用户名: 密码: 验证码:
冬小麦生产力对昼夜不同增温的响应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于人类对地球的干扰加剧,20世纪全球平均气温已经上升0.74℃,而且预计到2100年全球气温仍将上升1.8℃-4.0℃,相关预测认为2000-2050年我国平均气温将升高1.2℃-2.0℃。目前,就陆地生态系统对增温响应的试验研究主要集中在自然生态系统,对农田生态系统的研究较少。已有研究表明全球变暖将对我国粮食产量的持续提高构成严重威胁。但这些研究多基于历史资料的模型分析,仅有的少量试验研究也多是在非田间条件下进行的,且很少对昼夜不同增温的差异展开深入研究。同时,学术界和政界普遍认为,今后中国全球变化研究必须把重点放在与国计民生息息相关、具有显著区域特色和国际影响力的重大科学问题上。因此,研究全球变暖背景下小麦生产力对昼夜不同增温的响应,符合我国中长期农业科技发展和粮食安全战略要求,具有重要的意义。小麦是我国最重要的粮食作物之一,全球变暖以冬春影响最大,冬小麦受冬春增温的影响将更为显著,冬小麦能否持续增产及其响应特征一直受到国际社会的广泛关注。为此,笔者参考国际相关增温系统,于2007-2009年在江苏南京设计并运行了我国首个农田开放式主动增温系统(FATI, Free Air Temperature Increased),研究了昼夜不同增温下江淮地区冬小麦生物学性状、光合及呼吸速率、灌浆速率、灌浆关键酶、干物质积累、产量及产量构成、物质生产效率,获得主要结论如下:
     开放式主动增温系统可以在4m2有效面积内显著增温,且不会影响田间温度的变化趋势。昼夜不同增温略微降低了土壤水分含量,但未达到差异显著水平。3种增温处理显著缩短了小麦播种至始穗和成熟的天数。本试验设计的开放式主动增温系统符合气候变暖的机制,基本能满足小麦所代表的典型农田生态系统对昼夜不同增温响应与适应的试验研究要求。
     昼夜不同增温条件下,冬小麦的无效分蘖减少,有效分蘖增加。对照(CK)的无效分蘖分别是全天增温(AW)、白天增温(DW)和夜间增温(NW)处理的2.6、1.7和3.5倍,但有效分蘖却比3个增温处理分别减少13.7%、3.2%和0.5%。同时,相对于不增温对照,AW、DW和NW处理小麦株高分别提高了5.6%、4.5%和1.3%,旗叶面积分别提高了45.7%、39.4%和26.1%,开花期总绿叶面积分别提高了25.1%、29.8%和17.3%,同期绿叶比分别提高了37.7%、43.3%和38.7%,也使冬小麦从播种至抽穗期年均分别缩短14d、9.5 d和11.5 d,灌浆成熟期延长3d、3d和2.5d。另外,AW、DW和NW处理的每穗颖花数平均比CK提高了4.1%、5.7%和1.7%,每穗实粒数分别提高了2.2%、5.3%和2.6%,但冬小麦的粒叶比年均降低了15.3%、8.5%和11.3%。结果表明3种增温处理对江淮地区冬小麦生长发育的影响均倾向有利于产量形成的方向,在预期的增温幅度下冬小麦生产力将可能进一步提高。
     在AW、DW和NW 3种增温处理条件下,干物质积累量两年平均分别较CK提高了6.3%、7.9%和7.2%,产量提高了8.5%、16.6%和21.3%,有效穗数提高了7.5%、3.8%和6.9%,每穗粒数提高了2.3%、6.5%和3.3%,千粒重提高了7.8%、9.2%和18.1%(P<0.05)。籽粒中淀粉组分、蛋白质含量及组分发生明显变化。3种增温处理下,冬小麦总淀粉含量差异不显著,但均显著提高了籽粒中直/支淀粉的比例。增温处理使籽粒中总蛋白质含量显著降低,并呈现CK>DW>NW>AW的趋势。白天增温条件下,清蛋白含量最低,球蛋白含量最高,谷/醇比最低。可见,气候变暖对江淮地区冬小麦的生产有利,但对籽粒品质会有一定影响,在未来气候变暖的背景下,可以利用冬小麦自身对气候变暖的响应与适应能力,通过加强肥水运筹来促进冬小麦的高产、优质栽培。
     昼夜不同增温会提高叶片和茎鞘中的氮含量,而降低了穗部的氮含量。AW、DW和NW处理两年分别使成熟期叶片中氮含量较CK提高了8.4%、15.9%和28.3%,茎鞘中氮含量提高了29.6%、21.0%和45.1%,而穗部氮含量下降了11.7%、5.2%和8.3%。昼夜不同增温还提高了冬小麦的成穗率、干物质转运率、收获指数、氮素利用效率和氮素生产效率。AW、DW和NW处理两年分别使成穗率较CK提高了55.2%、29.4%和71.2%,干物质转运率提高了32.3%、12.6%和23.9%,收获指数提高了10.2%、15.2%和14.8%,氮肥生产效率提高了13.0%、19.3%和24.0%。可见,气候变暖将提高江淮地区冬小麦的物质生产效率。
     气温升高会显著改变叶片的叶绿素含量及组成。拔节期DW处理区旗叶叶绿素a提高了18.8%,NW处理区旗叶叶绿素a却降低了21.8%;叶绿素b在拔节期和花后20 d显著提高,提高幅度在21.4%-48.9%之间。昼夜不同增温对旗叶净光合速率的影响不显著,但旗叶光合产物却显著提高,提高幅度在15.5%-37.0%之间。夜间呼吸速率和呼吸产物在增温后会显著升高,呼吸速率升高幅度在18.4%-119.8%之间,呼吸产物升高幅度在52.6%-160.2%之间。气孔导度、胞间二氧化碳浓度和蒸腾速率对增温的响应基本呈一致降低的趋势,这种反馈机制可能是冬小麦的一种有效响应与适应对策。从以上冬小麦旗叶光合及呼吸特性对增温的响应趋势来看,在水分不缺乏的条件下,气候变暖可能会对江淮地区冬小麦的生产有利。
     不增温条件下,冬小麦强势粒中蔗糖合酶(SS)、腺苷二磷酸葡萄糖焦磷酸化酶(AGPase)和淀粉分支酶(SBE)的活性较弱势粒高,而且三者白天的活性均比夜间高。不增温条件下,整个灌浆期强势粒中SS、AGPase和SBE的活性平均分别比弱势粒高72.9%、111.4%和7.8%。全天、白天和夜间增温条件下,强势粒SS白天的活性比常温对照的高8.4%-31.2%,夜间的活性比对照高11.1%-20.3%;弱势粒SS白天的活性比对照高9.7%-20.3%之间,夜间的活性比对照高6.1%-32.0%。弱势粒中AGPase活性在不同增温处理下也显著提高,其白天的活性比对照高54.2%~124.4%,夜间的活性比CK高20.7%-99.3%。增温对SBE活性的影响较小,强势粒和弱势粒在增温条件下其白天的活性均比对照高3.9%-12.1%,夜间的活性均比对照高1.0%-7.6%。相关分析表明,AGPase和SBE的活性与千粒重之间存在极显著正相关,增温条件下AGPase和SBE的活性显著提高,尤其是弱势粒中AGPase和SBE活性的显著提高是千粒重提高的一个重要原因。
Due to the aggravating human intervention, the global mean temperature in 20st century has increased 0.74℃and is projected to rise about 1.8℃-4.0℃by 2100. In our country, relevant forecast reports that the mean temperature will increase 2.3℃-3.3℃. Until now, the studies on the responses of terrestrial ecosystem to elevated temperature mainly focused on the natural ecosystem with few on agroecosystem. There exist researches showing that the global climate change will greatly threat the sustainability of food production increase in our country. However, these researches were mostly the model analysis based on historical data. Moreover, only a few experiments were not conducted in field and rarely studied the effects of asymmetric warming. At the same time, the academic and political societies think the researches about the global change in China must emphasize on the scientific problems relating the economy of our country and the people's life, significant district traits and international impacts. Therefore, to study the responses of wheat production to the asymmetric warming accords with our country agricultural science and technology development and food security, and has great significance. Wheat is the major grain crops in our country. The global climate warming is more severe in spring and winter, which impacts the winter-wheat even greater. The sustainability of winter-wheat yield increase and the corresponding environmental problems are concerned by international society. Therefore, according to the field warming experiment in other countries, we set up the first Free Air Temperature Increase (FATI) system in winter wheat yield in Nanjing, Jiangsu, China during 2007 to 2009. Under different warming treatments in day and night in our experiment, we studied the winter wheat responses in biological characters, photosynthesis rate, respiration rate, grain filling rate, key enzymes in grain filling, dry matter accumulation, yield and its components, dry matter production efficiency. The main results were as follows:
     The FATI system could significantly increase the temperature within 4 m2 area and did not affect the trend of field temperature development. The asymmetric warming decreased soil moisture content but the effect was insignificant. In the three different warming treatments, the days from sowing to the beginning of the earing and from sowing to maturity shortened significantly. Therefore, our FATI system could accord with climate warming trend, and meet the experiment demands of the wheat responses to the asymmetric warming in typical agroecosystem.
     Asymmetric warming increased the effective tillers and decreased the ineffective tillers of winter wheat. The ineffective tillers in the control were 1.6,0.7 and 2.5 times higher than in all-day warming (AW), day warming (DW) and night warming (NW) treatments, respectively. But the effective tillers in the control decreased 13.7%,3.2% and 0.5% than in AW, DW and NW, respectively. The plant height in AW, DW and NW increased 5.6%,4.5% and 1.3%. The AW, DW and NW treatments significantly enhanced the flag leaf area by 45.7%,39.4% and 26.1%, and the total green leaves area at blooming stage by 25.1%,29.8% and 17.3%. Meanwhile, the green leaves biomass ratio significantly increased 37.7%,43.3% and 38.7%, respectively, in the AW, DW and NW treatments. Averaged across two years, AW, DW and NW shortened the period from sowing to heading by 14,9.5, and 11.5 days, and prolonged the period of maturity by 3,3 and 2.5 days. Warming increased the grain number per panicle by 4.1%,5.7%and 1.7%, respectively, in AW, DW and NW, and the filled grain number per panicle by 2.2%,5.3% and 2.6% averaged during the two years. However, the grain-leaf ratio averagely decreased 15.3%, 8.5% and 11.3% in AW, DW and NW, respectively, during two years. These results showed that the effects of the three warming treatments on the winter wheat benefit its yield formation. So, the anticipated warming may further improve wheat yield in Jianghuai region.
     Averaged across two years in AW, DW and NW treatments, the dry matter accumulations were 6.3%,7.9% and 7.2% higher than the control, and the yields were 8.5%, 16.6% and 21.3% higher, and the effective panicles were 7.5%,3.8% and 6.9% higher, and the grains per spike were 2.3%,6.5% and 3.3% higher, and the 1000 grain weights were 7.8%,9.2%and 18.1% higher(P<0.05). Starch components, protein content and components in grains changed obviously, also. Three warming treatments impacted the total starch content insignificant but significantly increased the ratio of amylose to amylopectin. The content of total protein in the grain protein was significantly decreased by warming with the order as CK> DW> NW> AW. In DW, the albumin content and the ratio of glutelin to gliadin were the lowest, and the globulin content was the highest. Therefore, climate warming benefits the winter wheat production in Jianghuai region. In future climate warming, based on the adaptive ability of winter wheat to the climate warming, we can take effective measures on application of fertilizer and water to improve winter wheat high-yield and high-quality cultivation.
     The asymmetric warming could increase the N content in the leaf and stem but decreased the N content in the panicle. Averaged across two years at wheat maturity, the N contents in the leaf were 8.4%,15.9% and 28.3% higher in the AW, DW and NW treatments than in the control, and the N contents in the stem were 29.6%,21.0% and 45.1% higher, and the N contents in the panicle were 11.7%,5.2% and 8.3% higher. The asymmetric warming also increased the spike rate, dry matter transport rate, harvesting index, N use efficiency and N production efficiency. The AW, DW and NW treatments increased the spike rate by 55.2%,29.4% and 71.2%, dry matter transport rate by 32.3%, 12.6% and 23.9%, harvesting index by 10.2%,15.2% and 14.8% and nitrogen fertilizer production efficiencyby 13.0%,19.3% and 24.0%. Therefore, the climate warming will improve the wheat material production efficiency in Jianghuai region.
     Warming can significantly change the content and composition of the leaf. The chlorophyll a of flag leaf at jointing stage increased 18.8% in DW and decreased 21.8% in NW. The chlorophyll b significantly increased 21.4%-48.9% at jointing stage and 20 days post-anthesis (DPA). The net photosynthesis rate of flag leaf has a decreasing trend under warming with insignificant difference. But the photosynthesis product of flag leaf has a significantly increased 15.5%-37.0% from jointing stage to 20 days post-anthesis (DPA) under warming. The respiration rate in night was significantly decreased 18.4-119.8% under warming. The responses of stomatal conductance, intercellular CO2 concentration and transpiration rate to warming were the same. They were lower at jointing stage and 20 DPA but higher at 10 DPA. The responses of winter-wheat flag leaf to warming indicate that the climate warming may positively impact the winter-wheat production in Jianghuai region.
     The activities of sucrose synthase (SS), ADP-giucose pyrophosphorylase (AGPase), and starch branching enzyme (SBE) were higher in superior grains than in inferior grains, and also higher in the daytime than at night. In the control during the grain filling stage, the average activities of SS, AGPase, and SBE were 72.9%,111.4% and 7.8% higher in superior grains than in inferior grains. In superior grains, the SS activities in all-day warming, daytime warming and nighttime warming treaments were 8.4%-31.2% higher than those in the ambient control in the daytime, and 11.1%-20.3%higher than those in the control at night. In inferior grains, the increased percentages were 9.7%-20.3%in the daytime and 6.1%-32.0%at night. In inferior grains, the AGPase activities were elevated significantly compared to the control with 54.2%-124.4%in the daytime and 20.7%-99.3% at night. The SBE activities were also higher in the warming treatments than in the control with the increase of 3.9%-12.1%in the daytime and 1.0%-7.6%at night. Besides, the correlations existed between the activities of AGPase and SBE and the 1000-grain weight were positive and significant, therefore, this result indicated that elevation of AGPase and SBE activities play an important role in the enhancement of 1000-grain weight.
引文
[1]Karl T R, Jones P D, Knight R W, et al. A new perspective on recent global warming:asymmetric trends of daily maximum and minimum temperature. Bulletin of the American Meteorological Society,1993,74:1007-1023
    [2]Jones, P D. Maximum and minimum temperature trends in Ireland, Italy, Thailand, Turkey and Bangladesh. Atmospheric Research,1995,37:67-78
    [3]Peng S P, Huang J L, Sheehy J E, et al. Rice yields decline with higher night temperature from global warming. Proc Natl Acad Sci USA,2004,101:9971-9975
    [4]Bardgett, R D, Bowman, W D, Kaufmann, R., et al. A temporal approach to linking aboveground and belowground ecology. Trends Ecology and evolution,2005,20:634-640
    [5]Farrar J, Hawes M, Jones D, et al. How roots control the flux of carbon to the rhizosphere. Ecology, 2003,84:827-837
    [6]贺金生,王政权,方精云.全球变化下的地下生态学:问题与展望.科学通报,2004,49:1226-1233
    [7]熊伟,居辉,许吟隆,等.气候变化对中国农业温度阈值影响研究及其不确定性分析地球科学进展,2006,21(1):70-76
    [8]王铮,黎华群,孔祥德,等.气候变暖对中国农业影响的历史借鉴.自然科学进展,2005,6:68-75
    [9]方修琦,王媛,徐锬,等.近20年气候变暖对黑龙江省水稻增产的贡献分析.地理学报,2004,59(6):820-868
    [10]金之庆,葛道阔,石春林,等.东北平原适应全球气候变化的若干粮食生产对策的模拟研究.作物学报,2002,1:25-32
    [11]Richard J N, Luo Y Q. Evaluating ecosystem responses torising atmospheric CO2 and global warming in a multifactor world. New Phytologist,162:281-293
    [12]贺金生,王政权,方精云.全球变化下的地下生态学:问题与展望.科学通报,2004,49:1226-1233
    [13]李家洋,葛全胜.全球变化与人类活动的相互作用,我国下阶段全球变化研究工作的重点.地球科学进展,2005,20(4):371-377
    [14]Woodward F I. An inconvenient truth. New Phytologist,2007,174:469-470
    [15]IPCC Climate Change 2007. Synthesis Report:Summary for Policymakers.2007, [2010-8-10]. http://www.ipcc.ch.
    [16]Aronson E L. Mcnulty S G. Appropriate experimental ecosystem warming methods by ecosystem, objective, and practicality. Agricultural and Forest Meteorology,2009,149:1791-1799
    [17]IPCC Climate Change 2001. Synthesis Report:Summary for Policymakers.2001, [2010-8-10]. http://www.grida.no/publications/other/ipcc_tar/
    [18]Karl T R. Knight R W. Baker B. The record breaking global temperature of 1997 and 1998: Evidence for an increase in the rate of global warming. Geophys Research Letter,2000,27:719
    [19]Rind D. Complexity and climate. Science,1999,284:105-107
    [20]Kukla G. Karl T R. Riches M R. Asymmetric change of daily temperature range. Conf-9309350. US Department of Energy. Washington DC.1994, pp:493
    [21]秦大河.气候变化的事实与影响及对策.中国科学基金,2003,17(1):1-3
    [22]丁一汇,任国玉,石广玉,等.气候变化国家评估报告(Ⅰ):中国气候变化的历史和未来趋势.气候变化研究进展,2006,2(1):3-8
    [23]Alward R D. Detling J K. Milchunas D G. Grassland vegetation changes and nocturnal global warming. Science,1999,283:229-231
    [24]Dai A. Del Genio A D. Fung I Y. Clouds, precipitation, and temperature range. Nature,1997,386: 665-666
    [25]Easterling D R. Horton B. Jones P D. et al. Maximum and minimum temperature trends for the globe. Science,1997,277:364-367
    [26]IPCC. Climate Change 1995:Impacts Adaptations and Mitigation of Climate Change: Scientific-Technical Analyses. Cambridge University Press.1995
    [27]Rind D. Complexity and climate. Science,1999,284:105-107
    [28]汤海燕.广东省近40年来气候变化初探.广东气象,2003,1:37-39
    [29]徐家良.近百余年来上海两次增暖期的特征对比及其成因.地理学报,2000,55(4):501-506
    [30]Jones, P.D. Maximum and minimum temperature trends in Ireland, Italy, Thailand, Turkey and Bangladesh. Atmospheric Research,1995,37:67-78
    [31]Rustad L E, Campbell J L, Marion G M,et al. A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming. Oecologia,2001,126:543-562
    [31]Xiao X, Melillo JM, Kicklighter DW, et al. Transient climate change and net ecosystem production of the terrestrial biosphere. Global Biogeochemical Cycles,1998,12:345-360
    [32]郑建初,张彬,陈留根,等.抽穗期高温对水稻产量构成要素和稻米品质的影响及其基因型差异.江苏农业学报,2005,21(4):249-254
    [33]Richardson S J, Hartley S E, Press M C. Climate warming experiments, are tens a potential barrier to interpretation. Ecological Entomology,2000,25:367-370
    [34]Havstrom M, Challaghan T V, Jonasson S. Differentia growth responses of Cassiope tetragona, an arctic dwarf-shrub, to environmental perturbations among three contrasting high and subarctic sites. Oikos,1993,66:389-4022
    [35]Norby R J, Edwards N T, Riggs J S, et al. Temperature-controlled open-top chambers for global changere search. Global Change Biology,1997,3:259-267
    [36]Hollister R D, Webber P J.Biotic validation of small open-top chambers in a tundra ecosystem. Global Change Biology,2000,6:835-842
    [37]Klein J A. Harte J. Zhao X Q. Dynamic and complex microclimate responses to warming and grazing manipulations. Global Change Biology,2005,11:1440-1451
    [38]Walker M D, Wahren C H, Hollister R D, et al. Plant community response to experimental warming across the tundra biome. Proceedings of the National Academy of Sciences,2006,103:1342-1346
    [39]Kennedy A D. Simulated climate change:are passive greenhouses avalid microcosm for testing the biological effects of environmental perturbations. Global Change Biology,1995,1:29-42
    [40]Chapin F S, Shaver G R, Giblin A E, et al. Responses of arctic tundra to experimental and observed changes in climate. Ecology,1995,76:694-711
    [41]Rykbost K A, Boersma L, Mack H J, et al. Yield response to soil warming:agronomic crops. Agronomy Journal.1975,67:733-738
    [42]van Cleve K, Dyrness C T, Viereck L A, et al. Tiaga ecosystems in interior Alaska. Bio-Science, 1983,33:39-44
    [43]Peterjohn W T, Melillo J M, Bowles F P, et al. Soil warming and trace gas fluxes:experimental design and preliminary flux results. Oecologia,1993,93:18-24
    [44]Zeiher C A, Brown P W, Silvertooth J C, et al. The effect of night temperature on cotton reproductive development. In:Silver tooth J ed. Cotton. College of Agriculture Report, the University of Arizona, Tucson USA.89-96
    [45]Luxmoore R J, Hanson P J, Beauchamp J J, et al. Passive nighttime warming facility for forest ecosystems research. Tree Physiology,1998,18:615-623
    [46]Emmett B A, Beier C, Estiarte M, et al.The response of soil processes to climate change:results from manipulation studies of shrub lands across an environmental gradient. Ecosystems,2004,7: 625-637
    [47]Harte J, Chang F R, Feifarek B, et al. Global warming and soil microclimate:results from a meadow-warming experiment. Ecological Applications,1995,5:132-150
    [48]Nijs I, Kockelbergh F, Teughels H. Free air temperature increase (FATI):a new tool to study global warming effects on plants in the field. Plant Cell and Environment,1996,19:495-502
    [49]Luo Y, Wan S, Hui D, et al.Acclimatization of soil respiration to warming in tall grass prairie. Nature,2001,413:622-625
    [50]Shaw M R, Zavaleta E S, Chiariello N R, et al. Grassland responses to global environment changes suppressed by elevated CO2. Science,2002,298:1987-1990
    [51]Wan S, Luo Y, Wallace L L. Changes in microclimate induced by experimental warming and clipping in tallgrass prairie. Global Change Biology,2002,8:754-768
    [52]Wan S, Yuan T, Bowdish S, et al. Response of an allergic species, Ambrosia psilostochya, to experimental warming and clipping:implications for public health under global change. American Journal of Botany,2002,89:1843-1846
    [53]Kimball B A. Theory and performance of an infrared heater for ecosystem warming. Global Change Biology,2005,11:2041-2056
    [54]Aronson E L, Mcnulty S G. Appropriate experimental ecosystem warming methods by ecosystem, objective, and practicality. Agricultural and Forest Meteorology,2009,149:1791-1799
    [55]Noormets A, Chen J Q, Bridgham S D, et al. The effects of infrared loading and water table on soil energy fluxes in northern peatlands. Ecosystems,2004,7:573-582
    [56]Niu Sh-L, Wan Sh-Q. Warming changes plant competitive hierarchy in a temperate steppe in northern China. Journal of Plant Ecology,2008,1:103-110
    [57]Zavaleta E S, Thomas B D, Chiariello N R, et al. Plants reverse warming effect on ecosystem water balance. Proceedings of the National Academy of Sciences,2003,100:9892-9893
    [58]Morison J I L, Lawlor D W. Interactions between increasing CO2 concentration and temperature on plant growth. Plant Cell Environment,1999,22:659-682
    [59]Badeck F W, Bondeau A, Bottcher K, et al. Responses of spring phenology to climate change. New Phytologist,2004,162:295-309
    [60]Aber J, Neilson R P, McNulty S, et al. Forest processes and global environmental change:predicting the effects of individual and multiple stressors. Bioscience,2001,51:735-752
    [61]Dale V H, Joyce L A, McNulty S, et al. The interplay between climate change, forests, and disturbances. The Science of the Total Environment,2000,262:201-204
    [62]Sparks T H, Jeffree E P, Jeffree C E. An examination of the relationship between flowering times and temperature at the national scale using long-term phonological records from the UK. Interntional Journal Biometeorol,2000,44:82-87
    [63]Fitter A H, Fitter R S R. Rapid changes in flowering time in British plants. Science,2002,296: 1689-1691
    [64]Chmielewski F M, Rotzer T. Response of tree phenology to climate change across Europe. Agricultural and Forest Meteorology,2001,108:101-112
    [65]邓振镛,张强,蒲金涌,等.气候变暖对中国西北地区农作物种植的影响.生态学报,2008,28(8):3760-3768
    [66]Fitter A H, Fitter R S R, Harris I T B, et al. Relationships between first flowering date and temperature in the flora of a locality in central England. Functional Ecology,1995,9:55-60
    [67]Menzel A, Estrella N, Fabian P. Spatial and temporal variability of the phenological seasons in Germany from 1951-1996. Global Change Biology,2001,7:657-666
    [68]Luo Z K, Sun O J, Ge Q S, et al. Phenological responses of plants to climate change in an urban environment. Ecological Research,2007,22:507-514
    [69]邓振镛,仇化民,李怀德.陇东气候与农业开发.北京:中国气象出版社.2000,56-69
    [70]高素华,郭建平.提高中国三北地区气候资源利用率的对策研究.资源科学,1999,21(4):51-54
    [71]刘德祥,董安详,邓振镛.中国西北地区气候变暖对农业的影响.自然资源学报,2005,20(1):119-125
    [72]张翠英.气候变暖对鲁西南冬小麦播种期的影响.气象科技,2008,6(5):609-611
    [73]陈英慧.气候变暖对河南南部冬小麦播种期的影响.气象,2005,31(10):83-85
    [74]Batts G R, Morison J K L. Ellis R H. Effects of CO2 and temperature on growth and yield of crops of winter wheat over four seasons. Developments in Crop Science,1997,25:67-76
    [75]Sadras V, Monzon J P. Modelled wheat phenology captures rising temperature trends:Shortened time to flowering and maturity in Australia and Argentina. Field Crops Research,2006,99:136-146
    [76]Wang Y T, Gan R Y. Phenological trends in winter wheat and spring cotton in response to climate changes in northwest China. Agricultural and Forest Meteorology,2008,148:1242-1251
    [77]王鹤龄,王润元,赵鸿,等.中国西北冬小麦和棉花生长对气候变暖的响应.干旱地区农业研究,2009,27(1):258-264
    [78]段金省.气候变暖对陇东塬区冬小麦成熟期的影响与适宜收获期预报.干旱地区农业研究,2007,25(1):158-161
    [79]高素华,郭建平,王春乙.气候变化对旱地作物生产的影响.应用气象学报,1995,6(增刊):16-22
    [80]Wang R Y, Zhang Q, Wang Y L. Response of corn to climate warming in arid areas in Northest China. Acta Botanica Sinica,2004,46:1387-1392
    [81]王润元,张强,杨兴国,等.西北干旱区春小麦对气候变暖的响应.地球科学进展,2005,20(特刊):197-201
    [82]赵鸿,肖国举,王润元,等.气候变化对半干旱雨养农业区春小麦生长的影响.地球科学进展, 2007,22(3):322-327
    [83]赵鸿,王润元,王鹤龄,等.西北干旱半干旱区春小麦生长对气候变暖响应的区域差异.地球科学进展,2007,22(6):636-641
    [84]王建英,韩相斌,王超,等.豫东北主要农作物对气候变暖的响应.气象与环境科学,2009,32(1):43-46
    [85]王若瑜,沈阳,马青荣.小麦冬前异常旺长对秋冬气候变暖的响应分析.安徽农业科学,2009,37(26):12459-12461
    [86]郭绍铮,彭永欣,钱维朴,等.江苏麦作科学.江苏科学技术出版社.1994
    [87]黄毓华,高苹,徐萌,等.气候变暖对江苏省冬麦苗期的影响及对策的研究.气象,2000,26(9):43-46
    [88]陈维新,潘永圣,黄毓华,等.90年代暖冬等气象条件对江苏小麦生产影响的初步研究.江苏农业科学,1999,6:9-13
    [89]Anwar M R, Leary G, Mcnell D, et al. Climate change impact on rainfed wheat in south-eastern Australia. Field Crops Research,2007,104:139-147
    [90]冯定原,王玉娥.农业气象学.江苏科学技术出版社.1984
    [91]陈雄,吴东秀,王根轩,等.CO2浓度升高对干旱胁迫下小麦光合作用和抗氧化酶活性的影响.应用生态学报,2000,11(6):881-884
    [92]邓慧平,吴正方,周道玮.全球气候变化对小兴安岭阔叶红松林影响的动态模拟研究.应用生态学报,2000,11(1):43-46
    [93]Kimball B A. Carbon and agriculture yield:An assemblage and analysis of 330-prior obsveration. Agron J,1983,75:774-788
    [94]王淼,代力民,韩士杰,等.高CO2浓度对长白山阔叶红松林主要树种的影响.应用生态学报,2000,11(5):675-679
    [95]徐仰仓,王静,林久生,等.不同CO2浓度下渗透胁迫对小麦膜伤害的影响.应用生态学报,2000,11(6):878-880
    [96]孙谷畴,赵平,曾小平.大气CO2浓度升高对香蕉光合作用及光合碳循环过程中叶氮分配的影响.应用生态学报,2001,12(3):429-434
    [97]Thomas R B, Lewis J D, Strain B R. Effects of leaf nutrient status on photosynthetic capacity in loblolly pin (Pinus taeda) seedlings grown in elevated CO2. Tree Physiol,1994,14:547-562
    [98]Medlyn B E, Badeck F W, De Purry D G G. Effects of elevated [CO2] on photosynthesis in European forest species:A meta-analysis of model parameter. Plant Cell Environment,1999,22: 1475-1495
    [99]Long S P. Modification of the response of photosynthetic productivity of rising temperature by atmospheric CO2 concentration has it importance been under estimated. Plant Cell Environment, 1991,14:729-739
    [100]Long S P. Rubisco, the key to improved crop production for world population of more than eight billion people. In:Waterlow J C, eds. Feeding the World Population-Rank Prize Symposium II. Oxford:Oxford University Press.1998
    [101]Spreitzer R J. Questions about the complexity of chlorophyll ribulose-1,5 bisphosphate carboxylase/oxygenase. Photosyn Research,1999,60:29-42
    [102]Paul M J, Driscoll P. Sugar repression of photosynthesis:The role of carbohydrates in signaling nitrogen deficiency through sources:Sink imbalance. Plant Cell Environment,1997,20:110-116
    [103]Koch G W, Mooney H A. Carbon dioxide and terrestrial ecosystems. San Diego. Academic Press. 1996
    [104]Chapin Ⅲ F S, Shaver G R, Giblin A E, et al. Responses of arctic tundra to experimental and observed changes in climate. Ecology,1995,77:694-711
    [105]Shaw M R, Loik M E, Hart J. Gas exchange and water relations of two Rocky    [106]Llotens L, Penuelas I, Beier C, et al. Effects of an experimental increase of temperature and drought on the photosynthetic performance of two Ericaceous shrub species along a north-south European gradient. Ecosystems,2004,7:613-624
    [107]Loik M E, Redar S P, Harte J. Photosythetic responses to a climate-warming manipulation for contrasting meadow species in the Rocky Mountains, Colorado, USA. Funct Ecol,2000,14: 166-175
    [108]Nijs I,Teughels H, Blum H, et al. Simulation of climate change with infrated heaters reduces the productivity of Lolium perenne L in summer. Environ Exp Bot,1996,36:271-280
    [109]Starr G R, Oberbauer S E, Pop E W. Effects of lengthened growing season and soil warming on the phenology and physiology of Polygonum bistorta. Global Change Biology,2000,6:357-369
    [110]Wookey P A, Welker J M, Parsons A N, et al. Differential growth, allocation and photosynthetic response of Polygonum vivipanum to simulated environmental change at a high arctic polar semidesert. Oikos,1994,70:131-139
    [111]Apple M E, Olszyk D M, Oimrod D P, et al. Morphology and stomatal function of Douglas fir needles exposed to climate change:Elevated CO2 and temperature. Int J Plant Sci,2000,161: 127-132
    [112]Chapin III F S, Shaver G R. Physiological and growth responses of arctic plants to a field experiment simulating climatic change. Ecology,1996,77:822-840
    [113]Huxman T E, Hamerlynck E P, Loik M E, et al. Gas exchange and chlorophyll fluorescence responses of three south-western Yucca species to elevated CO2 and high temperature. Plant Cell Environment,1998,21:1275-1283
    [114]廖建雄,王根轩.干旱、CO2和温度升高对春小麦光合、蒸发蒸腾及水分利用效率的影响.应 用生态学报,2002,13(5):547-550
    [115]Tumbull M H, Murthy R, Griffin K L. The relative impacts of daytime and nighttime warming on photosynthetic capacity in Populus deltoids. Plant Cell Environment,2002,25:1729-1737
    [116]Tumbull M H, Tissue D T, Murthy R, et al. Noctumal warming increases photosynthesis at elevated CO2 partial pressure in Populus deltoids. New Phytology,2004,161:819-826
    [117]肖春旺,张新时,赵景柱,等.鄂尔多斯高原3种优势灌木幼苗对气候变暖的响应.植物学报,2001,43(7):736-741
    [118]赵平,孙谷畴,蔡锡安,等.夜间变暖提高荫香叶片的光合能力.生态学报,2005,25(10):2703-2708
    [119]Callaway R M, Delucia E H, Thomas E M, et al. Compensatory responses of CO2 exchange and biomass allocation and their effects on the relative growth rate of ponderosa pine in different CO2 and temperature regimes. Oecologia,1994,98:159-166
    [120]Roden J S, Ball M C. The effect of elevated [CO2] on growth and photosynthesis of two eucalyptus species exposed to high temperatures and water deficits. Plant Physiol,1996,111: 909-919
    [121]Gesch R W, Kang I H, Gallo-Meagher M, et al. Rubisco expression in rice's leaves in related to genotypic variation of photosynthesis under elevated grown CO2 and temperature. Plant Cell Environment,2003,26:1941-1950
    [122]孙谷畴,赵平,饶兴权,等.供氮和增温对倍增二氧化碳浓度下荫香叶片光合作用的影响.应用生态学报,2005,16(8):1399-1404
    [123]Rodin J W. Reconciling water use efficiencies of cotton in field and laboratory. Crop Science,1992, 32:13-18
    [124]Alward R D, Detling J K, Milchunas D G. Grassland vegetation changes and noctumal global warming. Science,1999,283:229-231
    [125]Easterling D R, Horton B,,Jones P D. et al. Maximum and minimum temperature trends for the globe. Science,1997,277:364-367
    [126]Tumbull M H, Murthy R, Griffin K L. The relative impacts of daytime and nighttime warming on photosynthetic capacity in Populus deltoids. Plant Cell Environment,2002,25:1729-1737
    [127]曾小平,赵平,孙谷畴.气候变暖对陆生植物的影响.应用生态学报,2006,17(12):2445-2450
    [128]Pettigrew W T. The effect of higher temperature on cotton lint yield production and fiber quality. Crop Science,2008,48:278-285
    [129]Nakamura Y, Yuki K, Park S Y, et al. Carbohydrate metabolism in the developing endosperm of rice grains. Plant Cell Physiol,1989,30:833-839
    [130]Umemoto T, Nakamura Y, Ishikura N. Effect of grain location on the panicle on activities involved in starch synthesis in rice endosperm. Phytochemistry,1994,36:843-847
    [131]李永庚,于振文,姜东,等.冬小麦旗叶蔗糖和籽粒淀粉合成动态及与其有关的酶活性的研究.作物学报,2001,27:658-664
    [132]姜东,于振文,李永庚,等.高产小麦强势和弱势籽粒淀粉合成相关酶活性的变化.中国农业科学,2002,35:378-383
    [133]Nakamura Y, Yuki K. Changes in enzyme activities associated with carbohydrate metabolism during the development of rice endosperm. Plant Science,1992,82:15-20
    [134]Jeng T L, Wang C S, Chen C L, et al. Effects of grain position on the panicle on starch biosynthetic enzyme activity in developing grains of rice cultivar Tainung 67 and its NaN3-induced mutant. Journal of Agricultural Science,2003,141:303-311
    [138]Yang J C, Zhang J H, Wang Z Q, et al. Activities of enzymes involved in sucrose-to-starch metabolism in rice grains subjected to water stress during filling. Field Crops Research,2003,81: 69-81
    [139]Keeling P L, Bacon P J, Holt D C. Elevated temperature reduces starch deposition in wheat endosperm by reducing the activity of soluble starch synthase. Planta,1993,191:342-348
    [140]Keeling P L, Banisadr R, Barone L, et al. Effect of temperature on enzymes in the pathway of starch biosynthesis in developing wheat and maize grain. Aust J Plant Physiol,1994,21:807-827
    [141]Jenner C F, Siwek K, Hawker J S. The synthesis of [14C] starch from [14C] sucrose in isolated wheat grains is dependent upon the activity of soluble starch synthase. Aust J Plant Physiol,1993, 20:329-335
    [142]闫素辉,尹燕枰,李文阳,等.灌浆期高温对小麦籽粒淀粉的积累、粒度分布及相关酶活性的影响.作物学报,2008,34:1092-1096
    [143]封超年,郭文善,施劲松,等.小麦花后高温对籽粒胚乳细胞发育及粒重的影响,作物学报.2000,26:398-405
    [144]顾世梁,朱庆森,杨建昌,等.不同水稻材料籽粒灌浆特性的分析.作物学报,2001,27:7-14
    [145]顾自奋,朱庆森,曹显祖.水稻结实率的研究:稻穗上强弱势粒的干重积累过程与空秕粒的分布.中国农业科学,1981,6:38-44
    [146]杨建昌,苏宝林,王志琴,等.亚种间杂交稻籽粒灌浆特性及其生理的研究.中国农业科学,1998,31:7-14
    [147]杨建昌,彭少兵,顾世梁,等.水稻灌浆期籽粒中3个与淀粉合成有关的酶活性变化.作物学报,2001,27:157-164
    [148]Jiang D, Cao W X, Dai T B, et al. Diurnal changes in activities of related enzymes to starch synthesis in grains of winter wheat. Acta Botanica Sinica,2004,46:51-57
    [149]闫素辉,尹燕枰,李文阳,等.花后高温对不同耐热性小麦品种籽粒淀粉形成的影响.生态 学报,2008,28:6138-6147
    [150]Jenner C F. Effects of exposure wheat ears to high temperature on dry matter accumulation and carbohydrate metabolism in the grain of two cultivars. Ⅱ. Carry-over effects. Aust J Plant Physiol, 1991,18:179-190
    [151]汤懋苍,汤池.历史上气候变化对我国社会发展的影响初探.高原气象,2000,19(2):159-165
    [152]谷晓萍,刘雪梅,武文辉,等.贵州省主要粮食作物综合增产潜力.高原气象,1999,18(1):118-126
    [153]Santer B. The use of generalcirculation models in climate impactanalysis:a preliminary study of the impact of the CO2-induced climatic change on West European agriculture. Climatic Change, 1985,7:71-93
    [154]Rosenzweig C. Potential CO2-induced climate effects on North American wheat-producing region. Climatic Change,1985,7:367-389
    [155]Pittock A B. Nix H A. The effect of climate change on Australian biomics production:a preliminary study. Climatic Change,1986,8:243-255
    [156]Zhang Q Y. HuY. Tian J. IPCC assessment to the impact of climatic change. Environment Protection,2001,5:39-41
    [157]Wang F T. Advancesin climate warming impact research inChina in recent ten years. Journal of Applied Meteorological Science,2002,13:755-766
    [158]Easterling W. Apps M. Assessing the consequences of climate change for food and forest resources: a view from the IPCC. Climate Change,2005,70:165-189
    [159]Miglietta F, Tanasescu M, Marica A. The expected effects of climate change on wheat development. Global Change Biology,1995,1:407-415
    [160]Xiao G J, Liu W, Xu Q, et al. Effects of temperature increase and elevated CO2 Concentration, with supplemental irrigation, on the yield of rain-fed spring wheat in semiarid region of China. Water Management for Agriculture,2005,74:243-255
    [161]Abraha M G, Savage M J. Potential impacts of climate change on the grain yield of maize for the midlands of KwaZulu-Natal, South Africa Agriculture. Ecosystems and Environment,2006,115: 150-160
    [162]Mera R J, Niyogi D N, Buol G S, et al. Potential individual versus simultaneous climate change effects on soybean (C3) and maize(C4) crops:An agrotechnology model based study.Global and Planetary Change,2006,54:163-182
    [163]Kapetanak G, Rosenzweig C. Impact of climate change on maize yield in central and Northern Greece:a simulation study with ceres-maize. Mitigation and Adaptation Strategies for Global Change,1997,1:251-257
    [164]Krishnan P, Swain D K, Bhaskar B C, et al. Impact of elevated CO2 and temperature on rice yield and methods of adaptation as evaluated by crop simulation studies. Agriculture, Ecosystems and Environment,2007,122:233-242
    [165]Southworth J, Pfeifer R A, Habeck M, et al. Chages in soybean yields in the Midwestern United States as a result of future changes in climate, climate variability, and CO2 fertilization. Climatic Change,2002,53:447-475
    [166]Carbone G J, Kiechle W, Locke C, et al. Response of soybean and sorghum to varying spatial scales of climate change scenarios in the Southeastern United States. Climatic Change,2003,60: 73-98
    [167]Lobell D B, Field C B, Cahill K N, et al. Impacts of future climate change on California perennial crop yields:Model projections with climate and crop uncertainties. Agricultural and Forest Meteorology,2006,141:208-218
    [168]Stehfest E, Heistermann M, Priess J A, et al. Simulation of global crop production with the ecosystem model DayCent. Ecological Model,2007,209:203-219
    [169]林而达,张厚宣,王京华,等.全球气候变化对中国农业影响的模拟.北京:中国农业科技出版社.1997
    [170]秦大河.气候变化的事实与影响对策.中国科学基金,2003,17(1):1-3
    [171]张建平,赵艳霞,王春乙,等.气候变化对我国华北地区冬小麦发育和产量的影响.应用生态学报,2006,17(7):1179-1184
    [172]高素华,郭建平,王春乙.气候变化对旱地作物生产的影响.应用气象学报,1995,6(增刊):16-22
    [173]赵鸿,肖国举,王润元,等.气候变化对半干旱雨养农业区春小麦生长的影响.地球科学进展,2007,22(3):322-327
    [174]赵鸿,何春雨,李凤民,等.气候变暖对高寒阴湿地区春小麦生长发育和产量的影响.生态学杂志,2008,27(12):2111-2117
    [175]高永刚,顾红,姬菊枝,等.近43年来黑龙江气候变化对农作物产量影响的模拟研究.应用气象学报,2007,18(4):532-538
    [176]方修琦,王媛,徐锬,等.近20年气候变暖对黑龙江省水稻增产的贡献.地理学报,2004,59(6):820-828
    [177]韩永翔,董安详,王卫东.气候变暖对中国西北主要农作物的影响.干旱地区农业研究,2004,22(4):39-43
    [178]杜瑞英,杨武德,许吟隆,等.气候变化对我国干旱/半干旱区小麦生产影响的模拟研究,生态科学,2006,25(1):34-37
    [179]刘玉兰,张晓煜,刘娟,等.气候变暖对宁夏引黄灌区春小麦生产的影响.气候变化研究进展,2008,4(2):90-96
    [180]张宇,王馥棠.气候变暖对中国水稻生产可能影响的研究.气象学报,1998,56(3):369-376
    [181]张宇.气候变化对我国小麦发育及产量可能影响的模拟研究.应用气象学报,2000,11(3):264-270
    [182]Loball D B, Asner G P. Climate and management contributions to recent trends in US agricultural yield. Science,2003,299:1032
    [183]Peng S, Huang J, Sheehy J E, et al. Rice yield decline with higher night temperature from global warming. Proceedings of the National Academy of Sciences of the United States of America, 2004,101:9971-9975
    [184]Lang G. Global Warming and German Agriculture:Impact Estimations Using a Restricted Profit Function. Environmental and Resource Economics,2001,19:97-112
    [185]Morison J I L, Lawlor D W. Interactions between increasing CO2 concentration and temperature on plant growth. Plant Cell and Environment,1999,22:659-682
    [186]Ciaisl Ph, Reichstein M, Viovyl N, et al. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature,2005,437:529-533
    [187]Luo Q, Bellotti W, Williams M, et al. Potential impact of climate change on wheat yield in south Austria. Agricultural and Forest Meteorology.2005,132:273-285
    [188]Rasmussen P E, Goulding K W T, Brown J R. Long-Term Agroecosystem Experiments:Assessing Agricultural Sustainability Global Change. Science,1998,282:893-896
    [189]Tan G, Shibasaki R. Global estimation of crop productivity and the impacts of global warming by GIS and EPIC integration. Ecological Modelling,2003,168:357-370
    [190]刘振英,林玉福,王寿元.气象条件对小麦籽粒灌浆影响的研究.农业气象,1985,6(3):1-5
    [191]田良才,张明仪,李晋川.高温胁迫——小麦超高产的主要障碍.山西农业科学,1995,23(2):14-18
    [192]Wiegand C L, Cuelalr J A.温度对小麦成熟期长短及粒重的影响.国外农学——麦类作物,1982,(1):47
    [193]Khatib K A I, Paulsen G M.小麦灌浆期的高温伤害.国外农学——麦类作物,1984,(1):9-14
    [194]Pathak N N.高温和缺水条件下小麦的通径分析.国外农学——麦类作物,1988,(3):45-47
    [195]郭天财,王晨阳,朱云集,等.后期高温对冬小麦根系及地上部衰老的影响.作物学报,1998,24(6):957-962
    [196]Bhullar S S, Jenner C F. Differential responses to high temperatures of starch and nitrogen accumulation in the grain of four cultivars of wheat.Aust.J.Plant Physiol,1985,12:363-375
    [197]Randall P J, Moss H J. Some effete of temperature regine during grain filling on wheat quality. Australian Journal of Agrieultural Researeh,1990,41:602-617
    [198]李兴洲,杨文彬,陆正铎.不良的气候条件对小麦粒重的影响及防御措施的研究.农业气象,1981,7(2):74-77
    [199]徐兆飞,张惠叶,张定一.小麦品质及其改良.北京:中国气象出版社.2000
    [200]Rahman S, Kosar-Hashemi B, Samuel M S, et al. The major proteins of wheat endosperm starch granules. Australian Journal of Plant Physiology,1995,22:793-803
    [201]阎俊,何中虎.基因型、环境及其互作对黄淮麦区小麦淀粉品质性状的影响.麦类作物学报,2001,21(2):14-19
    [202]Keeling P L, Bacon P J, Holt D C. Elevated temperature reduces starch deposition in wheat endosperm by reducing the activity of soluble starch synthase. Planta,1993,191:342-348
    [203]Wallwork M A B, Logue S J, Macleod L C, et al. Effect of high temperature during grain filling on starch synthesis in the developing barley grain. Australian Journal of Plant Physiology,1998,25: 173-181
    [204]Jenner C F. Starch synthesis in the kernel of wheat under high temperature conditions. Australian Journal of Plant Physiology,1994,21:791-806
    [205]Panozzo J F, Eagles H A. Cultivar and environmental effects on quality characters in wheat. I. Starch. Australian Journal of Plant Physiology,1998,49:757-766
    [206]方先文,姜东,戴廷波,等.小麦籽粒总淀粉及支链淀粉含量的遗传分析.作物学报,2003,29(6):925-929
    [207]马冬云,郭天财,王晨阳,等.不同麦区小麦品种子粒淀粉糊化特性分析.华北农学报,2004,19(4):59-61
    [208]赵春,宁堂原,焦念元,等.基因型与环境对小麦籽粒蛋白质和淀粉品质的影响.应用生态学报,2005,16(7):1257-1260
    [209]田志会,孙彦,郭玉琴.主要生态因素对小麦营养品质及烘烤品质的影响.北京农学院学报,2000,15(2):67-71
    [210]Souza E J, Martin J M, Guttieri M J, et al. Influence of genotype, environment, and nitrogen management on spring wheat quality. Crop Science,2004,44:425-432
    [211]Breseghello F, Finney P L, Gaines C, et al. Genetic loci related to kernel quality differences between a soft and a hard wheat cultivar. Crop Science,2005,45:1685-1695
    [212]Davies J, Berzonsky W A. Evaluation of spring wheat quality traits and genotypes for production of Cantonese Asian noodles. Crop Science,2003,43:1313-1319
    [213]Blumenthal C S, Bekes F, Batey I L, et al. Interpretation of grain quality results from wheat variety trials with reference to higher temperature stress. Australian Journal of Agricultural Research, 1991,42:325-334
    [214]Smika D E. Greb B W. Protein content of winter wheat grain as related to soil and climatic factors in the semiarid Central Great Plains. Agronomy Journal,1973,65:433-436
    [215]Stone P J, Nicolas M E. Wheat cultivars vary widely in their response of grain yield and quality of short periods of post-anthesis heat stress. Australian Journal of Plant Physiology,1994,21: 887-900
    [216]赵辉,荆奇,戴廷波,等.花后高温和水分逆境对小麦籽粒蛋白质形成及其关键酶活性的影响.作物学报,2007,33(12):2021-2027
    [217]Wrigley C W, Blumenthal C, Gras P W, et al. Temperature variation during grain filling and changes in wheat grain quality. Australian Journal of Plant Physiology,1994,21:875-885
    [218]Benzian B. Proteine concentration of grain in relation to some weather and soil factors during 17 years of English winter-wheat experiment. J. Sci. Food Agric,1986,37:435-444
    [219]Blumenthal C S, Bekes F, Batey I L, et al. Interpretation of grain quality results from wheat variety trials with reference to higher temperature stress. Australian Journal of Agrieultural Researeh, 1991,42:325-334
    [220]Randall P J, Moss H J. Some effete of temperature regine during grain filling on wheat quality. Australian Journal of Agricultural Researeh,1990,41:602-617
    [221]Wrigley C W, Blumenthal C S, Gras P W, et al. Temperature variation during grain filling and changes in wheat-grain quality. Australian Journal of Plant Physiology,1994,21:875-885
    [222]汪永钦,杨海鹰,刘荣花.等.试论冬小麦籽粒品质与气象条件的关系.中国农业气象,1990,11(2):1-7
    [223]曹广才.小麦品质生态.北京:中国科学技术出版社.1994
    [224]Maness N O.小麦籽粒中酶促糖转化的高温限制因素.Sciences and Engineering,1988,49(5): 1442
    [225]Panozzo J F, Eagles H A. Cultivar and environmental effeets on quality characters in wheat. I. Stareh Aust. J. Agric Res,1998,49:757-766
    [226]Jenner C F, Siwek K, Hawker J S. The synthesis of 14C starch from 14C sucrose in isolated wheat grains is dependent upon the activity of soluble starch synthase. Australian Journal of Plant Physiology,1993,20:329-335
    [227]程方民,丁元树,朱碧岩.稻米直链淀粉含量的形成及其与灌浆结实期温度的关系.生态学报,2000,20(7):646-652
    [1]IPCC. Climate Change. Synthesis Report 2007:Summary for Policymakers.2007, [2010-3-10]. http://www.ipcc.ch
    [2]李崇银,翁衡毅,高晓清,等.全球增暖的另一可能原因初探.大气科学,2003,27(5):789-797
    [3]闫敏华,陈泮勤,邓伟,等.三江平原气候变暖的进一步认识:最高和最低气温的变化.生态环境,2005,14(2):151-156
    [4]任国玉,徐铭志,初子莹,等.近54年中国地面气温变化.气候与环境研究.2005,10(4):717-727
    [5]秦大河.气候变化与干旱.科技导报,2009,11:卷首语
    [6]Ortiz R, Sayre K D, Govaerts B, et al. Climate change:Can wheat beat the heat? Agriculture, Ecosystems and Environment,2008,126:46-58
    [7]Petra H. Andreas F. Effects of elevated atmospheric CO2 on grain quality of wheat. Journal of Cereal Science,2008,48:580-591
    [8]Reyenga P J. Howden S M. Meinke H. Modelling global impacts on wheat cropping in south-east Queensland, Australia. Environmental Modelling & Software,1999,14:297-306
    [9]居辉,熊伟,许吟隆,等.气候变化对我国小麦产量的影响.作物学报,2005,31:1340-1343
    [10]Tao F L, Hayashi Y, Zhang Z, et al. Global warming, rice production, and water use in China: developing a probabilistic assessment. Agricultural and Forest Meteorology,2008,148:94-110
    [11]孙芳,杨修,林而达,等.中国小麦对气候变化的敏感性和脆弱性研究.中国农业科学,2005,38(4):692-696
    [12]柏秦凤,霍治国,李世奎,等.1978年前、后中国≥10℃年积温对比.应用生态学报,2008,19(8):1810-1816
    [13]Nijs I, Kockelbergh F, Teughels H. Free air temperature increase (FATI):a new tool to study global warming effects on plants in the field. Plant Cell and Environment,1996,19:495-502
    [14]Klein J A. Harte J. Zhao X Q. Dynamic and complex microclimate responses to warming and grazing manipulations. Global Change Biology,2005,11:1440-1451
    [15]Laura L, Josep P, Claus B, et al. Effects of an Experimental Increase of Temperature and Drought on the Photosynthetic Performance of Two Ericaceous Shrub Species Along a North-South European Gradient. Ecosystems,2004,7:613-624
    [16]Harte J, Chang F R, Feifarek B, et al. Global warming and soil microclimate:results from a meadow-warming experiment. Ecological Applications,1995,5:132-150
    [17]Niu Sh-L, Wan Sh-Q. Warming changes plant competitive hierarchy in a temperate steppe in northern China. Journal of Plant Ecology,2008,1:103-110
    [18]Kimball B A. Theory and performance of an infrared heater for ecosystem warming. Global Change Biology,2005,11:2041-2056
    [19]Bridgham S D, Pastor J, Updegraff K, et al. Ecosystem control over temperatures and energy flux in northern peatlands. Ecological Applications,1999,9:1345-1358
    [20]Noormets A, Chen J Q, Bridgham S D, et al. The effects of infrared loading and water table on soil energy fluxes in northern peatlands. Ecosystems,2004,7:573-582
    [21]Shaw M R, Zavaleta E S, Chiariello N R, et al. Grassland responses to global environment changes suppressed by elevated CO2. Science,2002,298:1987-1990
    [22]Wan S, Luo Y, Wallace L L. Changes in microclimate induced by experimental warming and clipping in tallgrass prairie. Global Change Biology,2002,8:754-768
    [23]Zavaleta E S, Thomas B D, Chiariello N R, et al. Plants reverse warming effect on ecosystem water balance. Proceedings of the National Academy of Sciences,2003,100:9892-9893
    [1]IPCC Climate Change 2007. Synthesis Report:Summary for Policymakers.2007, [2010-08-08]. http://www.ipcc.ch
    [2]李崇银,翁衡毅,高晓清,等.全球增暖的另一可能原因初探.大气科学,2003,27(5):789-797
    [3]闫敏华,陈泮勤,邓伟,等.三江平原气候变暖的进一步认识:最高和最低气温的变化.生态环境,2005,14(2):151-156
    [4]Easterling D R, Peterson T C, Karl T R. Maximum and minimum temperature trends for the globe. Science,1997,277:364-367
    [5]任国玉,徐铭志,初子莹,等.近54年中国地面气温变化.气候与环境研究,2005,10(4):717-727
    [6]Morison J I L, Lawlor D W. Interactions between increasing CO2 concentration and temperature on plant growth. Plant Cell and Environment,1999,22:659-682
    [7]Badeck F W, Bondeau A, Bottcher K, et al. Responses of spring phenology to climate change. New Phytologist,2004,162:295-309
    [8]Fitter A H, Fitter R S R. Rapid changes in flowering time in British plants. Science,2002,296: 1689-1691
    [9]曾小平,赵平,孙谷畴.气候变暖对陆生植物的影响.应用生态学报,2006,17(12):2445-2450
    [10]姚玉璧,张秀云,王润元,等.亚高山草甸华灰早熟禾对气候变化的响应.应用生态学报,2009,20(2):285-292
    [11]Menzel A, Estrella N, Fabian P. Spatial and temporal variability of the phenological seasons in Germany from 1951 to 1996. Global Change Biology,2001,7:657-666
    [12]Wolf J, van Oijen M, Kempenaar C. Analysis of the experimental variability in wheat responses to elevated CO2 and temperature. Agriculture, Ecosystems and Environment,2002,93:227-247
    [13]Baigorria G A, Jones J W, O'Brien J J. Potential predictability of crop yield using an ensemble climate forecast by a regional circulation model. Agricultural and Forest Meteorology,2008,14: 1353-1361
    [14]王若瑜,沈阳,马青荣.小麦冬前异常旺长对秋冬气候变暖的响应分析.安徽农业科学,2009,37(26):12459-12461
    [15]蒲金涌,姚玉璧,马鹏里,等.甘肃省冬小麦生长发育对暖冬现象的响应.应用生态学报.2007,18(6):1237-1241
    [16]郭建平,高素华.高温、高CO2对农作物影响的试验研究.中国生态农业学报,2002,10(4): 17-20
    [17]Klein J A, Harte J, Zhao X Q. Dynamic and complex micro-climate responses to warming and grazing manipulations. Global Change Biology,2005,11:1440-1451
    [18]Suzuki S, Kudo G. Short-term effects of simulated environmental change on phenology, leaf traits, and shoot growth of alpine plants on a temperate mountain, northern Japan. Global Change Biology, 1997,3:108-115
    [19]Nijs I, Kockelbergh F, Teughels H. Free air temperature increase (FATI):A new tool to study global warming effects on plants in the field. Plant, Cell and Environment,1996,19:495-502
    [20]田云录,郑建初,张彬,等.麦田开放式昼夜不同增温系统的设计及增温效果.中国农业科学,2010,43(18):3724-3731
    [21]张宝田,王德利,曹勇宏.人工草地的羊草生长繁殖动态.草业学报,2003,12(1):59-64
    [22]李朝霞,赵世杰,孟庆伟,等.高粒叶比小麦群体生理基础研究进展.麦类作物学报,2002,22(4):79-83
    [23]Dofing S M, Knight C W. Alternative model for path analysis of small-grain yield. Crop Science, 1992,32:487-489
    [24]白丽萍,周广胜.小麦对大气CO2浓度及温度升高的响应与适应.中国生态农业学报,2004,12(4):23-26
    [25]Damgaard C. A test of asymmetric competition in plant monocultures using the maximum likelihood function of a simple growth model. Ecological Modelling,1999,116:285-292
    [26]潘晓云,王永芳,王根轩,等.覆膜栽培下春小麦种群的生长冗余与个体大小不整齐性的关系.植物生态学报,2002,26(2):177-184
    [27]Peng T, Zhong B Q, Ling Y H, et al. Developmental genetics analysis for plant height in indica hybrid rice across environments. Rice Science,2009,16:111-118
    [28]房世波,谭凯炎,任三学.夜间增温对冬小麦生长和产量影响的实验研究.中国农业科学,2010,43(15):3251-3258
    [29]Villegas D, Aparicio N, Blanco R, et al. Biomass accumulation and main stem elongation of durum wheat grown under Mediterranean conditions. Annals of Botany,2001,88:617-627
    [30]Boomsma C R, Santini J B, West T D, et al. Maize grain yield responses to plant height variability resulting from crop rotation and tillage system in a long-term experiment. Soil & Tillage Research, 2010,106:227-240
    [31]Falster D S, Westoby M. Plant height and evolutionary games. Trends in Ecology and Evolution, 2003,18:337-343
    [32]李万昌.小麦株型与产量结构间的协调性分析.江苏农业学报,2009,25(5):966-970
    [33]van Delden A, Kropff M J, Haverkort A J. Modeling temperature-and radiation-driven leaf area expansion in the contrasting crops potato and wheat. Field Crops Research,2001,72:119-142
    [34]Fitter A H, Fitter R S R, Harris I T B, et al. Relationships between first flowering date and temperature in the flora of a locality in central England. Functional Ecology,1995,9:55-60
    [35]Menzel A, Estrella N, Fabian P. Spatial and temporal variability of the phenological seasons in Germany from 1951-1996. Global Change Biology,2001,7:657-666
    [36]Luo Z K, Sun O J, Ge Q S, et al. Phenological responses of plants to climate change in an urban environment. Ecological Research,2007,22:507-514
    [37]Batts G R, Morison J K L, Ellis R H. Effects of CO2 and temperature on growth and yield of crops of winter wheat over four seasons. Developments in Crop Science,1997,25:67-76
    [38]Wang Y T, Gan R Y. Phenological trends in winter wheat and spring cotton in response to climate changes in northwest China. Agricultural and Forest Meteorology,2008,148:1242-1251
    [39]干热风.http://baike.baidu.com/view/121495.htm
    [40]郭文善,凌启鸿,彭永欣.稻麦研究新进展.南京:东南大学出版社,1991,pp:134-141
    [41]Prystupa P, Savin R, Slafer G A. Grain number and its relationship with dry matter, N and P in the spikes at heading in response to N× P fertilization in barley. Field Crops Research,2004,90: 245-254
    [1]IPCC Climate Change. Synthesis Report:Summary for Policymakers.2007, [2010-3-2]. http://www.ipcc.ch
    [2]Harvey L D. Warm days, hot nights. Nature,1995,377:15-16
    [3]Karl T R, Jones P D, Knight R W, et al. A new perspective on recent global warming:asymmetric trends of daily maximum and minimum temperature. Bulletin of the American Meteorological Society,1993,74(6):1007-1023
    [4]Easterling D R, Peterson T C, Karl T R, et al. Maximum and minimum temperature trends for the globe. Science,1997,277:364-367
    [5]FAO. Rice in Human Nutrition. Food and Agriculture Organization of the United Nations, Rome, 2007
    [6]Lobell D B. Changes in diurnal temperature range and national cereal yields. Agricultural and Forest Meteorology,2007,145:229-238
    [7]Peng S P, Huang J L, Sheehy J E, et al. Rice yields decline with higher night temperature from global warming. Proc Natl Acad Sci USA,2004,101:9971-9975
    [8]Dhakhwa G B, Campbell C L. Potential effects of differential day-night warming in global climate change on crop production quality of rice. Climatic Change,1998,40:647-667
    [9]戴云云,丁艳锋,刘正辉,等.花后水稻穗部夜间远红外增温处理对稻米品质的影响.中国水稻科学,2009,23(4):414-420
    [10]Wheeler T R, Hong TD, Ellis R H, et al. The duration and rate of grain growth, and harvest index, of wheat (Triticum aestivum L.) in response to temperature and CO2. Journal of Experimental Botany,1996,47:623-630
    [11]Lobell D B, Ortiz-Monasterio J I. Impacts of day versus night temperatures on spring wheat yields: a comparison of empirical and CERES model predictions in three locations. Agronomy Journal, 2007,99:469-477
    [12]Jenner C F. Starch synthesis in the kernel of wheat under high temperature conditions. Aust J Plant Physiol,1994,21:791-806
    [13]Panozzo J F, Eagles H A. Cultivar and environmental effects on quality characters in wheat:I. Starch. Aust J Plant Physiol,1998,49:757-766
    [14]Breseghello F, Finney P L, Gaines C, et al. Genetic loci related to kernel quality differences between a soft and a hard wheat cultivar. Crop Sci,2005,45:1685-1695
    [15]Davies J, Berzonsky W A. Evaluation of spring wheat quality traits and genotypes for production of Cantonese Asian noodles. Crop Sci,2003,43:1313-1319
    [16]马冬云,郭天财,王晨阳,等.不同麦区小麦品种子粒淀粉糊化特性分析.华北农学报,2004,19(4):59-61
    [17]赵春,宁堂原,焦念元,等.基因型与环境对小麦籽粒蛋白质和淀粉品质的影响.应用生态学报,2005,16(7):1257-1260
    [18]田志会,孙彦,郭玉琴.主要生态因素对小麦营养品质及烘烤品质的影响.北京农学院学报,2000,15(2):67-71
    [19]Souza E J, Martin J M, Guttieri M J, et al. Influence of genotype, environment, and nitrogen management on spring wheat quality. Crop Sci,2004,44:425-432
    [20]吴东兵,曹广才,王秀芳,等.生育进程和气候条件与秋播小麦品质的关系.河北农业科学,2003,7(1):5-10
    [21]曹广才,吴东兵,陈贺芹,等.温度和日照与春播小麦品质的关系.中国农业科学,2004,37(5):663-669
    [22]李向阳,朱云集,郭天财.不同小麦基因型灌浆期冠层和叶面温度与产量和品质关系的初步分析.麦类作物学报,2004,24(2):88-91
    [23]Blumenthal C S, Bekes F, Batey I L, et al. Interpretation of grain quality results from wheat variety trials with reference to higher temperature stress. Aust J Agric Res,1991,42:325-334
    [24]Stone P J, Nicolas M E. Wheat cultivars vary widely in their response of grain yield and quality of short periods of post-anthesis heat stress. Aust J Plant Physiol,1994,21:887-900
    [25]赵辉,荆奇,戴廷波,等.花后高温和水分逆境对小麦籽粒蛋白质形成及其关键酶活性的影响.作物学报,2007,33(12):2021-2027
    [26]Norby R J, Luo Y Q. Evaluating ecosystem response to rising atmospheric CO2 and global warming in multi-factor world. New Phytologist,2004,164:281-293
    [27]Pendall E, Bridgham S, Hanson P J, et al. Below-ground process response to elevated CO2 and temperature:a discussion of observations, measurement methods and models. New Phytologist, 2004,162:311-322
    [28]田云录,郑建初,张彬,等.麦田开放式昼夜不同增温系统的设计及增温效果.中国农业科学,2010,43(18):3724-3731
    [29]上海植物生理学会.现代植物生理学实验手册.北京:科学出版社,1999
    [30]魏金连,潘晓华.夜间温度升高对早稻生长发育及产量的影响.江西农业大学学报,2008,30(3):427-432
    [31]Nlcholls N. Increased Australian wheat yield due to recent climate trends. Nature,1997,387: 484-485
    [32]Luo Q, Bellotti W, Williams M, et al. Potential impact of climate change on wheat yield in south Austria. Agricultural and Forest Meteorology,2005,132:273-285
    [33]Krishnan P, Swain D K, Bhaskar B C, et al. Impact of elevated CO2 and temperature on rice yield and methods of adaptation as evaluated by crop simulation studies. Agriculture, Ecosystem and Environment,2007,122:233-242
    [34]Tao F, Yokozawa M, Xu Y, et al. Climate changes and trends in phenology and yields of field crops in China 1981-2000. Agricultural and Forest Meteorology,2006,138:82-92
    [35]Wang H L, Gan Y T, Wang R Y, et al. Phenological trends in winter wheat and spring cotton in response to climate changes in northwest China. Agricultural and Forest Meteorology,2008,148: 1242-1251
    [36]Frantz JM, Cometti NN, Bugbee B. Night temperature has a minimal effect on respiration and growth in rapidly growing plants. Annals of Botany,2004,94:155-166
    [37]Morita S, Yonemaru J, Takanashi J. Grain growth and endosperm cell size under high night temperatures in rice (Oryza sativa L.). Annals of Botany,2005,95:695-701
    [38]Cheng W, Sakai H, Hartley A, et al. Increased night temperature reduces the stimulatory effect of elevated carbon dioxide concentration on methane emission from rice paddy soil. Global Change Biology,2008,14:644-656
    [39]Mohammed A R, Tarpley L. High nighttime temperatures affect rice productivity through altered pollen germination and spikelet fertility. Agricultural and Forest Meteorology,2009,149:999-1008
    [40]田云录,陈金,邓艾兴,等.开放式主动增温下非对称性增温对冬小麦生长特征及产量构成的影响.应用生态学报,2011,22(3):681-686
    [41]Sadras V O, Monzon J P. Modelled wheat phenology captures rising temperature trends:Shortened time to flowering and maturity in Australia and Argentina. Field Crops Research,2006,99:136-146
    [42]Liu H, Kang Y. Regulating field microclimate using sprinkler misting under hot-dry windy conditions. Biosystems Engineering,2006,95:349-358
    [43]Zhong X, Mei X, Li Y, et al. Changes in frost resistance of wheat young ears with development during jointing stage. Journal of Agronomy and Crop Science,2008,194:343-349
    [44]van Delden A, Kropff M J, Haverkort A J. Modeling temperature-and radiation-driven leaf area expansion in the contrasting crops potato and wheat. Field Crops Research,2001,72:119-142
    [45]Villegas D, Aparicio N, Blanco R, et al. Biomass accumulation and main stem elongation of durum wheat grown under Mediterranean conditions. Annals of Botany,2001,88:617-627
    [46]Howden S M, Reyenga P J, Meinke H. Global change impacts on Australian wheat cropping. Report to the Australian Greenhouse Office,1999
    [47]Wang Y P, Handoko J, Rimmington G M. Sensitivity of wheat growth to increases air temperature for different scenarios of ambient CO2 concentration and rainfall in Victoria, Australia-a simulation study. Climate Research,1992,2:131-149
    [48]Torriani D S, Calanca P, Schmid S, et al. Potential effects of changes in mean climate and climate variability on the yield of winter and spring crops in Switzerland. Climate Research,2007,34:59-69
    [49]Luo Q Y, Bellotti W, Williams M, et al. Adaptation to climate change of wheat growing in South Australia:analysis of management and breeding strategies. Agriculture, Ecosystems and Environment,2009,129:261-267
    [50]阎俊,何中虎.基因型、环境及其互作对黄淮麦区小麦淀粉品质性状的影响.麦类作物学报,2001,21(2):14-19
    [51]Sasaki T, Yasui T, Matsuki J, et al. Comparison of physical properties of wheat starch gels with different amylase content. Cereal Chem,2002,79:861-866
    [52]穆培源,何中虎,徐兆华,等.CIMMYT普通小麦品系Waxy蛋白类型及淀粉糊化特性研究.作物学报,2006,32(7):1071-1075
    [53]Smika D E, Greb B W. Protein content of winter wheat grain as related to soil and climatic factors in the semiarid Central Great Plains. Agron J,1973,65:433-436
    [54]Wrigley C W, Blumenthal C, Gras P W, et al. Temperature variation during grain filling and changes in wheat grain quality. Aust J Plant Physiol,1994,21:875-885
    [55]Blumenthal C, Bekes F, Gras P W, et al. Identification of wheat genotypes tolerant to the effects of heat stress on grain quality. Cereal Chem,1995,72:539-544
    [1]IPCC Climate Change 2007:The physical science basis. contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge, UK:Cambridge University Press,2007
    [2]Karl T R, Jones P D, Knight R W, et al. A new perspective on recent global warming:asymmetric trends of daily maximum and minimum temperature. Bulletin of the American Meteorological Society,1993,74:1007-1023
    [3]IPCC. Climate Change 2001:The scientific basis. Cambridge, UK:Cambridge University Press, 2001
    [4]Easterling D R, Horton B, Jones P D, et al. Maximum and minimum temperature trends for the globe. Science,1997,277:364-367
    [5]Price C, Michaelides S, Pashiardis S, et al. Long term changes in diurnal temperature range in Cyprus. Atmospheric Research,1999,51:85-98
    [6]Lobell D B, Ortiz-Monasterio J I. Impacts of day versus night temperatures on spring wheat yields:a comparison of empirical and CERES model predictions in three locations. Agronomy Journal,2007, 99:469-477
    [7]Rosenzweig C, Tubiello F N. Effects of changes in minimum and maximum temperature on wheat yields in the central US:a simulation study. Agricultural and Forest Meteorology,1996,80: 215-230
    [8]Porter J R, Gawith M. Temperatures and the growth and development of wheat:a review. European Journal of Agronomy,1999,10:23-36
    [9]Ortiz R, Sayre K D, Govaerts B, et al. Climate change:can wheat beat the heat? Agriculture, Ecosystems and Environment,2008,126:46-58
    [10]Tubiello F N, Soussana J F, Howden S M. Crop and pasture response to climate change. Proceedings of the National Academy of Sciences USA,2007,104:19686-19690
    [11]Schlenker W, Roberts M J. Nonlinear temperature effects indicate severe damages to U.S. crop yields under climate change. Proceedings of the National Academy of Sciences USA,2009,106: 15594-15598
    [12]Menzel A, Fabian P. Growing season extended in Europe. Nature,1999,397:659
    [13]Hu Q, Weiss A, Feng S, et al. Earlier winter wheat heading dates and warmer spring in the U.S. Great Plains. Agricultural and Forest Meteorology,2005,135:284-290
    [14]Sadras V O, Monzon J P. Modelled wheat phenology captures rising temperature trends:Shortened time to flowering and maturity in Australia and Argentina. Field Crops Research,2006,99:136-146
    [15]Peng S, Huang J, Sheehy J E, et al. Rice yields decline with higher night temperature from global warming. Proceedings of the National Academy of Sciences USA,2004,101:9971-9975
    [16]Lobell D B, Burke M B, Tebaldi C, et al. Prioritizing climate change adaptation needs for food security in 2030. Science,2008,319:607-610
    [17]Fedoroff N V, Battisti D S, Beachy R N, et al. Radically rethinking agriculture for the 21st century. Science,2010,327:833-834
    [18]张锡洲,阳显斌,李廷轩,等.小麦氮素利用效率的基因型差异.应用生态学报,2011,22(2):369-375
    [19]Erley G S, Kaul H P, Kruse M, et al. Yield and nitrogen utilization efficiency of the pseudocereals amaranth, quinoa, and buckwheat under differing nitrogen fertilization. European Journal of Agronomy,2005,22:95-100
    [20]叶利庭,宋文静,吕华军,等.不同氮效率水稻生育后期氮素积累转运特征.土壤学报,2010, 47(2):303-310
    [21]Hussain I, Khan M A, Khan E A. Bread wheat varieties as influenced by different nitrogen levels. Journal of Zhejiang University Science B,2006,7:70-78
    [22]程建峰,蒋海燕,刘宜柏,等.氮高效水稻基因型鉴定与筛选方法的研究.中国水稻科学,2010,24(2):175-182
    [23]宁堂原,焦念元,李增嘉,等.施氮水平对不同种植制度下玉米氮利用及产量和品质的影响.应用生态学报,2006,17(12):2332-2336
    [24]李文娟,何萍,高强,等.不同氮效率玉米干物质形成及氮素营养特性差异研究.植物营养与肥料学报,2010,16(1):51-57
    [25]陆大雷,刘小兵,赵久然,等.甜玉米氮素积累和分配的基因型差异.植物营养与肥料学报,2008,14(2):258-263
    [26]凌启鸿.水稻不同叶龄期施用穗肥的研究江苏农学院学报,1985,6(3):11-19
    [27]王伯伦,刘新安.水稻产量潜力的研究.山东农业大学学报,1992,23(增刊):13-17
    [28]田云录,郑建初,张彬,等.麦田开放式昼夜不同增温系统的设计及增温效果.中国农业科学,2010,43(18):3724-3731
    [29]田云录,陈金,邓艾兴,等.开放式主动增温下非对称性增温对冬小麦生长特征及产量构成的影响.应用生态学报,2011,22(3):681-686
    [30]Blumenthal C S, Bekes F, Batey I L, et al. Interpretation of grain quality results from wheat variety trials with reference to higher temperature stress. Aust J Agric Res,1991,42:325-334
    [31]Smika D E, Greb B W. Protein content of winter wheat grain as related to soil and climatic factors in the semiarid Central Great Plains. Agron J,1973,65:433-436
    [32]Wrigley C W, Blumenthal C, Gras P W, et al. Temperature variation during grain filling and changes in wheat grain quality. Aust J Plant Physiol,1994,21:875-885
    [33]Cock J H, Yoshida S. Accumulation of 14C-labelled carbohydrate before flowering and the subsequent redistribution and respiration in rice plant. Proceedings of Crop Science Society of Japan,1972,41:226-234
    [34]Rahman M S, Yoshida S. Effect of water stress on grain filling in rice. Soil Science and Plant Nutrition,1985,31:497-511
    [35]Kobata T, Takami S. Maintenance of the grain growth in rice subject to water stress during the early grain filling. Japanese Journal of Crop Science,1981,50:536-545
    [36]田云录,陈金,邓艾兴,等.非对称性增温对冬小麦籽粒淀粉和蛋白质含量及其组分的影响.作物学报,2011,37(2):302-308
    [1]IPCC Climate Change 2007. Synthesis Report:Summary for Policymakers.2007, [2010-08-08]. http://www.ipcc.ch
    [2]李崇银,翁衡毅,高晓清,等.全球增暖的另一可能原因初探.大气科学,2003,27(5):789-797
    [3]任国玉,徐铭志,初子莹,等.近54年中国地面气温变化.气候与环境研究,2005,10(4):717-727
    [4]Koch G W, Mooney H A. Carbon dioxide and terrestrial ecosystems. San Diego. Academic Press, 1996
    [5]陈雄,吴东秀,王根轩,等.CO2浓度升高对干旱胁迫下小麦光合作用和抗氧化酶活性的影响.应用生态学报,2000,11(6):881-884
    [6]Long S P. Modification of the response of photosynthetic productivity of rising temperature by atmospheric CO2 concentration has it importance been under estimated. Plant Cell Environment, 1991,14:729-739
    [7]Tumbull M H, Murthy R, Griffin K L. The relative impacts of daytime and nighttime warming on photosynthetic capacity in Populus deltoids. Plant Cell Environment,2002,25:1729-1737
    [8]曾小平,赵平,孙谷畴.气候变暖对陆生植物的影响.应用生态学报,2006,17(12):2445-2450
    [9]赵平,孙谷畴,蔡锡安,等.夜间变暖提高荫香叶片的光合能力.生态学报,2005,25(10):2703-2708
    [10]Gesch R W, Kang I H, Gallo-Meagher M, et al. Rubisco expression in rice's leaves in related to genotypic variation of photosynthesis under elevated grown CO2 and temperature. Plant Cell Environment,2003,26:1941-1950
    [11]孙谷畴,赵平,饶兴权,等.供氮和增温对倍增二氧化碳浓度下荫香叶片光合作用的影响.应用生态学报,2005,16(8):1399-1404
    [12]廖建雄,王根轩.干旱、CO2和温度升高对春小麦光合、蒸发蒸腾及水分利用效率的影响.应用生态学报,2002,13(5):547-550
    [13]Rodin J W. Reconciling water use efficiencies of cotton in field and laboratory. Crop Science,1992, 32:13-18
    [14]Chapin Ⅲ F S, Shaver G R, Giblin A E, et al. Responses of arctic tundra to experimental and observed changes in climate. Ecology,1995,77:694-711
    [15]Shaw M R, Loik M E, Hart J. Gas exchange and water relations of two Rocky ountain shrub species exposed to climate change manipulation. Plant Ecol,2000,146:195-204
    [16]田云录,郑建初,张彬,等.麦田开放式昼夜不同增温系统的设计及增温效果.中国农业科学,2010,43(18):3724-3731
    [17]Arnon D I. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiology,1949,24:1-15
    [18]Paul M J, Driscoll P. Sugar repression of photosynthesis:The role of carbohydrates in signaling nitrogen deficiency through sources:Sink imbalance. Plant Cell Environment,1997,20:110-116
    [19]Llotens L, Penuelas I, Beier C, et al. Effects of an experimental increase of temperature and drought on the photosynthetic performance of two Ericaceous shrub species along a north-south European gradient. Ecosystems,2004,7:613-624
    [20]Loik M E, Redar S P, Harte J. Photosythetic responses to a climate-warming manipulation for contrasting meadow species in the Rocky Mountains, Colorado, USA. Funct Ecol,2000,14: 166-175
    [21]Nijs I,Teughels H, Blum H, et al. Simulation of climate change with infrated heaters reduces the productivity of Lolium perenne L in summer. Environ Exp Bot,1996,36:271-280
    [22]Starr G R, Oberbauer S E, Pop E W. Effects of lengthened growing season and soil warming on the phenology and physiology of Polygonum bistorta. Global Change Biology,2000,6:357-369
    [23]Wookey P A, Welker J M, Parsons A N, et al. Differential growth, allocation and photosynthetic response of Polygonum vivipanum to simulated environmental change at a high arctic polar semidesert. Oikos,1994,70:131-139
    [24]Apple M E, Olszyk D M, Oimrod D P, et al. Morphology and stomatal function of Douglas fir needles exposed to climate change:Elevated CO2 and temperature. Int J Plant Sci,2000,161: 127-132
    [25]Chapin Ⅲ F S, Shaver G R. Physiological and growth responses of arctic plants to a field experiment simulating climatic change. Ecology,1996,77:822-840
    [26]Huxman T E, Hamerlynck E P, Loik M E, et al. Gas exchange and chlorophyll fluorescence responses of three south-western Yucca species to elevated CO2 and high temperature. Plant Cell Environment,1998,21:1275-1283
    [27]Tumbull M H, Murthy R, Griffin K L. The relative impacts of daytime and nighttime warming on photosynthetic capacity in Populus deltoids. Plant Cell Environment,2002,25:1729-1737
    [28]Tumbull M H, Tissue D T, Murthy R, et al. Nocturnal warming increases photosynthesis at elevated CO2 partial pressure in Populus deltoids. New Phytology,2004,161:819-826
    [29]肖春旺,张新时,赵景柱,等.鄂尔多斯高原3种优势灌木幼苗对气候变暖的响应.植物学报,2001,43(7):736-741
    [30]赵平,孙谷畴,蔡锡安,等.夜间变暖提高荫香叶片的光合能力.生态学报,2005,25(10):2703-2708
    [31]Callaway R M, Delucia E H, Thomas E M, et al. Compensatory responses of CO2 exchange and biomass allocation and their effects on the relative growth rate of ponderosa pine in different CO2 and temperature regimes. Oecologia,1994,98:159-166
    [32]Roden J S, Ball M C. The effect of elevated [CO2] on growth and photosynthesis of two eucalyptus species exposed to high temperatures and water deficits. Plant Physiol,1996,111:909-919
    [1]IPCC Climate Change 2007. Synthesis Report:Summary for Policymakers.2007, [2010-11-02]. http://www. ipcc.ch
    [2]Karl T R, Jonse P D, Knight R W, et al. A new perspective on recent global warming:asymmetric trends of daily maximum and minimum temperature. Bulletin of the American Meteorological Society,1993,74:1007-1023
    [3]Easterling D R, Horton B, Jones P D, et al. Maximum and minimum temperature trends for the globe. Science,1997,277:364-367
    [4]Lobell D, Ortiz-Monasterio I. Impacts of day versus night temperature on spring wheat yields:a comparison of empirical and CERES model predictions in three locations. Agronomy Journal,2007, 99:469-477
    [5]Zhou L, Dickinson R E, Tian Y, et al. Impact of vegetation removal and soil aridation on diurnal temperature range in semiarid region:application to the Sahel. PNAS,2007,104:17937-17942
    [6]Morison J I L. Lawlor D W. Interactions between increasing CO2 concentration and temperature on plant growth. Plant Cell Environment,1999,22:659-682
    [7]Badeck F W, Bondeau A, Bottcher K, et al. Responses of spring phenology to climate change. New Phytologist,2004,162:295-309
    [8]Wolf J, van Oijen M, Kempenaar C. Analysis of the experimental variability in wheat responses to elevated CO2 and temperature. Agriculture, Ecosystems and Environment,2002,93:227-247
    [9]Baigorria G A, Jones J W, O'Brien J J. Potential predictability of crop yield using an ensemble climate forecast by a regional circulation model. Agricultural and Forest Meteorology,2008,14(8): 1353-1361
    [10]居辉,熊伟,许吟隆,等.气候变暖对我国小麦产量的影响.作物学报,2005,31(10):1340-1343
    [11]顾世梁,朱庆森,杨建昌,等.不同水稻材料籽粒灌浆特性的分析.作物学报,2001,27(1):7-14
    [12]张强,李白超,傅秀林,等.不同株穗型水稻超高产品种叶绿素含量变化规律及籽粒灌浆动 态.作物学报,2005,31(9):1198-1206
    [13]杨建昌,苏宝林,王志琴,等.亚种间杂交稻籽粒充实不良的原因探讨.中国农业科学,1998,31(7):7-14
    [14]Nakamura Y, Yuki K, Park S Y, et al. Carbohydrate metabolism in the developing endosperm of rice grains. Plant Cell Physiol,1989,30:833-839
    [15]Umemoto T, Nakamura Y, Ishikura N. Effect of grain location on the panicle on activities involved in starch synthesis in rice endosperm. Phytochemistry,1994,36:843-847
    [16]李永庚,于振文,姜东,等.冬小麦旗叶蔗糖和籽粒淀粉合成动态及与其有关的酶活性的研究.作物学报,2001,27:658-664
    [17]姜东,于振文,李永庚,等.高产小麦强势和弱势籽粒淀粉合成相关酶活性的变化.中国农业科学,2002,35(4):378-383
    [18]Nakamura Y, Yuki K. Changes in enzyme activities associated with carbohydrate metabolism during the development of rice endosperm. Plant Science,1992,82:15-20
    [19]Jeng T L, Wang C S, Chen C L, et al. Effects of grain position on the panicle on starch biosynthetic enzyme activity in developing grains of rice cultivar Tainung 67 and its NaN3-induced mutant. Journal of Agricultural Science,2003,141:303-311
    [20]Yang J C, Zhang J H, Wang Z Q, et al. Activities of enzymes involved in sucrose-to-starch metabolism in rice grains subjected to water stress during filling. Field Crops Research,2003,81: 69-81
    [21]田云录,郑建初,张彬,等.麦田开放式昼夜不同增温系统的设计及增温效果.中国农业科学,2010,43(18):3724-3731
    [22]王瑞霞,张秀英,伍玲,等.不同生态环境条件下小麦籽粒灌浆速率及千粒重QTL分析.作物学报,2008,10:1750-1756
    [23]Keeling P L, Bacon P J, Holt D C. Elevated temperature reduces starch deposition in wheat endosperm by reducing the activity of soluble starch synthase. Planta,1993,191:342-348
    [24]Keeling P L, Banisadr R, Barone L, et al. Effect of temperature on enzymes in the pathway of starch biosynthesis in developing wheat and maize grain. Aust J Plant Physiol,1994,21:807-827
    [25]Jenner C F, Siwek K, Hawker J S. The synthesis of [14C] starch from [14C] sucrose in isolated wheat grains is dependent upon the activity of soluble starch synthase. Aust J Plant Physiol,1993,20: 329-335
    [26]闫素辉,尹燕枰,李文阳,等.不同品质类型小麦籽粒淀粉粒度的分布特征.作物学报,2008,34(3):1092-1096
    [27]金正勋,杨静,钱春荣,等.灌浆成熟期温度对水稻籽粒淀粉合成关键酶活性及品质的影响.中国水稻科学,2005,19(4):377-380
    [28]封超年,郭文善,施劲松,等.小麦花后高温对籽粒胚乳细胞发育及粒重的影响.作物学报, 2000,26(1):398-405
    [29]顾自奋,朱庆森,曹显祖.水稻结实率的研究:稻穗上强弱势粒的干重积累过程与空秕粒的分布.中国农业科学,1981,14(6):38-44
    [30]杨建昌,彭少兵,顾世梁,等.水稻灌浆期籽粒中3个与淀粉合成有关的酶活性变化.作物学报,2001,27(2):157-164
    [31]Jiang D, Cao W X, Dai T B, Jing Q. Diurnal changes in activities of related enzymes to starch synthesis in grains of winter wheat. Acta Botanica Sinica,2004,46:51-57
    [32]闫素辉,尹燕枰,李文阳,等.花后高温对不同耐热性小麦品种籽粒淀粉形成的影响.生态学报,2008,28(12):6138-6147
    [33]Jenner C F. Effects of exposure wheat ears to high temperature on dry matter accumulation and carbohydrate metabolism in the grain of two cultivars. Ⅱ. Carry-over effects. Aust J Plant Physiol, 1991,18:179-190
    [1]Xiao X, Melillo JM, Kicklighter DW, et al. Transient climate change and net ecosystem production of the terrestrial biosphere. Global Biogeochemical Cycles,1998,12:345-360
    [2]Kennedy A D. Simulated climate change:are passive greenhouses avalid microcosm for testing the biological effects of environmental perturbations? Global Change Biology,1995,1:29-42
    [3]van Cleve K, Dyrness C T, Viereck L A, et al. Tiaga ecosystems in interior Alaska. Bio-Science,1983, 33:39-44
    [4]Zeiher C A, Brown P W, Silvertooth J C, et al. The effect of night temperature on cotton reproductive development. In:Silver tooth J ed. Cotton. College of Agriculture Report, the University of Arizona, Tucson USA,89-96
    [5]Luxmoore R J, Hanson P J, Beauchamp J J, et al. Passive nighttime warming facility for forest ecosystems research. Tree Physiology,1998,18:615-623
    [6]Emmett B A, Beier C, Estiarte M, et al.The response of soil processes to climate change:results from manipulation studies of shrub lands across an environmental gradient. Ecosystems,2004,7: 625-637
    [7]Aronson E L, Mcnulty S G. Appropriate experimental ecosystem warming methods by ecosystem, objective, and practicality. Agricultural and Forest Meteorology,2009,149:1791-1799
    [8]Karl T R, Jones P D, Knight R W, et al. A new perspective on recent global warming:asymmetric trends of daily maximum and minimum temperature. Bulletin of the American Meteorological Society,1993,74:1007-1023
    [9]IPCC Climate Change 2001:The scientific basis. Cambridge, UK:Cambridge University Press,2001
    [10]Easterling D R, Horton B, Jones P D, et al. Maximum and minimum temperature trends for the globe. Science,1997,277:364-367
    [11]Price C, Michaelides S, Pashiardis S, et al. Long term changes in diurnal temperature range in Cyprus. Atmospheric Research,1999,51:85-98
    [12]Lobell D B, Ortiz-Monasterio J I. Impacts of day versus night temperatures on spring wheat yields: a comparison of empirical and CERES model predictions in three locations. Agronomy Journal, 2007,99:469-477
    [13]Menzel A, Fabian P. Growing season extended in Europe. Nature,1999,397:659
    [14]Hu Q, Weiss A, Feng S, et al. Earlier winter wheat heading dates and warmer spring in the U.S. Great Plains. Agricultural and Forest Meteorology,2005,135:284-290
    [15]Sadras V O, Monzon J P. Modelled wheat phenology captures rising temperature trends:Shortened time to flowering and maturity in Australia and Argentina. Field Crops Research,2006,99:136-146
    [16]Schlenker W, Roberts M J. Nonlinear temperature effects indicate severe damages to U.S. crop yields under climate change. Proceedings of the National Academy of Sciences USA,2009,106: 15594-15598
    [17]Peng S, Huang J, Sheehy J E, et al. Rice yields decline with higher night temperature from global warming. Proceedings of the National Academy of Sciences USA,2004,101:9971-9975
    [18]Lobell D B, Burke M B, Tebaldi C, et al. Prioritizing climate change adaptation needs for food security in 2030. Science,2008,319:607-610
    [19]Fedoroff N V, Battisti D S, Beachy R N, et al. Radically rethinking agriculture for the 21st century. Science,2010,327:833-834
    [20]Wolf J, van Oijen M, Kempenaar C. Analysis of the experimental variability in wheat responses to elevated CO2 and temperature. Agriculture, Ecosystems and Environment,2002,93:227-247
    [21]Baigorria G A, Jones J W, O'Brien J J. Potential predictability of crop yield using an ensemble climate forecast by a regional circulation model. Agricultural and Forest Meteorology,2008,14(8): 1353-1361
    [22]Porter J R, Gawith M. Temperatures and the growth and development of wheat:a review. European Journal of Agronomy,1999,10:23-36
    [23]Wang H L, Gan Y T, Wang R Y, et al. Phenological trends in winter wheat and spring cotton in response to climate changes in northwest China. Agricultural and Forest Meteorology,2008,148: 1242-1251
    [24]田云录,陈金,邓艾兴,等.开放式主动增温下非对称性增温对冬小麦生长特征及产量构成的影响.应用生态学报,2011,22(3):681-686
    [25]Batts G R, Morison J K L, Ellis R H. Effects of CO2 and temperature on growth and yield of crops of winter wheat over four seasons. Developments in Crop Science,1997,25:67-76
    [26]Wang Y T, Gan R Y. Phenological trends in winter wheat and spring cotton in response to climate changes in northwest China. Agricultural and Forest Meteorology,2008,148:1242-1251
    [27]Luo Q, Bellotti W, Williams M, et al. Potential impact of climate change on wheat yield in south Austria. Agricultural and Forest Meteorology,2005,132:273-285
    [28]Krishnan P, Swain D K, Bhaskar B C, et al. Impact of elevated CO2 and temperature on rice yield and methods of adaptation as evaluated by crop simulation studies. Agriculture, Ecosystem and Environment,2007,122:233-242
    [29]Tao F, Yokozawa M, Xu Y, et al. Climate changes and trends in phenology and yields of field crops in China 1981-2000. Agricultural and Forest Meteorology,2006,138:82-92
    [30]Cao W, Moss D N. Modelling phasic development in wheat:a conceptual integration of physiological components. Journal of Agricultural Science, Cambridge,1997,129:163-172
    [31]Frantz J M, Cometti N N, Bugbee B. Night temperature has a minimal effect on respiration and growth in rapidly growing plants. Annals of Botany,2004,94:155-166
    [32]Morita S, Yonemaru J, Takanashi J. Grain growth and endosperm cell size under high night temperatures in rice (Oryza sativa L.). Annals of Botany,2005,95:695-701
    [33]Cheng W, Sakai H, Hartley A, et al. Increased night temperature reduces the stimulatory effect of elevated carbon dioxide concentration on methane emission from rice paddy soil. Global Change Biology,2008,14:644-656
    [34]Mohammed A R, Tarpley L. High nighttime temperatures affect rice productivity through altered pollen germination and spikelet fertility. Agricultural and Forest Meteorology,2009,149:999-1008
    [35]魏金连,潘晓华.夜间温度升高对早稻生长发育及产量的影响.江西农业大学学报,2008,30(3):427-432
    [36]Nlcholls N. Increased Australian wheat yield due to recent climate trends. Nature,1997,387: 484-485
    [37]Zhong X, Mei X, Li Y, et al. Changes in frost resistance of wheat young ears with development during jointing stage. Journal of Agronomy and Crop Science,2008,194:343-349
    [38]Liu H, Kang Y. Regulating field microclimate using sprinkler misting under hot-dry windy conditions. Biosystems Engineering,2006,95:349-358
    [39]Damgaard C. A test of asymmetric competition in plant monocultures using the maximum likelihood function of a simple growth model. Ecological Modelling,1999,116:285-292
    [40]潘晓云,王永芳,王根轩,等.覆膜栽培下春小麦种群的生长冗余与个体大小不整齐性的关系.植物生态学报,2002,26(2):177-184
    [41]Falster D S, Westoby M. Plant height and evolutionary games. Trends in Ecology and Evolution, 2003,18:337-343
    [42]van Delden A, Kropff M J, Haverkort A J. Modeling temperature-and radiation-driven leaf area expansion in the contrasting crops potato and wheat. Field Crops Research,2001,72:119-142
    [43]郭文善,凌启鸿,彭永欣.稻麦研究新进展.南京:东南大学出版社,1991:134-141
    [44]Panozzo J F, Eagles H A. Cultivar and environmental effects on quality characters in wheat:I. Starch. Aust J Plant Physiol,1998,49:757-766
    [45]Blumenthal C S, Bekes F, Batey I L, et al. Interpretation of grain quality results from wheat variety trials with reference to higher temperature stress. Aust J Agric Res,1991,42:325-334
    [46]Smika D E, Greb B W. Protein content of winter wheat grain as related to soil and climatic factors in the semiarid Central Great Plains. Agron J,1973,65:433-436
    [47]Wrigley C W, Blumenthal C, Gras P W, et al. Temperature variation during grain filling and changes in wheat grain quality. Aust J Plant Physiol,1994,21:875-885
    [48]Bloom A J, Burger M, Asensio J S R, et al. Carbon dioxide enrichment inhibits nitrate assimilation in wheat and Arabidopsis. Science,2010,328:899-903
    [49]Nunes-Nesi A, Fernie AR, Stitt M. Metabolic and signaling aspects underpinning the regulation of plant carbon nitrogen interactions. Molecular Plant,2010,3:973-996
    [50]Lobell D B, Field C B, Cahill KN, et al. Impacts of future climate change on California perennial crop yields:model projections with climate and crop uncertainties. Agricultural and Forest Meteorology,2006,141:208-218
    [51]Wilkens P, Singh U. A code-level analysis for temperature effects in the CERES models. In:White JW, Ed. Modeling temperature response in wheat and maize. E1 Batan, Mexico:CIMMYT Press, 2001,1-7
    [52]Frantz J M, Cometti N N, Bugbee B. Night temperature has a minimal effect on respiration and growth in rapidly growing plants. Annals of Botany,2004,94:155-166
    [53]Morita S, Yonemaru J, Takanashi J. Grain growth and endosperm cell size under high night temperatures in rice (Oryza sativa L.). Annals of Botany,2005,95:695-701
    [54]Gesch R W, Kang I H, Gallo-Meagher M, et al. Rubisco expression in rice's leaves in related to genotypic variation of photosynthesis under elevated grown CO2 and temperature. Plant Cell Environment,2003,26:1941-1950
    [55]Llotens L, Penuelas I, Beier C, et al. Effects of an experimental increase of temperature and drought on the photosynthetic performance of two Ericaceous shrub species along a north-south European gradient. Ecosystems,2004,7:613-624
    [56]Loik M E, Redar S P, Harte J. Photosythetic responses to a climate-warming manipulation for contrasting meadow species in the Rocky Mountains, Colorado, USA. Funct Ecol,2000,14: 166-175
    [57]Nijs I,Teughels H, Blum H, et al. Simulation of climate change with infrated heaters reduces the productivity of Lolium perenne L in summer. Environ Exp Bot,1996,36:271-280
    [58]Starr G R, Oberbauer S E, Pop E W. Effects of lengthened growing season and soil warming on the phenology and physiology of Polygonum bistorta. Global Change Biology,2000,6:357-369
    [59]Wookey P A, Welker J M, Parsons A N, et al. Differential growth, allocation and photosynthetic response of Polygonum vivipanum to simulated environmental change at a high arctic polar semidesert. Oikos,1994,70:131-139
    [60]Apple M E, Olszyk D M, Oimrod D P, et al. Morphology and stomatal function of Douglas fir needles exposed to climate change:Elevated CO2 and temperature. Int J Plant Sci,2000,161: 127-132
    [61]Chapin Ⅲ F S, Shaver G R. Physiological and growth responses of arctic plants to a field experiment simulating climatic change. Ecology,1996,77:822-840
    [62]Huxman T E, Hamerlynck E P, Loik M E, et al. Gas exchange and chlorophyll fluorescence responses of three south-western Yucca species to elevated CO2 and high temperature. Plant Cell Environment,1998,21:1275-1283
    [63]Tumbull M H, Murthy R, Griffin K L. The relative impacts of daytime and nighttime warming on photosynthetic capacity in Populus deltoids. Plant Cell Environment,2002,25:1729-1737
    [64]Tumbull M H, Tissue D T, Murthy R, et al. Noctumal warming increases photosynthesis at elevated CO2 partial pressure in Populus deltoids. New Phytology,2004,161:819-826
    [65]肖春旺,张新时,赵景柱,等.鄂尔多斯高原3种优势灌木幼苗对气候变暖的响应.植物学报,2001,43(7):736-741
    [66]Callaway R M, Delucia E H, Thomas E M, et al. Compensatory responses of CO2 exchange and biomass allocation and their effects on the relative growth rate of ponderosa pine in different CO2 and temperature regimes. Oecologia,1994,98:159-166
    [67]Roden J S, Ball M C. The effect of elevated [CO2] on growth and photosynthesis of two eucalyptus species exposed to high temperatures and water deficits. Plant Physiol,1996,111:909-919
    [68]王瑞霞,张秀英,伍玲,等.不同生态环境条件下小麦籽粒灌浆速率及千粒重QTL分析.作物学报,2008,10:1750-1756
    [69]金正勋,杨静,钱春荣,等.灌浆成熟期温度对水稻籽粒淀粉合成关键酶活性及品质的影响.中国水稻科学,2005,19:377-380
    [70]李永庚,于振文,姜东,等.冬小麦旗叶蔗糖和籽粒淀粉合成动态及与其有关的酶活性的研究.作物学报,2001,27:658-664
    [71]杨建昌,彭少兵,顾世梁,等.水稻灌浆期籽粒中3个与淀粉合成有关的酶活性变化.作物学报,2001,27:157-164

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700