用户名: 密码: 验证码:
水稻杂种花粉不育的细胞学研究及两个杂种花粉不育基因的精细定位
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水稻不仅是世界上重要的粮食作物之一,而且是单子叶植物基因组研究的模式植物,全球一半以上的人口以稻米为主食。近年来,由于改良品种的广泛应用和育种家对亲本选择的偏好,使得水稻基因资源变得越来越单一,遗传基础变得越来越狭窄,新的有利基因出现的概率也越来越低,导致水稻产量出现徘徊不前的尴尬局面。为了丰富水稻的遗传基础,进一步提高水稻产量,突破育种的瓶颈效应,从目前水稻育种实践来看,最有效途径就是从水稻远缘物种中引进优良的基因资源,对水稻材料进行改良,从而创造出具有重要意义的水稻新种质。杂草稻和非洲栽培稻稻种资源中广泛存在着各类抗病虫、耐盐碱、抗旱、耐高温等相关性状的优良基因,如能引入亚洲栽培稻中,必将使水稻育种产生新的飞跃。但亚洲栽培稻与杂草稻、非洲栽培稻存在严重的生殖隔离,致使其杂种F1表现高度不育,极大限制了杂草稻和非洲栽培稻的有利基因向亚洲栽培稻的转移及栽培稻种间远缘杂种优势的利用。因此深入探讨亚洲栽培稻与杂草稻以及非洲栽培稻间杂种不育的细胞学机理,挖掘更多的杂种不育基因,并发现相应的广亲和基因,这对于克服亚洲栽培稻与杂草稻、非洲栽培稻间的杂种不育,进而有效利用栽培稻种间的远缘杂种优势,并最终创造出水稻新种质具有重要的理论价值和实践意义。
     本研究利用云南杂草稻和广亲和品种02428杂交,从细胞学角度深入探讨杂种F1花粉败育的机理,利用02428//云南杂草稻/02428 BC1F1群体在全基因组范围内构建了一张分子连锁图谱,检测到一个控制杂种花粉不育的主效QTL:qPS-1,并对其进行了精细定位;同时从系统发育和进化角度进一步分析云南杂草稻与栽培稻、野生稻间的亲缘关系,探讨云南杂草稻可能的起源。此外,以滇粳优1号为受体亲本,非洲栽培稻IRGC 102295为供体亲本,构建了一个近等基因系NIL,证明滇粳优1号与NIL杂种F1花粉半不育受一对杂合基因座位控制,并把这个基因命名为S37,阐明其杂种F1花粉败育的细胞学机理,并对S37进行精细定位和候选基因的分析,这为进一步图位克隆S37,并最终阐明栽培稻种间杂种花粉不育的分子机理奠定坚实的基础。
     本论文的主要研究结果如下:
     1.云南杂草稻与广亲和品种02428杂交,杂种F1的花粉育性表现为典型不育,败育类型包括:典败、圆败和染败,且正反交两组合的花粉育性差异不显著。细胞学研究表明:杂种F1花粉的败育发生在二胞花粉早期,败育的原因是:小孢子第一次有丝分裂出现异常,不能正常形成生殖核;同时,花药横切面的石蜡切片也证明:杂种F1花粉的败育与绒毡层无关,其绒毡层能正常形成和降解。苯胺蓝染色发现:两亲本的柱头都有大量花粉粒附着,并有花粉管伸入到花柱中;而杂种Fl柱头上,很少看到花粉粒的附着,不能观察到花粉管伸入到花柱中。综合辅助授粉的结果表明:杂种F1小穗育性的降低是由较低的花粉育性和花粉在柱头上存在着萌发障碍两因素共同造成,与胚囊无关。
     2.利用02428//云南杂草稻/02428 BC1F1群体在全基因组范围内构建了一张分子连锁图谱,分别在第1和8染色体上各检测到一个控制杂种花粉不育性的QTL,命名为:qPS-1和qPS-8。qPS-1位于SSR标记RM5和RM493之间,LOD值为11.3,贡献率为22.7%;qPS-8位于SSR标记RM210和LD13之间,LOD值为2.7,贡献率为12.4%。这两个位点间不存在互作效应,彼此独立控制花粉育性,且qPS-1是一个主效而稳定的控制杂种花粉不育的位点。
     3.利用02428//云南杂草稻/02428和Ketan Nangka/N22//Ketan Nangka两套BC1F1回交群体,选择花粉育性在85%以上的极端高育单株及花粉育性在65%以下的极端低育单株,最终将qPS-1限定在两个Indel标记LI1和LI14-1之间,其物理距离为110kb,含有27个完整的开放阅读框,其中包含一个已经克隆的杂种花粉不育基因Sa。为了验证qPS-1是否与Sa等位,对02428和云南杂草稻两个亲本进行测序,结果表明:qPS-1实际上与已经报道的Sa等位。
     4.调查云南杂草稻和栽培稻杂种F1的花粉育性发现Dular和IR36在Sa位点携带有中性等位基因San。随后分析9份杂草稻,64份栽培稻和23份野生稻在两个SNPs位点碱基的差异,结果表明:在SaF和SaM两邻近基因中,野生稻都存在有碱基的分化,籼稻中存在少数碱基的分化,而粳稻中没有发现碱基的分化,杂草稻中存在类似野生稻的碱基分化。同时,聚类分析的结果也表明:云南杂草稻被聚在籼稻中,具有籼型遗传背景,并且跟野生稻具有紧密的遗传关系。据此推断:云南杂草稻可能起源于野生稻和被驯化的远古栽培稻品种的自然杂交。
     5.以滇粳优1号为受体亲本,非洲栽培稻IRGC102295为供体亲本,经过连续6代的回交构建了一个近等基因系NIL,滇粳优1号与NIL杂种F1花粉表现典型的半不育,败育类型为染败,受一对杂合基因S37控制。透射电镜显示:染败花粉粒内部发生凹陷,细胞体积偏小,并且花粉粒内部只有少量的淀粉粒积累。杂种F1花粉的败育发生在成熟花粉期,败育原因是染败花粉粒的生殖核不能进行第二次有丝分裂,因此不能形成三核花粉粒。
     6.选择花粉育性作为育性指标,首先利用743株滇粳优1号与NIL杂交F2群体进行连锁分析,初步将S37限定在第12染色体短臂末端的两标记NJ5和G4之间,随后利用扩大的18014株F2群体,最终将S37精细定位到标记HP14和G21之间,物理距离为73kb,该区域包含13个预测基因。花药的定量分析结果表明:LOC_Os12g02800是最有可能的候选基因,它编码一个富含半胱氨酸的蛋白前体,进一步的互补实验和功能研究正在进行中。
Rice (Oryza sativa L.) is not only one of the most important food crops in the world, but also a model plant for studying the developmental biology of monocots, and more than half of the world's population depends on it as main source of nutrition. Recently, due to the wide application of improved varieties and breeder's preference for parents, the gene resources of rice were becoming more and more single and genetic basis was becoming more and more narrow, which seriously affected increase of rice yield. In order to enrich the genetic basis of rice and break the bottleneck in rice breeding, at present, the most effective way is to improve rice materials by introgression of valuable genes from distant species. Because weedy rice and Oryza glaberrima Steud. possed so many valuable genes, such as disease and insect resistance, saline tolerance, drought resistance and high temperature resistance. If we can introduce these valuable genes into Oryza sativa L., it will certainly bring a new leap for rice breeding. However, the reproductive isolation caused extreme sterility of F1 hybrids between Oryza sativa L. and weedy rice, or Oryza sativa L. and Oryza glaberrima Steud., which greatly limited transfer of favorable genes from weedy rice and Oryza glaberrima Steud. to the Oryza sativa L and the use of distant heterosis. In order to overcome interspecific hybrid sterility and take full use of the strong distant heterosis, it is necessary to more widely evaluate cytological mechanisms of hybrid sterility and find more hybrid sterility gene between Oryza sativa L. and weedy rice, or Oryza sativa L. and Oryza glaberrima Steud..
     In this study, we further investigate cytological mechanism of pollen abortion in F1 hybrid between the japonica wide compatibility rice cultivar 02428 and a weedy rice accession from Yunnan province. Genetic mapping in a BC1F1 population (02428//Yunnan weedy rice (YWR)/02428) showed that a major QTL for hybrid pollen sterility iqPS-1) was present on chromosome 1, which was also fine-mapped. Simultaneously, in order to explore the possible origins of YWR, a phylogenetic analysis of YWR, cultivated rice and wild rice based on microsatellite genotyping was carried out. Moreover, we developed an NIL at the locus S37 via repeated backcrossing and molecular marker-assisted selection (MAS), where the japonica variety Dianjingyou 1 was used as the receptor parent and O. glaberrima Steud. variety IRGC102295 as the donor parent. An F1 pollen semi-sterility locus, S37, was identified on rice chromosome 12 between NIL and Dianjingyou 1. We further elucidated cytological mechanism of pollen abortion in F1 hybrid between NIL and Dianjingyou 1, and also described the fine mapping and candidate-gene screening of S37. This study established a solid foundation for better understanding hybrid sterility and finally utilizing strong heterosis between indica and japonica subspecies.
     The main results were as follows:
     1. The pollen stain ability and in vitro germination tests revealed that both YWR and 02428 pollen fertility was normal, whereas their F1 hybrid showed clear pollen sterility. The type of pollen abortion contained typical abortion, spherical abortion, and stained abortion, wherein stained abortion was observed in most of aborted pollens. The two reciprocal F1, hybrids showed a similar level of pollen fertility to one another (P<0.05). Cytological studies have shown that pollen abortion in the F1 hybrid occured at the early bicellular pollen stage and probably occurred because the failure in the first mitosis prevented the formation of a functional reproductive nucleus. No abnormality in the development of tapetum or other anther walls was apparent. Aniline blue staining revealed that many pollen grains adhered to the stigmas and were able to germinate in the parental plants, but in the F1 hybrid, adherence and germination were restricted, and no pollen tubes were able to penetrate the style. Thus, the reduced spikelet fertility of F1 hybrids was the cumulative result of pollen abortion and poor stigma adherence of any remaining viable pollen, but the embryo sac of F1 hybrids appeared to be uncompromised.
     2. Of 805 SSR primers tested,313 were informative in the YWR×02428 population, and an outline linkage map based on 02428//YWR/02428 BC1F1 population was constructed from 133 of these. A QTL analysis performed using this map indicated the likely existence of two hybrid pollen sterility QTL, one (qPS-1) on chromosome 1 and the other (qPS-8) on chromosome 8. The location of the former was close to RM5, and this QTL accounted for~23% of the phenotypic variation for hybrid pollen sterility. qPS-8 accounted for~12% of the phenotypic variation and was linked to RM210. No interaction was detected between the two loci, which affected pollen sterility independently with additive effect, and qPS-1 was a major and stable hybrid pollen sterility loci.
     3. A total of 795 extreme individuals containing 403 plants from 02428//YWR/02428 population and 392 plants from KN/N22//KN population were genotyped using the flanking markers RM493 and RM5, respectively. As the results, qPS-1 was fine mapped between LI1 and LI14-1, about 110-kb in length on a single PAC clone (P0013G02). Gene prediction analysis of the 110-kb region showed that there were 27 putative open reading frames (ORFs) in this region, of which ORF9 and ORF10 encoded putative SaF+ and putative SaM, respectively. The sequencing results revealed that the qPS-1 locus is actually allelic with Sa.
     4. Dular and IR36 were assumed to carry the sterility-neutral allele, Sa", at Sa locus. SNPs in the two subgenes were examined in 23 wild species,9 weedy strains, and in 82 cultivars. The results indicated that a single substitution of "T" or "C" and "T"or "G" at gene of SaM and SaF, respectively, arose in wild rice, weedy rice, and indica cultivars, while only "C" and "T" was found at SaF and SaM, respectively, in japonica cultivars. The obtained dendrogram showed that the weedy rice was classified into indica or japonica type in cultivar (O. sativa L.), and the YWR was distributed among the wild rice and indica type, being separated from the japonica type. Accordingly, we extrapolated that YWR most probably originated from hybridization between Oryza sativa indica cultivars and Oryza rufipogon.
     5. We developed an NIL via repeated backcrossing and molecular marker-assisted selection (MAS), where the japonica variety Dianjingyou 1 was used as the receptor parent and O. glaberrima Steud. variety IRGC102295 as the donor parent. F1 pollen fertility of NIL/DJY1 exhibited typical semi-sterility, and the type of pollen abortion exhibited stained abortive. At the same time, we examined the DJY1 and F1 pollens using scanning electron microscopy and transmission electron microscopy and found the stained abortive pollens in F1 hybrid have small volume and most of them are shrunken, which have no accumulations of starch granules. Cytological studies have shown that pollen abortion in the F1 hybrid occured at the mature pollen stage and probably occurred because the failure in the second mitosis prevented the formation of a functional trinuclear pollen.
     6. According to pollen fertility, we constructed a linkage map covering the S37 region by 743 plants randomly selected from F2 progenies. The results indicated that the S37 locus was located to 2.2cM in the interval between NJ5 and G4. Finally, S37 was mapped to the region between HP 14 and G21 using a large F2 population contained 18014 plants, with physical size of about 73 kb. Thirteen open reading frames can be predicted by a sequence analysis of this fragment. Quantitative analysis of anther showed that LOC_Os12g02800 was the most likely candidate genes, which codes a cysteine-rich family protein precursor. Further complementation experiments and functional studies are ongoing.
引文
Akihama T, Toshimitsu K. Geographical distribution of morphological variation on wild rice in central and southern India. Prelim Rept, Tottori Univ Sci Surv,1972(1):48-59.
    Armstrong K. Weed control on a Swaziland rice and sugar cane estate. Proc 9th British Weed Control Conference-9,1968,687-693.
    Attere A, Fatokun C. Reaction of Oryza glaberrima accessions to rice yellow mottle virus. Plant Disease, 1983,67:420-421.
    Baker HG. The evolution of weeds. Ann Rev Ecol Syst,1974,5:1-23.
    Baker JB, Sonnier EA, Shrefler JW. Integration of molinate use with water management for red rice (Oryza sativa L.) control in water-seeded rice(Oryza sativa L.). Weed Sci Tech,1986,34:916-922.
    Bedinger P. The remarkable biology of pollen. The Plant Cell,1992,4:879-887.
    Bres-Party C, Bangratz M, Ghesquiere A. Genetic diversity and population dynamics of weedy rice in France. Genet Sel Evol,2001,33:425-440.
    Chang TT. The origin, evolution, cultivation, dissemination, and diversification of Asian and African races. Euphytica,1976,25:435-441.
    Chang TT. Crop history and genetic conservation rice a case study. State Journal of Research,1985, 59(4):425-455.
    Chang TT, Pan Y, Chu Q, et al. Cytogenetic, electrophoretic, and root studies of javanica rices. Proceedings of the Second International Rice Genetics Symposium. IRRI, Manila, Philippines, 1990,21-31.
    Chaudhary RC, Virmani SS, Khush GS. Patterns of pollen abortion in some cytoplasmic-genetic male sterile lines of rice. Oryza,1981,18:140-142.
    Chen JJ, Ding JH, Ouyang YD, et al. A triallelic system of S5 is a major regulator of the reproductive barrier and compatibility of indica-japonica hybrids in rice. Proc Natl Acad Sci USA,2008, 105(32):11436-11441.
    Chen X, Temnykh S, McCouch SR, et al. Development of a microsatellite framework mapproviding genome-wide coverage in rice(Oryza sativa L.). Theor Appl Genet,1997,95:553-567.
    Chen ZJ, Zhu LH. Preliminary studies on the relationship between Ludao and native rice varieties in Yunnan(Oryza sativa L.). Acta Agronomic Sinica,1990,16(3):219-227.
    Cho YC, Chung TY, Park YH, et al. Genetic polymorphisms and phylogenetic relationships of Korean red rice (Weedy rice in Oryza sativa L.) based on randomly amplified polymorphic DNA (RAPD) makers. Korean J Breed,1995a,27(1):86-93.
    Cho YC, Chung TY, Suh HS. Genetic characteristics of Korean weedy rice (Oryza sativa L.) by RFLP analysis. Euphytica,1995b,86:103-110.
    Cho YC, Choi IS, Han SS, et al. Inheritance of resistance to (Pyricularia Grisea Sacc.) in Korean weedy rice(Oryza sativa L.). Korean J Breed,1996,28(3):309-31.
    Chung NJ, Paek NC. Photoblastism and ecophysiology of seed germination in weedy flee. Agronomy Journal,2003,95:184-190.
    Churchill GA, Doerge RW. Empirical threshold values for quantitative trait mapping. Genetics,1994, 138:963-971.
    Dellaporta SL, Wood J, Hicks JB. A plant DNA minipreparation: Version Ⅱ. Plant Mol Biol Rep,1983,1: 19-21.
    Diarra ARJ, Smith RJ, Talbert RE. Growth and morphological characteristics of red rice(Oryza sativa L.) biotypes. Weed Science,1985,33:310-314.
    Doi K, Taguchi K, Yoshimura A. A New Locus Affecting High F1 Pollen Sterility Found in Backcross Progenies of Japonica Rice and African Rice. Rice Genetics Newsletter,1998,15:146-148.
    Doi K, Taguchi K, Yoshimura A. RFLP mapping of S20 and S21 for F1 pollen semi-sterility found in backcross progeny of Oryza sativa and O. glaberrima. Rice Genetics Newsletter,1999,16:65-68.
    Gealy DR. Gene movement between rice(Oryza sativa) and weedy rice(Oryza sativa)-a US temperate rice perspective. In:Crop Ferality and Volunteerism,2005, pp.323-354.
    Ghesquiere A, Sequier J, Second G, et al. First steps towards a rational use of African rice, Oryza glaberrima, in rice breeding through a "contig line" concept. Euphytica,1997,96:31-39.
    Glaszmann JC. Isozymes and classfcation of Asian rice varieties. Theor Appl Genet,1987,74(1):21-30.
    Goss WL, Brown E. Buried red rice. J of American Society of Agronomy,1939,31:633-637.
    Ha WG, Suh HS. Collection and evaluation of Korean red rices VIII. Flowering characteristics. Korean J Breed,1993,25(2):124-127.
    Hara S. Persistence of an indica rice in Korea. Agriculture and Horticulture,1942,17:705-712.
    Harlan JR., Wet JMJ, Price EG. Comparative evolution of cereals. Evolution,1973,27(2):311-325.
    Heish SC, Oka HI. Cytological studies of sterility in hybrids between distantly related varieties of rice, Oryza sativa L. Japan J Genet,1958,33(3):73-80.
    Heu MH, Cho YC, Suh HS. Cross affinity of Korean weedy rice to the cultivars. Korean Journal of Crop Science,1990,35(3):235-238.
    Heuer S, Miezan KM, Sie M, et al. Increasing biodiversity of irrigated rice in Africa by interspecific crossing of Oryza glaberrima Steud.×O.sativa indica. Euphytica,2003,132:31-40.
    Higginson T, Li SF, Parish RW. AtMYB 103 regulates tapetum and trichome development in Arabidopsis thaliana. The Plant Journal,2003,35:177-192.
    Hu FY, Xu P, Deng XN, et al. Molecular Mapping of a New Pollen Killer Gene S29(t) on Chromosome 2 in Oryza glaerrima. Rice Genetics Newsletter,2004,21:31-32.
    Ikehashi H, Arki H. Varietal screening of compatibility types revealed in F1 fertility of distant crosses in rice. Japan J Breed,1984,34:304-312.
    Ikehashi H, Arki H. Genetics of F1 sterility in remote crosses of rice. Rice Genetics, IRRI,1986, 119-130.
    Ikehashi H, Arki H. Multiple alleles controlling F1 sterility in remote crosses of rice(Oryza sativa L.). Japan J Breed,1988,38:283-291.
    Iwata T, Nagamatsu T, Omura T. Abnormal segregation of waxy and apiculus coloration by a gametophytic gene belonging to the first linkage group in rice. Japan J Breed,1964,14:33-39.
    Ji Q, Lu JF, Chao Q, et al. Delimiting a rice wide-compatibility gene S5-n to a 50 kb region. Theor Appl Genet,2005,111(8):1495-1503.
    Jing W, Zhang WW, Jiang L, et al. Two novel loci for pollen sterility in hybrids between the weedy strain Ludao and the Japonica variety Akihikari of rice(Oryza sativa L.). Theor Appl Genet,2007,114: 915-925.
    Jones M. NERICA fighting African's war against poverty and hunger. International Year of Rice World Food Prize Celebration,2004,14-15.
    Jones MP, Dingkuhn M, Aluko GK, et al. Interspecific Oryza sativa L. X O. glaberrima Steud. progenies in upland rice improvement. Euphytica,1997,92:237-246.
    Kapoor S, Kobayashi A, Takatsuji H. Silencing of the tapetum-specific zinc finger gene TAZ1 causes premature degeneration of tapetum and pollen abortion in petunia. The Plant Cell,2002,14: 2353-2367.
    Kato S. On the affinity of the cultivated variety of rice plants, O. Sativa L.. J Dept Agric Kyushu,1930, 2(9):62-70.
    Kato S, Kosaka H, Hara S. On the affinity of rice varieties as shown by fertility of hybrid plants. Bull Sci Fac Agric Kyushu Univ,1928,3:132-147.
    Khush GS. Multiple disease and insect resistance for increase yield stability in rice. In: International Rice Research Institute (ed.), Progress in rice research. Manila: IRRI,1989,79-92.
    Kinoshita T. Report of the committe on gene symbolization, nomenclature and linkage group. Rice Genetics Newsletter,1991,8:2-37.
    Kinoshita T. Report of the committe on gene symbolization, nomenclature and linkage group. Rice Genetics Newsletter,1993,10:7-39.
    Kinoshita T. Report of the committe on gene symbolization, nomenclature and linkage group. Rice Genetics Newsletter,1995,12:94-125.
    Kitamura E. Genetic studies on sterility observed in hybrids between related varieties of cultivated rice. Bull Chgoku Agr Exp Stat, Series A,1962a,8:141-205.
    Kitamura E. Studies on cytoplasmic sterility of hybrids in distantly related varieties of rice (Oryza sativa L.). Japan J Breed,1962b,12:81-84.
    Klosterboer A. Red rice control in Texas. In Red rice: Research and Control. Texas Agriculture Experimental Station Bulletin,1978,1270.
    Koide Y, Onishi K, Nishimoto D, et al. Sex-independent transmission ratio distortion system responsible for reproductive barriers between Asian and African rice species. New Phytologist,2008,179: 888-900.
    Kosambi DD. The estimation of map distance from recombination values. Ann Eugen,1944,12: 172-175.
    Kown SL, Smith RJ, Talbert RE. Comparative growth and development of rice(Oryza sativa L.). Weed Sci,1992,40:57-62.
    Kubo T, Eguchi M, Yoshimura A. A new gene for F1 pollen sterility in japonica/indica cross of rice. Rice Genetics Newsletter,2000,17:63-64.
    Kubo T, Eguchi M, Yoshimura A. A new gene for F1 pollen sterility located on chromosome 12 in japonica/indica cross of rice. Rice Genetics Newsletter,2001,18:54-55.
    Lander ES, Green P, Abrahamson J, et al. MAPMAKER:an interactive computer package for constructing primary genetic linkage map of experimental and natural populations. Genomics,1987, 1:174-181.
    Laser KD, Lersten NR. Anatomy and cytology of microsporogensis in cytoplasmic male sterile angiosperms. The Botanical Review,1972,38:425-454.
    Leitao HN, Banzato N, Azzini L. Estudio de competicao entre arroz vermelho arroz cultivado. Bragantia, 1972,31:249-258.
    Li DT, Chen LM, Jiang L, et al. Fine mapping of S32(t), a new gene causing hybrid embryo-sac sterility in a Chinese landrace rice (Oryza sativa L.). Theor Appl Genet,2007,114:515-524.
    Li HB, Zhang Q, Liu AM, et al. A genetic analysis of low-temperature-sensitive sterility in indica-japonica rice hybrids. Plant Breeding,1996,115:305-309.
    Li WT, Zeng RZ, Zhang ZM, et al. Identification and fine mapping of S-d, a new locus conferring the partial pollen sterility of intersubspecific F1 hybrids in rice (Oryza sativa L.). Theor Appl Genet, 2008,116:915-922.
    Li ZK, Shannon RMP, Andrew HP, et al. Genetics of hybrid sterility and hybrid breakdown in an intersubspecific rice(Oryza sativa L.). Genetics,1997,145:1139-1148.
    Lin SY, Ikehashi H. A gamete abortion locus detected by segregation distortion of isozyme locus Est-9 in wide crosses of rice(Oryza sativa L.). Euphytica,1993,67:35-40.
    Lin SY, Ikehashi H, Yanagihara S, et al. Segregation distortion via male gametes in hybrids between Indica and Japonica or wide-compability varieties of rice(Oryza sativa L.). Theor Appl Genet, 1992,84:812-818.
    Lincoln SE, Daly MJ, Lander ES, et al. Constructing genetic linkage maps with MAPMAKER/EXP version 3.0:A tutorial and reference manual. A Whitehead Institute for biomedical research technical report 3hird edition. Cambridge, Mass,1993a.
    Lincoln SE, Daly MJ, Lander ES, et al. Mapping genes controlling quantitative traits using MAPMAKER/QTL version 1.1:A tutorial and reference manual. A Whitehead Institute for biomedical research technical report third edition. Cambridge, Mass,1993b.
    Liu HY, Xu CG, Zhang QF. Male and female gamete abortions, and reduced affinity between the uniting gametes as the causes for sterility in an indicaljaponica hybrid in rice. Sex Plant Reprod,2004, 17(2):55-62.
    Liu KD, Wang J, Li HB, et al. A genome-wide analysis of wide compatibility in rice and the precise location of the S5 locus in the molecular map. Theor Appl Genet,1997,95:809-814.
    Liu KD, Zhou ZQ, Xu CG, et al. An analysis of hybrid sterility in rice using a diallel cross of 21 parents involving indica, japonica and wide compatibility varieties. Euphytica,1996,90:275-280.
    Londo JP, Schaal BA. Origins and population genetics of weedy red rice in the USA. Molecular Ecology, 2007,16:4523-4535.
    Long YM, Zhao LF, Niu BX, et al. Hybrid male sterility in rice controlled by interaction between divergent alleles of two adjacent genes. Proc Natl Acad Sci USA,2008,105(48):18871-18876.
    Lorieux M, Ndjiondjop M, Ghesquiere A. A first inteispecific Oryza sativa L. X Oryza glaberrima microsatellite-based genetic linkage map. Theor Appl Genet,2000,100:593-601.
    Lu CG, Takabatake K, Ikehashi H. Identification of segregation-distortion-neutral alleles to improve pollen fertility of indica-japonica hybrids in rice(Oryza sativa L.). Euphytica,2000,113:101-107.
    Lyttle TW. Segregation distorters. Annual Review of Genetics,1991,25:511-557.
    Maekawa M, Inukai SN. Spikelet sterility in F1 hybrids between rice varieties Silewash and Hayakogane. Japan J Breed,1991,41:359-363.
    Majisu B. A potential dangerous weed of rice in East Africa. East African Agriculture and Forestry Research Organization,1970, Newsletter 60, Nairobi.
    Mange EJ. Temperature sensitivity of segregation-distortion in Drosophila melanogaster. Genetics,1968, 58(3):399-413.
    Matsue Y, Hiramatsu M, Ogata T, et al. Physiochemical properties of Japanese native red-kerneled non-glutinous rice cultivars of the Japonica type. Crop Science,1997,66(4):647-655.
    McCormick S. Control of male gametophyte development. The Plant Cell,2004,16:S142-S153.
    McCouch SR, Teytelman L, Xu Y, et al. Development and Mapping of 2240 New SSR Markers for Rice (Oryza sativa L.). DNA Research,2002,9:199-207.
    McDaniel SF, Willis JH, Shaw AJ. A linkage map reveals a complex basis for segregation distortion in an interpopulation cross in the moss Ceratodon purpureus. Genetics,2007,176:2489-2500.
    Mizuta Y, Harushima Y, Kurata N. Rice pollen hybrid incompatibility caused by reciprocal gene loss of duplicated genes. Proc Natl Acad Sci USA,2010,107(47):20417-20422.
    Morinaga T, Kuriyama. Cytogenetical studies on Oryza sativa L. IX. The F1 hybrid of O. sativa L. and O. glaberrima Steud.. Japan J Breed,1957,7(2):57-65.
    Morishima H, Hinata K, Oka HI. Comparison between two cultivated rice species, Oryza sativa L. and O. glaberrima Steud.. Japan J Breed,1962,12(3):153-165.
    Morishima H, Hinata K, Oka HI. Comparison of modes of evolution of cultivated forms from two wild rice species, Oryza breviligulata and O. perennis. Evolution,1963,17:170-181.
    Morishima H, Oka HI. Phylogenetic differentiation of cultivated rice, XXII. Numerical evaluation of the Indica-Japonica differentiation. Japan J Breed,1981,31(4):402-413.
    Nakagahra M. Genetic mechanism on the distorted segregation of marker gene belonging to the eleventh linkage group in cultivated rice. Japan J Breed,1972,22:232-238.
    Neff MM, Neff JD, Chory J, et al. dCAPS, a simple technique for the genetic analysis of single nucleotide polymorphisms:experimental applications in Arabidopsis thaliana genetics. The Plant Journal,1998,14:387-392.
    Neff MM, Turk E, Kalishman M. Web-based primer design for single nucleotide polymorphism analysis. Trends in Genetics,2002,18(12):613-615.
    Nei M. Molecular evolutionary genetics. Columbia University Press, New York,1987, pp.106-107.
    Noldin JA, Chandler JM, Mccauley GN. Red rice(Oryza sativa L.) Biology I. Characterization of Red rice Ecotypes. Weed Technology,1999,13:12-18.
    Ohmido N, Fukui K. Cytological studies of African cultivated rice, Oryza glaberrima. Theor Appl Genet, 1995,91:212-217.
    Oka HI. Variations in various characters and character combinations among rice varieties. Japan J Breed, 1953a,3(2):33-43.
    Oka HI. The mechanism of sterility in the intervarietal hybrid. Phylogenetic differentiation of the cultivated rice plants. Japan J Breed,1953b,2:217-224.
    Oka HI. Genetic analysis for the sterility of hybrids between distantly related varieties of cultivated rice. Japan J Genet,1957,55:397-409.
    Oka HI, Doida Y. Phylogenetic differentiation of cultivated rice XX. Analysis of the genetic basis of hybrid breakdown in rice. Japan J Genet,1962,37:24-35.
    Oka HI. Analysis of genes controlling F1 sterility in rice by the use of isogenic lines. Genetics,1974,77: 521-534.
    Oka HI. Weedy form of rice:In Origin of cultivated rice. Amsterdam Tokyo Japan Sci Soc Press,1988a, 107-114.
    Oka HI. Origin of Cultivated Rice. Japan Scientific Societies Press, Elsevier,1988b,181-209.
    Ouyang YD, Liu YG, Zhang QF. Hybrid sterility in plant: stories from rice. Current Opinion in Plant Biology,2010,13:1-7.
    Pacini E, Franchi G. Tapetum and microspore function. In Blackmore S, Knox RB, eds. Microspores, Evolution and Ontogeny. London:Academic Press,1991, pp.213-237.
    Park JS, Cho YC, Han SW, et al. Characteristics of weedy rites on paddy field in Kyonggi area. Korean J Breed,1999,19(4):299-306.
    Park SK, Howden R, Twell D. The Arabidopsis thaliana gametophytic mutation gemini pollen1 disrupts microspore polarity, division asymmetry and pollen cell fate. Development,1998,125:3789-3799.
    Pental D, Barnes SR. Interrelationship of cultivated rices Oryza sativa and O. glaberrima with wild O.perennis complex. Theor Appl Genet,1985,70:185-191.
    Porteres R. Sur la segregation geographique des gene de I'Oryza glaberrima Steudel dans P quest-Afiricain et sur les centers de culture de cette espece. C R Ac Sc,1945,221.
    Qiu SQ, Liu K, Jiang JX, et al. Delimitation of the rice wide compatibility gene S5-n to a 40kb DNA fragment. Theor Appl Genet,2005,111(6):1080-1086.
    Reagon M, Thurber CS, Gross BL, et al. RGenomic patterns of nucleotide diversity in divergent populations of U.S. weedy rice. BMC Evol Biol,2010,10:180.
    Ren GY, Xu P, Deng XN, et al. A New Gamete Eliminator from Oryza glaberrima. Rice Genetics Newsletter,2005,22:45-47.
    Reversal G, Destombes D. Resistance to Geteroderd sacchari in rice. Nematologica,1995,41:333-334.
    Sanders PM, Bui AQ, Weterings K, et al. Anther developmental defects in Arabidopsis thaliana male-sterile mutants. Sex Plant Reprod,1999,11:297-322.
    Sano Y. A New Gene Controlling Sterility in F1 Hybrids of Two Cultivated Rice Species. Journal of Heredity,1983,74:435-439.
    Sano Y. Interspecific cytoplasm substitutions of an indica strain of Oryza sativa L. and O. glaberrima Steud.. Euphytica,1985,34:587-592.
    Sano Y. Oryza glaberrima and O. sativa Wx, Se-1, A and Rc at the same chromosomal locations. Rice Genetics Newsletter,1988,5:66-67.
    Sano Y. The Genetic Nature of Gamete Eliminator in Rice. Genetics,1990,125:183-191.
    Sano Y, Chu Y, Morish H. Neighbor effects between two occurring rice species, Oryza sativa L. and O. glaberrima. Journal of Applied Ecology,1984,21:245-254.
    Sano Y, Chu Y, Oka HI. Genetic studies of speciation in cultivated rice I. Genic analysis for the F1 sterility between O. sativa L. and O.glabrrima stend.. Japan J Genet,1979,54(2):121-132.
    Saruyama H, Shinbashi N. Identification of specific proteins from seed embryo by two-dimensional gel electrophoresis for the discrimination between indica and japonica rice. Theor Appl Genet,1992, 84:947-951.
    SAS Institute. SAS/STAT users guide:version 6, vol 2,4th edn. SAS Institute Inc. Cary, North Carolina, USA,1989.
    Semon M, Nielsen R, Jones MP, et al. The population structure of African cultivated rice Oryza glaberrima (Steud.):Evidence for elevated levels of linkage disequilibrium caused by admixture with O. sativa and ecological adaptation. Genetics,2005,169:1639-1647.
    Sharma SD, Shastry SV. Taxonomic studies in Genus Oryza sativa L. Ⅲ. O. rufipogon Griff, unsu stricto and Onivara Sharma. Indian J Gene PI Breed,1965,25(2):157-167.
    Sik OC, Lee SJ, Yoon DB, et al. QTLs for domestication-related and agnnomic traits in temperate japonica weedy rice. Korean J Breed,2004,36(1):20-30.
    Silue D, Notteghem J. Resistance of 99 Oryza glaberrima varieties to blast. Int Rice Res Notes,1991,16: 13-14.
    Sobrizal, Matsuzaki Y, Sanchez PL, et al. Identification of a gene for male gamete abortion in backcross progeny of Oryza sativa and Oryza glumaepatula. Rice Genetics Newsletter,2000a,17:59-61.
    Sobrizal, Matsuzaki Y, Sanchez PL, et al. Mapping of F1 pollen semi-sterility gene found in backcross progeny of Oryza sativa L. and Oryza glumaepatula Steud.. Rice Genetics Newsletter,2000b,17: 61-63.
    Sobrizal, Matsuzaki Y, Yoshimura A. Mapping of a gene for pollen semi-sterility on rice chromosome 8 of rice. Rice Genetics Newsletter,2001,18:59-61.
    Sobrizal, Matsuzaki Y, Yoshimura A. Mapping of pollen semi-sterility gene, S28(t), on rice chromosome 4. Rice Genetics Newsletter,2002,19:80-82.
    Song X, Qiu SQ, Xu CG, et al. Genetic dissection of embryo sac fertility, pollen fertility, and their contributions to spikelet fertility of intersubspecific hybrids in rice. Theor Appl Genet,2005,110: 205-211.
    Sorensen A, Guerineau F, Canales HC, et al. A novel extinction screen in Arabidopsis thaliana identifies mutant plants defective in early microsporangial development. The Plant Journal,2002,29: 581-594.
    Sorensen AM, Krober S, Unte US, et al. The Arabidopsis ABORTED MICROSPORES (AMS) gene encodes a MYC class transcription factor. The Plant Journal,2003,33:413-423.
    Spielmeyer W, Ellis M., Chandler P. Semidwarf (sd-1), "green revolution" rice, contains a defective gibberellin 20-oxidase gene. Proc Natl Acad Sci USA,2002,99(13):9043-9048.
    Stebbins GL. The inviability, weakness, and sterility of interspecific hybrids. Advances in Genetics,1958, 9:147-216.
    Suh HS, Cho JH, Heu MH. Collection and evaluation of Korean red riecs Ⅲ. Cross affinity of korean rices with cultivars and foreign red rices. Korean J Breed,1992b,24:322-326.
    Suh HS, Ha WG. Characters variation of Korean weedy rice. Rice Genetics Newsletter,1994,11:69-79.
    Suh HS, Park SZ, Heu MH. Collection and evaluation of Korean red riecs I. Regional distribution and seed characteristics. Korean J Breed,1992a,37:425-430.
    Suh HS, Sato YI, Morishima H. Genetic characterization of weedy rice (Oryza sativa L.) based on morpho-physiology, isozymes and RAPD markers. Theor Appl Genet,1997,94:316-321.
    Suh HS, Suh JP, Ahn SN, et al. QTL analysis on cold tolerance at seedling stage of Korean weedy rice. Korean J Breed,1999,31(4):434-439.
    Taguchi K, Doi K, Yoshimura. RFLP mapping of S19, a gene for F1 pollen semi-sterility found in backcross progeny of Oryza sativa and O. glaberrima. Rice Genetics Newsletter,1999,16:70-71.
    Tang LH, Morishima H. Characteristics of weed rice strains. Rice Genetics Newsletter,1988,5:70-72.
    Tang LH, Morishima H. Genetics characteristics and origin of weedy rice In: Wang XK, and Zhang JZ (eds). A Collection Paper on Origin and Dissemination of Cultivated Rice in China,1996,21: 11-218.
    Tang LH, Morishima H. Genetic characterization of weedy rices and the inference on their origins. Breeding Science,1997,47(2):153-160.
    Temnykh S, Park WD, McCouch SR, et al. Mapping and genome organization of microsatellite sequence in rice(Oryza sativa L.). Theor Appl Genet,2000,100:697-712.
    Thiel T, Kota R, Grosse I, et al. SNP-CAPS:a SNP and INDEL analysis tool for CAPS marker development. Nucleic Acids Research,2004,32:1-5.
    Vaughan LK, Ottis BV, Prazak Havey AM, et al. Is all red rice found in commercial rice really Oryza sativa? Weed Science,2001,49:468-476.
    Vogl C, Xu SZ. Multipoint mapping of viability and segregation distorting loci using molecular markers. Genetics,2000,155:1439-1447.
    Wan JM, Ikehashi H. Identification of a new locus S-16 causing hybrid sterility in native rice varieties (Oryza sativa L.) from Tai-hu Lake region and Yunnan province, China. Breeding Science,1995a, 45:461-470.
    Wan JM, Ikehashi H. A new locus for hybrid sterility in remote crosses of cultivated rice (Oryza sativa L.). Breeding Science,1995b,45(suppl.2):191.
    Wan JM, Ikehashi H, Sakai M, et al. Mapping of hybrid sterility gene S17 of rice (Oryza sativa L.) by isozyme and RFLP markers. Rice Genetics Newsletter,1998,15:151-154.
    Wan JM, Yamaguchi Y, Kato H, et al. Two new loci for hybrid sterility in cultivated rice (Oryza sativa L.). Theor Appl Genet,1996,92:183-190.
    Wan JM, Yanagihara S, Kato H, et al. Multiple alleles at a new locus causing hybrid sterility between a Korean indica variety and a japonica variety in rice. Japan J Breed,1993,43:507-516.
    Wang GW, He YQ, XU CQ et al. Fine mapping of f5-Du, a gene conferring wide-compatibility for pollen fertility in inter-subspecific hybrids of rice (Oryza sativa L.). Theor Appl Genet,2006,112: 382-387.
    Wang J, Liu KD, Xu CG, et al. The high level of wide-compatibility of variety "Dular" has a complex genetic basis. Theor Appl Genet,1998,97:407-412.
    Wang SC, Zeng ZB. Windows QTL Cartographer 2.0. Department of Statistics, North Carolina State University, Raleigh, NC,2001-2004.
    Watanabe H, Vaughan DA, Tomooka N. Wild and Weedy Rice in Rice Ecosystems in Asia: A Review. International Rice Research Institute, Philippines,2000, pp.25-34.
    Wilson ZA, Morroll SM, Dawson J, et al. The Arabidopsis MALE STERILITY1 (MSI) gene is a transcriptional regulator of male gametogenesis, with homology to the PHD finger family of transcription factors. The Plant Journal,2001,28:27-39.
    Win KT, Kubo T, Miyazaki Y, et al. Identification of two loci causing F1 pollen sterility in inter-and intraspecific crosses of rice. Breeding Science,2009,59:411-418.
    Win KT, Yamagata Y, Miyazaki Y, et al. Independent evolution of a new allele of F1 pollen sterility gene S27 encoding mitochondrial ribosomal protein L27 in Oryza nivara. Theor Appl Genet,2011,122: 385-394.
    Wu HK. Rice genetics and cytogenetics. Elsevier Amsterdam,1964,187-188.
    Xu Y, Zhu L, Xiao J, et al. Chromosomal regions associated with segregation distortion of molecular in F2, backcross, doubled haploid, and recombinant inbred populations in rice (Oryza sativa L.). Mol Gen Genet,1997,253(5):535-545.
    Yabuno T. Genetic studies on the interspecific cytoplasm substitution lines of japonica varieties of Oryza Sativa L. and O. glaberrima Steud.. Euphytica,1977,26:451-463.
    Yamagata Y, Yamamoto E, Aya K, et al. Mitochondrial gene in the nuclear genome induces reproductive barrier in rice. Proc Natl Acad Sci USA,2010,107(4):1494-1499.
    Yanagihara S, Kato H, Ikehashi H. A new locus for multiple alleles causing hybrid sterility between an aus variety and javanica varieties in rice (Oryza sativa L.). Japan J Breed,1992,42:793-801.
    Yanagihara S, McCouch SR, Ishikawa K, et al. Molecular analysis of the inheritance of the S-5 locus, conferring wide compatibility in IndicalJaponica hybrids of rice (Oryza sativa L.). Theor Appl Genet,1995,90:182-188.
    Yang GP, Saghai Maroof MA, Xu CG, et al. Comparative analysis of mierosatelite DNA polymorphism in landraces and cultivars of rice. Mol Gen Genet,1994,245:187-194.
    Yao SY, Henderson MT, Jodon NE. Cryptic structural hybridity as a probable cause of sterility in intervairetal hybrids of cultivated rice (Oryza sativa L.). Cytologia,1958,23:46-55.
    Yokoo M. Female sterility in an indica-japonica cross of rice. Japan J Breed,1984,34:219-227.
    Zhang DB, Wilson ZA. Stamen specification and anther development in rice. Chinese Sci Bull,2009,54: 2342-2353.
    Zhang QF, Liu KD, Yang GP, et al. Molecular maker diversity and hybrid sterility in indica-japonica rice crosses. Theor Appl Genet,1997,95:112-118.
    Zhang QF, Saghai Maroof MA, Lu TY, et al. Genetic diversity and differentiation of indica and japonica rice detected by RFLP analysis. Theor Appl Genet,1992,83:495-499.
    Zhang QF, Shen BZ, Dai XK, et al. Using bulked extremes and recessive class to map genes for photoperiod-sensitive genic male sterility in rice. Proc Natl Acad Sci USA,1994,91:8675-8679.
    Zhang YH, Zhao ZG, Zhou JW, et al. Fine mapping of a gene responsible for pollen semi-sterility in hybrids between Oryza sativa L. and O. glaberrima Steud.. Mol Breeding,2011, DOI 10.1007/s 11032-010-9485-2.
    Zhang Z, Xu P, Hu FY, et al. A New Sterile Gene from Oryza glaberrima on Chromosome 3. Rice Genetics Newsletter,2005,22:26-28.
    Zhang ZS, Lu YG, Liu XD, et al. Cytological mechanism of pollen abortion resulting from allelic interaction of F1 pollen sterility locus in rice (Oryza sativa L.). Genetica,2006,127:295-302.
    Zhao B, Deng QM, Zhang QJ, et al. Analysis of segregation distortion of molecular markers in F2 population of rice. Acta Genetica Sinica,2006,33(5):449-457.
    Zhao ZG, Jiang L, Zhang WW, et al. Fine mapping of S31, a gene responsible for hybrid embryo-sac abortion in rice (Oryza sativa L.). Planta,2007,226:1087-1096.
    Zhao ZG, Wang CM, Jiang L, et al. Identification of a new hybrid sterility gene in rice (Oryza sativa L.). Euphytica,2006,151:331-337.
    Zhao ZG, Zhu SS, Zhang YH, et al. Molecular analysis of an additional case of hybrid sterility in rice (Oryza sativa L.). Planta,2011,233:485-494.
    Zhu SS, Jiang L, Wang CM, et al. The origin of a weedy rice ludao in china deduced by a genome wide analysis of its hybrid sterility genes. Breeding Science,2005b,55:409-414.
    Zhu SS, Wang CM, Zheng TQ, et al. A new gene located on chromosome 2 causing hybrid sterility in a remote cross of rice. Plant Breeding,2005a,124:440-445.
    Zhu XH, Cao XZ. Studies on gametophytic fertility of Indica-Joponica hybrids in rice. CRRN,1992,5: 3-4.
    Zhuang CX, Fu Y, Zhang GQ, et al. Molecular mapping of S-c, an F1 pollen sterility gene in cultivated rice. Euphytica,2002,127:133-138.
    程侃声,王象坤,卢义宣,等.云南稻种资源的综合研究与利用Ⅸ.论亚洲栽培稻的籼粳分类.作物品种资源,1988,1:1-5.
    程侃声,周季维,卢义宣,等.云南稻种资源的综合研究与利用Ⅱ.亚洲栽培稻分类的再认识.作物学报,1984,10:271-280.
    丁颖.中国古来籼粳稻种之栽培及分布与现在稻种分类法预报.中山大学农艺专刊,1949,6:1-11.
    杜布赞斯基丁(谈家祯、韩安、蔡以欣译).遗传学与物种起源.北京,科学出版社,1982.
    杜尔宾,巴利洛娃(袁妙葆,俞志隆,李桃生译).植物细胞质雄性不育的遗传学原理.北京:农业出版社,1980.
    冯九焕,卢永根,刘向东,等.水稻花粉发育过程及其分期.中国水稻科学,2001,15(1):21-28.
    傅雪琳,卢永根,李金泉,等.亚洲栽培稻与普通野生稻种间杂种花粉和胚囊败育研究.植物遗传资源学报,2008,9(3):362-366.
    顾铭洪,潘学彪,陈宗样.我国现用水稻广亲和性测验品种的亲和性分析.中国农业科学,1991,6:27-32.
    何光华,郑家奎,阴国大,等.水稻亚种间杂种配子育性的研究.中国水稻科学,1994,8:177-180.
    胡风益,陶大云,杨友琼,等.栽培稻种间杂种营养优势研究.西南农业大学学报,2002,24(2):146-150.
    黄厚哲,楼士林,王侯聪,等.籼粳稻杂种不育及其遗传基础的探讨.厦门大学学报(自然科学版),1982,21(2):189-199.
    蒋荷,吴竞仑,王根来,等.连云港稆稻研究.作物品种资源,1985,2:4-7.
    蒋荷,季和标,王象坤,等.江苏地方稻种资源酯酶同工酶分析初报.作物品种资源,1989(4):8-10.
    李宝健.“863"计划生物技术领域1990年会论文摘要汇编.国家科委,1990.
    李宝健,欧阳学智.籼粳杂种F1小花败育的细胞学研究.两系法杂交水稻研究论文集,北京农业出版社,1992,286-289.
    李和标,李传国,陈忠明,等.籼粳杂种F1结实率稳定性研究.江苏农业学报,1995,113:7-11.
    李家洋.中国科学家在水稻籼粳杂种不育研究取得突破性进展.分子植物育种,2009,7(1):1-4.
    李文彬,王贺,张福锁.高温胁迫条件下硅对水稻花药开裂及授粉量的影响.作物学报,2005,31:134-136.
    李文涛,曾瑞珍,张泽民,等.水稻Fl花粉不育基因座S-b的精细定位.科学通报,2006,54(4):404-408.
    李新奇.利用广亲和基因提高粕粳杂种育性研究.杂交水稻,1988,3:31-33.
    梁芳,黄群策,向茂成.普通栽培稻与非洲栽培稻杂交的可交配性研究.湘潭师范学院学报(自然科学版),2004,26(1):79-81.
    梁耀懋.广西栽培稻资源类型初析.西南农业学报,1991,4(3):10-14.
    梁耀懋,黎坤爱,陆岗,等.广洲稻种系统分类研究Ⅰ.六项形质综合鉴别籼粳稻的研究.广西农业科学,1993,(2):49-52.
    凌定厚,马镇荣,陈梅芳,等.籼稻体细胞无性系雄性不育突变的类型.遗传学报,1991,18(2):132-139.
    刘桂富,卢永根,张桂权.籼粳稻F1花粉不育性等位基因的基因型和分化度.华南农业大学学报,1994,15:67-71.
    刘永胜,周开达,阴国大,等.水稻籼粳杂种雌性不育的细胞学初步观察(简报).实验生物学报,1993,26(1):95-96.
    刘永胜,孙敬三,周开达.水稻亚种间杂种小穗败育的细胞学基础.实验生物学报,1997,30:335-341.
    卢永根,冯九焕,刘向东,等.水稻(Oryza sativa L.)花粉及花药壁发育的超微结构研究.中国水稻科学,2002,16(1):29-37.
    栾鸭红,周家武,胡凤益,等.栽培稻种间育性S1基因桥梁亲本培育及分子验证研究.西南大学学报(自然科学版),2009,31(12):21-29.
    罗利军,应存山,汤圣祥.稻种资源学[M].武汉:湖北科学技术出版社,2002:21-22.
    吕川根,高艳红,宗寿余,等.水稻籼粳杂种IR36/Kamairazu花粉育性的遗传.作物学报,2006,32:469-471.
    吕川根,王才林,宗寿余,等.温度对水稻亚种间杂种育性及结实率的影响.作物学报,2002,28(4): 499-504.
    吕川根,邹江石,池桥宏.水稻亚种间杂种后代Pgi-1同工酶异常分离的研究.中国水稻科学,1997,11(4):205-210.
    米甲明,牟同敏.非洲新稻(NERICA)品种在武汉生态条件下的生育期、白叶枯病抗性和稻米品质的初步评价.植物遗传资源学报,2010,11(6):683-690.
    欧阳学智,李宝健.籼粳杂种F1雌性败育的某些超微结构特征.两系法杂交水稻研究论文集,北京农业出版社,1992,290-293.
    潘学彪,顾铭洪,陈宗祥,等.我国主要水稻广亲和品种亲和性比较研究.两系法杂交水稻研究论文集,北京:农业出版社,1992,236-245.
    彭勇,梁永书,王世全,等.水稻SSR标记在RI群体的偏分离分析.分子植物育种,2006,4(6):786-790.
    祁祖白,蔡业统,李宝健.影响粗粳杂种育性诸因素的研究.广东农业科学,1993,2:4-6.
    任光俊,周开达.籼粳亚种间杂种F1的细胞学特点及其与发育关系表达的关系.见:袁隆平主编,两系法杂交水稻研究论文集,农业出版社,北京,1992,294-297.
    史磊刚,刘向东,刘博,等.从普通野生稻中鉴定栽培稻F1花粉不育座位Sb的中性基因.科学通报,2009,54(19):2967-2974.
    苏菁.栽培稻(Oryza sativa L.)亚种间F1花粉不育基因S-a的精细定位及克隆.分子植物育种,2003,1(5/6):757-758.
    孙凌飞,李绍波,官杰,等.亚洲栽培稻的籼粳分化.现代农业科技,2008,22:157-15.
    滕俊琳,薛庆中,王以秀.水稻亚种间杂种F1花粉和花药壁发育超微结构观察.浙江农业大学学报,1996,22(5):467-473.
    王才林,张兆兰,汤述翁,等.三系法粕粳亚种间杂种优势利用研究Ⅰ.籼粳交不育与细胞质雄性不育的区别及其检测.江苏农业学报,1992,8(3):1-7.
    王建军,徐云碧,申宗坦,等.利用籼粳杂种一代若干问题的探讨.中国农业科学,1991,24(1):27-33.
    王兰,刘向东,卢永根,等.同源四倍体水稻胚乳发育:极核融合与胚乳细胞化.中国水稻科学,2004,18(4):281-289.
    王楠,马殿荣,贾德涛,等.北方杂草稻出苗特性的研究.华中农业大学报,2007,26(6):755-758.
    王胜华,陈放,周开达.水稻花粉的离体萌发.作物学报,2000,26(5):609-612.
    王石华.在不同海拔产生的水稻正反交F2群体的遗传变异研究.博士学位论文,云南农业大学,2009,pp.19-29.
    王振山,陈洪,朱立煌,等.中国普通野生稻遗传分化的RAPD研究.植物学报,1996,38(9):749-752.
    王渭霞,朱挺恒,邵国胜,等.杂草稻的分类、起源及利用研究进展.杂草科学,2005,2:1-5.
    王象坤.籼粳杂交育种.见:中国稻种资源.北京:中国农业科技出版社,1993.
    王象坤,孙传清,才宏伟,等.中国稻作起源与演变.科学通报,1998,43(22):2354-2363.
    王以秀,严菊强,薛庆中,等.水稻亚种间杂种一代部分雄性不育的细胞学研究.浙江农业大学学报,1991,17(4):417-422.
    魏常敏,王兰,杨有新,等.普通野生稻中S5n基因的鉴定及其胚囊育性研究.科学通报,2010,55(11):1007-1014.
    吴万春,徐雪宾.对稻二亚种命名的意见.中国水稻科学,1988,2(1):36-39.
    肖金华,袁隆平.水稻亚种间杂种一代优势及其与亲本关系的研究.杂交水稻,1988,1:5-9.
    刑祖颐,李梅芳,王淑敏,等.籼粳稻杂交育种的研究.中国农业科学,1980,2:24-30.
    许聪,吴万春.杂草稻的分类地位和利用途径探讨.海南大学学报(自然科学版),1996a,14(2):146-151.
    许聪,吴万春.海南岛杂草稻的生态考察和鉴定.中国水稻科学,1996b,10(4):247-249.
    徐才国.水稻亚种内及亚种间杂交花粉在柱头上附着和萌发状态的观察.华中农业大学学报,1995,14:421-424.
    徐玉梅.籼、粳亚种间杂种F1代不育机理的细胞学研究.[硕士学位论文],2007.
    薛庆中.水稻亚种间杂种一代花药及花粉育性的细胞学观察.农业部科技司主编,水稻光(温)敏核不育及亚种间杂种优势利用研究论文编,1990,140-144.
    晏月明,牟致远.籼粳稻亚种间杂种一代优势的研究.四川农业学报,1988,3(2):6-10.
    杨存义,陈忠正,庄楚雄,等.水稻籼粳杂种不育基因座Sc的遗传图和物理图精细定位.科学通报,2004,49(13):1273-1277.
    杨弘远.水稻生殖生物学.杭州:浙江大学出版社,2005,36-144.
    杨杰,王军,曹卿,等.水稻广亲和基因S5-n的功能标记开发及其应用.作物学报,2009,35(11):2000-2007.
    杨江主,陶大云,胡风益,等.非洲栽培稻形态生理及与亚洲栽培稻种间育性研究.西南农业大学学报,1997,19(2):145-147.
    杨守仁,沈锡英,顾慰连,等.籼粳稻杂交育种研究.作物学报,1962,1(2):97-102.
    杨有新,吴锦文,陈志雄,等.基于功能性标记和测序发掘携带有S5n基因的水稻新种质.科学通报,2009,54(15):2212-2218.
    余传元,万建民,翟虎渠,等.利用CSSL群体研究水稻籼粳亚种间产量性状的杂种优势.科学通报,2005,50(1):32-37.
    余柳青,Mortimer AM,玄松南,等.杂草稻落粒粳的抗逆境特性研究.应用生态学报,2005,16(4):717-720.
    俞履圻,林权.中国栽培稻种亲缘的研究.作物学报,1962,1(3):233-258.
    袁隆平.杂交水稻的育种战略设想.杂交水稻,1987,1:1-3.
    袁隆平.两系法杂交水稻研究的进展.中国农业科学,1990,23(3):1-6.
    张桂权,卢永根.栽培稻(Oryza sativa L.)杂种不育性的遗传研究Ⅱ.F1花粉不育性的基因模式.遗传学报,1993a,20(3):222-228.
    张桂权,卢永根,刘桂富,等.栽培稻(Oryza sativa L.)杂种不育性的遗传研究Ⅲ.不同类型品种F1花粉不育性的等位基因分化.遗传学报,1993b,20(6):541-551.
    张桂权,卢永根,张华,等.栽培稻(Oryza sativa L.)杂种不育性的遗传研究Ⅳ.F1花粉不育性的基因型.遗传学报,1994,21(1):34-41.
    章善庆,程式华,曹立勇.籼粳杂交一代的亲和性.中国水稻科学,1988,2(2):94-96.
    张忠林,谭学林,邓安凤.杂草稻种质资源的综合评价.植物遗传资源科学,2002,3(4):47-50.
    张忠林,谭亚玲,黄大军,等.杂草稻种质资源的鉴定及利用探索.中国农学通报,2003,19(6):61-63.
    张泽民,张桂权.水稻S-c座位的PCR标记精细定位及分子标记辅助选择.作物学报,2001,27(6):704-709.
    张志胜,卢永根,冯九焕,等.水稻台中65与其花粉不育近等基因系的杂种F1的裂药性研究.热带亚热带植物学报,2004,12(6):521-527.
    赵国珍,刘吉新,廖新华,等.细长粒粳稻新品种云粳优1号选育及特性研究.西南农业学报,2005,18(6):699-701.
    周汇,Glaszmann JC,程侃声,等.栽培稻分类方法的比较.中国水稻科学,1988,2(1):1-7.
    褚启人.栽培稻生态型杂交F1不孕性的遗传机理.上海农业科技,1983,4:5-7.
    朱旭东,王建林,钱前,等.籼粳不育新座位的发现及其遗传分析.遗传学报,1998,25(3):245-251.
    朱晓红,曹显祖,朱庆森.水稻籼粳亚种间杂种小穗不孕的细胞学研究.中国水稻科学,1996,10(2):71-78.
    朱英国.水稻雄性不育生物学[M].武汉:武汉大学出版社,2000.
    朱英国,余金洪,杨代常.水稻亚种间杂交F1亲和性的遗传及广亲和性选育.湖北农业科学[增刊],1996,28-32.
    庄楚雄,张桂权,梅曼彤,卢永根.栽培稻F1花粉不育基因座S-a的分子标记定位.遗传学报,1999,26(3):213-218.
    庄楚雄,梅曼彤,张桂权,卢永根.用RAPD标记对栽培稻F1花粉不育基因座S-b定位.遗传学报,2002,29(8):700-705.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700