L, Heard J, Martin G, Teuber L, Jiang C, Keddie J, Adam L, Pieneda O, Tatcliffe O J, Samaha R R, Creelman R, Pilgrim M, Broun P, Zhang JZ, Ghandehair D, Sherman B K, Yu G (2000) Arabidopsis transcription factors:genome-wide comparative analysis among eukaryotes. Science,290:2105-2110
    459. Riechmann J L, Meyerowitz E M. (1998) The AP2/EREBP family of plant transcription factors[J]. Biological Chemistry,379: 633-646
    460. Rogers R A, Dunn J H, Nelson C J. (1975) Cold hardening and carbohydrate composition of Meyer zoysia[J]. Agronomy Journal,67: 836-838
    461. Rogers R A, Dunn J H, Nelson C J. (1977) Photosynthesis and cold hardening in zoysia and bermudagrass[J]. Crop Science,17: 727-732
    462. Rohde P, Hincha D K, Heyer A G. (2004) Heterosis in the freezing tolerance of crosses between two Arabidopsis thaliana accessions (Columbia-0 and C24) that show differences in non-acclimated and acclimated freezing tolerance[J]. The Plant Journal,38:790-799
    463. Saitou N, Nei M. (1987) The neighbor-joining method:a new method for reconstructing phylogenetic trees[J]. Molecular Biology and Evolution,4:406-425
    464. Sakuma Y. Liu Q, Dubouzet J G, Abe H, Shinozaki K, Yamaguchi-Shinozaki K. (2002) DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration- and cold-inducible gene expression[J]. Biochemical and Biophysical Research Communications,290:998-1009
    465. Sakuma Y, Maruyama K, Osakabe Y, Qin F, Seki M, Shinozaki K, Yamaguchi-Shinozaki K. (2006a) Functional analysis of an Arabidopsis transcription factor, DREB2A, involved in drought-responsive gene expression[J]. The Plant Cell,18:1292-1309
    466. Sakuma Y, Maruyama K, Qin F, Osakabe Y, Shinozaki K, Yamaguchi-Shinozaki K. (2006b) Dual function of an Arabidopsis transcription factor DREB2A in water-stress-responsive and heat-stress-responsive gene expression[J]. Proceedings of the National Academy of Sciences of the USA,103:18822-18827
    467. Savitch L V, Allard G, Seki M, Robert L S, Tinker N A, Huner N P, Shinozaki K, Singh J. (2005) The effect of overexpression of two Brassica CBF/DREB1-like transcription factors on photosynthetic capacity and freezing tolerance in Brassica napvs[J]. Plant and Cell Physiology, 46:1525-1539
    468. Seki M, Caminci P, Nishiyama Y, Hayashizaki Y, Shinozaki K. (1998) High-efficiency cloning of Arabidopsis full-length cDNA by biotinylated CAP trapper[J]. The Plant Journal,15:707-720
    469. Seki M, Kamei A, Yamaguchi-Shinozaki K, Shinozaki K. (2003) Molecular responses to drought, salinity and frost:common and different paths for plant protection[J]. Current Opinion in Biotechnology,14:194-199
    470. Seki M, Narusaka M, Abe H, Kasuga M, Yamaguchi-Shinozaki K, Caminci P, Hayashizaki Y, Shinozaki K. (2001a) Monitoring the expression pattern of 1300 Arabidopsis genes under drought and cold stresses by using a full-length cdna microarray[J]. The Plant Cell,13:61-72
    471. Seki M, Narusaka M, Ishida J, Nanjo T, Fujita M, Oono Y, Kamiya A, Nakajima M, Enju A, Sakurai T, Satou M, Akiyama K, Taji T, Yamaguchi-Shinozaki K, Caminci P, Kawai J, Hayashizaki Y, Shinozaki K. (2002a) Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray[J]. The Plant Journal,31:279-292
    472. Seki M, Narusaka M, Kamiya A, Ishida J, Satou M, Sakurai T, Nakajima M, Enju A, Akiyama K, Oono Y, Muramatsu M, Hayashizaki Y, Kawai J, Caminci P, Itoh M, Ishii Y, Arakawa T, Shibata K, Shinagawa A, Shinozaki K. (2002b) Functional annotation of a full-length Arabidopsis cDNA collection[J]. Science,296:141-145
    473. Seki M, Narusaka M, Yamaguchi-Shinozaki K, Caminci P, Kawai J, Hayashizaki Y, Shinozaki K. (2001b) Arabidopsis encyclopedia using full-length cDNAs and its application[J]. Plant physiology and Biochemistry,39:211-220
    474 Shah D M. Hightower R C, Meagher R B. (1982) Complete nucleotide sequence of a soybean actin gene[J]. Proceedings of the National Academy of Sciences of the USA,79:1022-1026
    475. Shah D M, Hightower R C, Meagher R B. (1983) Genes encoding actin in higher plants:intron positions are highly conserved but the coding sequences are not[J]. Journal of Molecular and Applied Genetics,2:111-126
    476. Shahba M A, Qian Y L, Hughes H G, Christensen D, Koski A J. (2003a) Cold hardiness of saltgrass accessions[J]. Crop Science,43: 2142-2147
    477 Shahba M A, Qian Y L, Hughes H G Koski A J, Christensen D. (2003b) Relationships of soluble carbohydrates and freeze tolerance in saltgrass[J]. Crop Science,43:2148-2153
    478. Shen YG, Zhang WK, He SJ, Zhang JS, Liu Q, Chen SY. (2003a) An EREBP/AP2-type protein in Triticum aestivum was a DRE-binding transcription factor induced by cold, dehydration and ABA stress[J]. Theoretical and Applied Genetics,106:923-930
    479. Shen YG Zhang WK, Yan DQ, Du BX, Zhang JS, Liu Q, Chen SY (2003b) Characterization of a DRE-binding transcription factor from a halophyte Atriplex hortensis[J]. Theoretical and Applied Genetics,107:155-161
    480. Shinozaki K, Yamaguchi-Shinozaki K, Seki M. (2003) Regulatory network of gene expression in the drought and cold stress responses[J]. Current Opinion in Plant Biology,6:410-417
    481. Shinozaki K, Yamaguchi-Shinozaki K. (1996) Molecular responses to drought and cold stress[J]. Current Opinion in Biotechnology, 7:161-167
    482. Shinozaki K, Yamaguchi-Shinozaki K. (1997) Gene expressing and signal transduction in water-stress response[J]. Plant Physiology, 115:327-334
    483. Shinwari Z K, Nakashima K, Miura S, Kasuga M, Seki M, Yamaguchi-Shinozaki K, Shinozaki K. (1998) An Arabidopsis gene family encoding DRE/CRT binding proteins involved in low-temperature-responsive gene expression[J]. Biochemical and Biophysical Research Communications,250:161-170
    484. Skinner J S, Szucs P, von Zitzewitz J, Marquez-Cedillo L. Filichkin T, Stockinger E J, Thomashow M F, Chen T H E Hayes P M. (2006) Mapping of barley homologs to genes that regulate low temperature tolerance in Arabidopsis[J]. Theoretical and Applied Genetics,112: 832-842
    485. Skinner J S. von Zitzewitz J, Szucs P, Marquez-Cedillo L. Filichkin T, Amundsen K. Stockinger E J, Thomashow M F, Chen T H H, Hayes P M. (2005) Structural, functional, and phylogenetic characterization of a large CBF gene family in barley[J]. Plant Molecular Biology,59: 533-551
    486. Sk(?)t L, Sackville Hamilton N R, Mizen S, Chorlton K H, Thomas I D. (2002) Molecular genecology of temperature response in Lolium perenne.2. Association of AFLP markers with ecogeography[J]. Molecular Ecology,11:1865-1876
    487. Soto A, Allona 1, Collada C, Guevara M. Casado R, Rodriguez-Cerezo E, Aragoncillo C, Gomez L. (1999) Heterologous expression of a plant small heat-shock protein enhances Escherichia coli viability under heat and cold stress[J]. Plant Physiology,120:521-528
    488. Spangenberg G, Wang ZY, Wu XL, Nagel J, Iglesias VA, Potrykus I. (1995a) Transgenic tall fescue(Festuca arundinacea) and red fescue (F rubra) plants from microprojectile bombardment of embryogenic suspension cells. Journal of Plant Physiology,145:693-701
    489. Spangenberg G, Wang ZY, Wu XL, Nagel J, Potrykus I. (1995b) Transgenic perennial ryegrass (Lolium perenne) plants from microprojectile bombardment of embryogenic suspension cells[J]. Plant Science,108:209-217
    490. Stachel S E, Messens E, van Montagu M, Zambryski P. (1985) Identification of the signal molecules produced by wounded plant cells that activate T-DNA transfer in Agrobacterium tumefaciens[J]. Nature,318:624-629
    491. Stachel S E, Nester E W, Zambryski P C. (1986a) A plant cell factor induces Agrobacterium tumefaciens vir gene expression[J]. Proceedings of the National Academy of Sciences of the USA,83:379-383
    492. Stachel S E, Nester E W.(1986) The genetic and transcriptional organization of the vir region of the A6 Ti plasmid of Agrobacterium tumefaciens[J]. The EMBO journal,5:1445-1454
    493. Stachel S E, Timmerman B, Zambryski P. (1986b) Generation of single-stranded T-DNA molecules during the initial stages of T-DNA transfer from Agrobacterium tumefaciens to plant cells[J]. Nature,322:706-712
    494. Stachel S E, Zambryski P C. (1986) Agrobacterium tumefaciens and the susceptible plant cell:A novel adaptation of extracellular recognition and DNA conjugation[J]. Cell,47:155-157
    495. Sterky F, Regan S, Karlsson J, Hertzberg M, Rohde A, Holmberg A, Amini B, Bhaierao R, Larsson M, Villarroel R, Van Montagu M, Sandberg G, Olsson O, Teeri T T, Boerjan W, Gustafsson P, Uhlen M, Sundberg B, Lundeberg J (1998) Gene discovery in the wood-forming tissues of poplar:Analysis of 5,692 expressed sequence tags[J]. Proceedings of the National Academy of Sciences of the USA,95:13330-13335
    496. Stockinger E J, Gilmour S J, Thomashow M F. (1997) Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit[J]. Proceedings of the National Academy of Sciences of the USA,94:1035-1040
    497. Strand A, Hurry V, Gustafsson P, Gardestrom P. (1997) Development of Arabidopsis thaliana leaves at low temperatures releases the suppression of photosynthesis and photosynthetic gene expression despite the accumulation of soluble carbohydrates[J]. The Plant Journal,12: 605-614
    498. Sugui J A, Deising H B. (2002) Isolation of infection-specific sequence tags expressed during early stages of maize anthracnose disease development[J]. Molecular Plant Pathology,3:197-203
    499. Sun P, Guo YH, Qi JJ. (2008) Cloning and sequence analysis of actin gene from Rehmannia glutinosa[J]. Agricultural Science and Technology,9(2):42-44
    500. Tamura K, Dudley J, Nei M, Kumar S. (2007) MEGA4:molecular evolutionary genetics analysis (MEGA) software version 4.0[J]. Molecular Biology and Evolution,24:1596-1599
    501. Tamura K, Yamada T. (2007) A perennial ryegrass CBF gene cluster is located in a region predicted by conserved synteny between Poaceae species[J]. Theoretical and Applied Genetics,114:273-283
    502. Tan W, Chen Y, Zhang L, Lu Y, Li S, Zeng R. Zeng Y, Li Y, Cheng J. (2006) Construction and characterization of a cDNA library from liver tissue of chinese banna minipig inbred line[J]. Transplantation Proceedings,38:2264-2266
    503. Tang MJ, Lu SY, Jing YX, Zhou XJ, Sun JW, Shen SH. (2005a) Isolation and identification of a cold-inducible gene encoding a putative DRE-binding transcription factor from Festuca arundinacea[J]. Plant Physiology and Biochemistry,43:233-239
    504. Tang W, Charles T M, Newton R J. (2005b) Overexpression of the pepper transcription factor CaPF1 in transgenic Virginia pine (Pinus virginiana Mill.) confers multiple stress tolerance and enhances organ growth[J]. Plant Molecular Biology,59:603-617
    505. Terrier N, Ageorges A, Abbal P, Romieu C. (2001) Generation of ESTs from grape berry at various developmental stages[J]. Journal of Plant Physiology,158:1575-1583
    506. Theresa Caridi (Mentor:Ben Dunn, College of Medicine). (2003) Expression and preliminary purification of mouse CLN2 serine protease[J]. October. Undergraduate Research. University of Florida (2002-2003 University Scholar), University Scholars Program
    507. Thomas C, Meyer D, Wolff M, Himber C, Alioua M, Steinmetz A. (2003) Molecular characterization and spatial expression of the sunflower ABP1 gene[J]. Plant Molecular Biology,52:1025-1036
    508. Thomashow M F, Gilmour S J, Stockinger E J, Jaglo-Ottosen K R, Zarka D G. (2001) Role of the Arabidopsis CBF transcriptional activators in cold acclimation[J]. Physiologia Plantarum,112:171-175
    509. Thomashow M F. (1999) Plant cold acclimation:freezing tolerance genes and regulatory mechanisms[J]. Annual Review of Plant Physiology and Plant Molecular Biology,50:571-599
    510. Thomashow M F. (2001) So what's new in the field of plant cold acclimation? Lots[J]! Plant Physiology,125:89-93
    511. Tian B, Lin ZB, Ding Y, Ma QH. (2006) Cloning and characterization of a cDNA encoding Ran binding protein from wheat[J]. DNA Sequence:The Journal of Mapping, Sequencing and Analysis,17:136-142
    512 Toyama K, Bae CH, Kang JG, Lim YP, Adachi TJ, Rui KZ, Song PS, Lee HY (2003) Production of herbicide-tolerant zoysiagrass by Agrobacterium-mediated transformation[J]. Molecules and Cells,16:19-27
    513. Vagujfalvi A, Galiba G, Cattivelli L, Dubcovsky J. (2003) The cold-regulated transcriptional activator Cbf3 is linked to the frost-tolerance locus Fr-A2 on wheat chromosome 5A[J]. Molecular Genetics and Genomics,269:60-67
    514. Vinocur B, Altman A. (2005) Recent advances in engineering plant tolerance to abiotic stress:achievements and limitations[J]. Current Opinion in Biotechnology,16:123-132
    515. Vu H L, Troubetzkoy S, Nguyen H H, Russell M W, Mestecky J. (2000) A method for quantification of absolute amounts of nucleic acids by (RT)PCR and a new mathematical model for data analysis[J]. Nucleic Acids Research,28:e18
    516. Wang H, Datla R, Georges F, Loewen M, Cutler A J. (1995) Promoters from kinl and cor6.6, two homologous Arabidopsis thaliana genes:transcriptional regulation and gene expression induced by low temperature, ABA, osmoticum and dehydration[J]. Plant Molecular Biology, 28:605-617
    517. Wang J H. (2001) Zoysia population in Taiwan[J]. Weed Science Bulletin,22(1):17-30
    518. Wang JW, Yang FP, Chen XQ, Liang RQ, Zhang LQ, Geng DM, Zhang XD, Song YZ, Zhang GS. (2006) Induced expression of DREB transcriptional factor and study on its physiological effects of drought tolerance in transgenic wheat[J]. Acta Genetica Sinica,33:468-476
    519. Wang L, Luo YZ, Zhang L, Zhao J, Hu ZQ, Fan YL, Zhang CY (2008) Isolation and characterization of a C-repeat binding transcription factor from Maize[J]. Journal of Integrative Plant Biology,50:965-974
    520. Wang YC, Chu YG, Liu GF, Wang MH, Jiang J, Hou YJ, Qu GZ. Yang CP. (2007) Identification of expressed sequence tags in an alkali grass (Puccinellia tenuiflora) cDNA library[J]. Journal of Plant Physiology,164:78-89
    521. Wang Z, Triezenberg S J, Thomashow M F, Stockinger E J. (2005) Multiple hydrophobic motifs in Arabidopsis CBF1 COOH-terminus provide functional redundancy in trans-activation[J]. Plant Molecular Biology,58:543-559
    522. Wang ZY, Ge YX. (2006) Recent advances in genetic transformation of forage and turf grasses[J].In Vitro Cellular and Developmental Biology-Plant,42:1-18
    523. Wang ZY, Ye XD, Nagel J, Potrykus I, Spangenberg G. (2001) Expression of a sulphur-rich sunflower albumin gene in transgenic tall fescue (Festuca arundinacea Schreb.) plants[J]. Plant Cell Reports,20:213-219
    524. Warmund M R. Fuller R, Dunn J H. (1998) Survival and recovery of 'Meyer' zoysiagrass rhizomes after extracellular freezing[J]. Journal of the American Society for Horticultural Science,123:821-825
    525. Warren G J. (1998) Cold stress:manipulating freezing tolerance in plants[J]. Current Biology,8:R514-R516
    526. Wasteneys G O, Galway M E. (2003) Remodeling the cytoskeleton for growth and form:An overview with some new views[J]. Annual Review of Plant Biology,54:691-722
    527. Wellenreuther R, Schupp 1, the German cDNA Consortium, Poustka A, Wiemann S. (2004) SMART amplification combined with cDNA size fractionation in order to obtain large full-length clones[J]. BMC Genomics,5:36
    528. White A J. Dunn M A, Brown K, Hughes M A. (1994) Comparative analysis of genomic sequence and expression of a lipid transfer protein gene family in winter barley[J]. Journal of Experimental Botany,45:1885-1892
    529. Wiemann S, Mehrle A, Bechtel S, Wellenreuther R, Pepperkok R, Poustka A, the German cDNA Consortium. (2003) cDNAs for functional genomics and proteomics:the German Consortium[J]. Comptes Rendus Biologies,326:1003-1009
    530 Wu GT, Chen JQ, Hu ZH, Lang CX, Chen XY, Wang FL, Jin W, Xia YW. (2006) Production of transgenic tall fescue plants with enhanced stress tolerances by Agrobacterium tumefacciens-mediated transformation[J]. Agricultural Sciences in China,5:330-338
    531. Wu YY, Chen QJ, Chen M, Chen J, Wang XC. (2005) Salt-tolerant transgenic perennial ryegrass (Lolium perenne L.) obtained by Agrobacterium tumefaciens-mediated transformation of the vacuolar Na+/H+ antiporter gene[J].Plant Science,169:65-73
    532. Xiao HG, Siddiqua M, Braybrook S, Nassuth A. (2006) Three grape CBF/DREB1 genes respond to low temperature, drought and ABA[J]. Plant, Cell and Environment,29:1410-1421
    533. Xiao HG, Tattersall E A R. Siddiqua M K, Cramer G R, Nassuth A. (2008) CBF4 is a unique member of the CBF transcription factor family of Vitis vinifera and Vitis riparia[J]. Plant, Cell and Environment,31:1-10
    534 Xiao L, Ha SB. (1997) Efficient selection and regeneration of creeping bentgrass transformants following particle bombardment[J]. Plant Cell Reports,16:874-878
    535. Xie YL, Wang ZZ, Liu Q, Zhang SP. (2006) Cloning and functional identification of stress-resistant BeDREB genes from Bermuda grass[J]. Frontiers of Biology in China,4:367-374
    536. Xiong LZ, Yang YN. (2003) Disease resistance and abiotic stress tolerance in rice are inversely modulated by an abscisic acid-inducible mitogen-activated protein kinase[J]. The Plant Cell,15:745-759
    537. Xiong YW, Fei SZ. (2006) Functional and phylogenetic analysis of a DREB/CBF-like gene in perennial ryegrass (Lolium perenne L.)[J]. Planta.224:878-888
    538. Xuan JP, Liu JX, Gao H, Hu HG, Cheng XL. (2009) Evaluation of low-temperature tolerance of zoysia grass[J]. Tropical Grasslands, 43.118-124
    539. Xue GP, Loveridge C W. (2004) HvDRF1 is involved in abscisic acid mediated gene regulation in barley and produces two forms of AP2 transcriptional activators, interacting preferably with a CT-rich element[J]. The Plant Journal,37:326-339
    540. Xue GP. (2003) The DNA-binding activity of an AP2 transcriptional activator HvCBF2 involved in regulation of low-temperature responsive genes in barley is modulated by temperature[J]. The Plant Journal,33:373-383
    541. Yamaguchi-Shinozaki K, Kasuga M, Liu Q, Nakashima K, Sakuma Y, Abe H, Shinwari Z K, Seki M, Shinozaki K. (2002) Biological mechanisms of drought stress response[J]. JIRCAS Working Report,1-8
    542. Yamaguchi-Shinozaki K, Koizumi M, Urao S, Shinozaki K. (1992) Molecular cloning and characterization of 9 cDNAs for genes that are responsive to desiccation in Arabidopsis thaliana: Sequence analysis of one cdna clone that encodes a putative transmembrane channel protein[J]. Plant and Cell Physiology,33:217-224
    543. Yamaguchi-Shinozaki K, Shinozaki K. (1994) A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress[J]. The Plant Cell,6:251-264
    544. Yamaguchi-Shinozaki K, Shinozaki K. (2005) Organization of cis-acting regulatory elements in osmotic- and cold-stress responsive promoters[J]. Trends in Plant Science,10:88-94
    545. Yamaguchi-Shinozaki K, Shinozaki K. (2006) Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses[J]. Annual Review of Plant Physiology,57:781-803
    546. Yamamoto A, lwahashi M, Yanofsky M F, Nester E W, Takebe I, Machida Y. (1987) The promoter proximal region in the virD locus of Agrobacterium tumefaciens is necessary for the plant-inducible circularization of T-DNA[J]. Molecular and General Genetics,206:174-177
    547. Yang TW, Zhang LJ, Zhang TG, Zhang H, Xu SJ, An LZ. (2005) Transcriptional regulation network of cold-responsive genes in higher plants[J]. Plant Science,169:987-995
    548. Yang YF, Wu J, Zhu K, Liu LQ, Chen FD, Yu DY. (2009) Identification and characterization of two chrysanthemum (Dendronthema ×moriforhum) DREB genes, belonging to the AP2/EREBP family[J]. Molecular Biology Reports,36:71-81
    549. Yeh CH, Chang P L, Yeh KW, Lin WC, Chen YM, Lin CY. (1997) Expression of a gene encoding a 16.9-kDa heat-shock protein, Oshsp16.9, in Escherichia coli enhances thermotolerance[J]. Proceedings of the National Academy of Sciences of the USA,94:10967-10972
    550. Yeh CH, Chen YM, Lin CY (2002) Functional regions of rice heat shock protein, Oshsp16.9, required for conferring thermotolerance in Escherichia coli[J]. Plant Physiology,128:661-668
    551. Youngner V B. (1961) Growth and flowering of zoysia species in response to temperatures, photoperiods, and light intensities[J]. Crop Science, 1:91-93
    552. Yuan XJ, Wang ZY, Liu JX, She JM. (2009) Development of a plant regeneration system from seed-derived calluses of centipedegrass [Eremochloa ophiuroides (Munro.) Hack][J]. Scientia Horticulturae,120:96-100
    553. Zambryski P. (1988) Basic processes underlying Agrobacterium-mediated DNA transfer to plant cells[J]. Annual Review of Genetics, 22:1-30
    554. Zhang JZ, Creelman R A, Zhu JK. (2004a) From laboratory to field. Using information from Arabidopsis to engineer salt, cold, and drought tolerance in crops[J]. Plant Physiology,135:615-621
    555. Zhang Q, Fry J. (2006) Preliminary evaluation of freezing tolerance of Meyer and DALZ 0102 zoysiagrass. In:K-State Turfgrass Research 2006:Report of Progress 962[M]. Kansas Agricultural Experiment Station, Kansas State University, Manhattan,2006:16-19
    556. Zhang X, Fowler S G, Cheng HM, Lou YG, Rhee S Y, Stockinger E J, Thomashow M F. (2004b) Freezing-sensitive tomato has a functional CBF cold response pathway. but a CBF regulon that differs from that of freezing-tolerant Arabidopsis[J]. The Plant Journal,39: 905-919
    557. Zhang XR, Henriques R, Lin SS, Niu QW, Chua NH. (2006c) Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method[J]. Nature Protocols,1:641-646
    558. Zhang Y, Mian M A R, Bouton J H. (2006a) Recent molecular and genomic studies on stress tolerance of forage and turf grasses[J]. Crop Science,46:497-511
    559. Zhang Y, Yang TW, Zhang LJ, Zhang TG, Di CX, Xu SJ, An LZ. (2006b) Isolation and expression analysis of two cold-inducible genes encoding putative CBF transcription factors from chinese cabbage (Brassica pekinensis Rupr.)[J]. Journal of Integrative Plant Biology,48: 848-856
    560. Zhao H, Bughrara S S. (2008) Isolation and characterization of cold-regulated transcriptional activator LpCBF3 gene from perennial ryegrass (Lolium perenne L.)[J]. Molecular Genetics and Genomics,279:585-594
    561. Zhao JS, Ren W, Zhi DY, Wang L, Xia GM. (2007) Arabidopsis DREB1A/CBF3 bestowed transgenic tall fescue increased tolerance to drought stress[J]. Plant Cell Reports,26:1521-1528
    562. Zhao TJ, Sun S, Liu Y, Liu JM, Liu Q, Yan YB, Zhou HM. (2006) Regulating the drought-responsive element (DRE)-mediated signaling pathway by synergic functions of trans-active and trans-inactive DRE binding factors in Brassia napus[J].Journal of Biological Chemistry,281:10752-10759
    563. Zuther E, Buchel K, Hundertmark M, Stitt M. Hincha D K, Heyer A G. (2004) The role of raffinose in the cold acclimation response of Arabidopsis thaliana[J].FEBS Letters,576:169-173

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700