用户名: 密码: 验证码:
盐碱胁迫对小麦生长的影响及腐植酸调控效应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究采用NaCl、Na2SO4、NaHCO3和Na2CO3四种盐,模拟了20种盐度、碱度不同的复杂盐碱条件,通过主成分分析,确定Na+浓度、C032-浓度和pH值为盐碱环境对小麦形成胁迫影响的代表性因子。在此基础上,选用5种不同浓度的NaCl和Na2CO3,对经过腐植酸浸种处理的水培小麦幼苗进行胁迫处理,通过对种子萌发、碳氮代谢、光合作用、离子稳态、抗氧化系统和根际环境的研究,探讨盐、碱胁迫的不同作用机理,以及腐植酸对小麦耐盐碱性的调控效应。结果表明:
     1.随盐碱胁迫离子浓度的增加,尤其是C032-比例的增加,使种子吸水能力减弱,α-淀粉酶活性降低,胚根生长受阻,种子活力下降,发芽速度迟缓,发芽强度变弱,最终降低了发芽率。小麦出苗后,通过降低根系总的吸收面积,增加活跃吸收面积,增强根系活力,提高对K+吸收能力,维系叶片高的K/Na比和苯丙氨酸解氨酶活性,缓解由高浓度盐碱形成的环境压力。
     2.盐碱胁迫下幼苗通过增强叶片蔗糖磷酸合成酶活性,提高蔗糖含量,积累可溶性糖,降低渗透势,维持质膜完整性。幼苗的防御机制随着胁迫浓度的提高而降低,叶片可溶性糖含量降低,硝态氮含量减少,内源硝酸还原酶活性降低,谷氨酰胺合成酶活性增强,可溶性蛋白质浓度降低。尤其是碱胁迫的危害强于盐胁迫,其对谷氨酰胺合成酶活性影响更大,形成比盐胁迫更高的铵态氮积累。
     3.盐碱胁迫导致小麦幼苗根系内丙二醛积累量进一步加大,过氧化物酶活性增强,超氧化物歧化酶活性降低,而叶片中游离脯氨酸含量增加,过氧化氢酶活性升高,过氧化物酶活性降低,超氧化物歧化酶活性先升后降。碱胁迫处理的抗氧化酶系活性高于同浓度的盐胁迫处理。随着盐碱胁迫浓度的增加,活性氧的产生及清除系统的平衡遭到破坏,叶片与根系电导率显著提高。
     4.在短时期的盐碱胁迫下,气孔导度下降,叶片蒸腾速率和水分利用效率降低,而胞间二氧化碳浓度升高,气孔限制值减小,净光合速率下降,叶绿素含量降低。随盐碱胁迫程度的增强,叶片光合速率的下降,根际磷浓度增加,Ca2+、Mg2+浓度降低,C1-浓度变化减小,NSCCs活性受到抑制,Na+的吸收比率降低,K+/Na+比值提高,大部分酯类释放减少,抑制醇类和烷类的分泌。尤其碱性环境下可溶态的Ca2+、Mg2+含量显著降低,根系大量分泌对二甲苯、间二甲苯、邻苯二甲酸二异丁酯。
     5.腐植酸浸种增强萌发种子α-淀粉酶活性,促进根系生长,提高了小麦幼苗的根冠比,加速可溶性糖积累,及向根系的运输,提高根系的蔗糖/果糖比,以降低根系渗透势,增强根系吸收能力。
     6.盐碱胁迫下腐植酸浸种增加了小麦幼苗可溶性蛋白质积累,降低了叶片谷氨酰胺合成酶和硝酸还原酶活性,降低氮素转化,而提高蔗糖磷酸合成酶活性,增加可溶性糖和谷胱甘肽含量,提高超氧化物歧化酶和过氧化氢酶活性,加强了对氧自由基的清除,降低膜脂过氧化程度,尤其是对碱胁迫下幼苗碳氮代谢和抗氧化能力的调控效应更显著。
     7.腐植酸浸种同时增强K+专性和NSCCs吸收,降低了根际Na+的浓度,提高根际K+/Na+,增强对Ca2+、Mg2+的活化,提高了叶片气孔导度,降低胞间二氧化碳浓度,通过调节气孔因素和根际离子平衡,提高盐碱胁迫下小麦的光合速率和矿质养分的吸收能力。
     研究认为,盐碱胁迫抑制了小麦种子萌发和幼苗生长,尤其是CO32-的水解形成的高pH值胁迫,以及CO32-本身对根际与细胞微环境离子稳态的破坏作用,致使碱胁迫对小麦幼苗生长的损伤强于盐碱胁迫,而腐植酸浸种强化了小麦的耐盐机制,但其调控效应受小麦基因型影响。
Four kinds of salt including NaCl,Na2SO4,NaHCO3 and Na2CO3 are used to simulate 20 kinds of different salinity-alkalinity conditions. The concentration of Na+, CO32- and pH are identified as typical factors by principal component analysis that the effect of salt-alkali environment to wheat stress in the paper. On this basis, five different concentrations of NaCl and Na2CO3 are selected for stress treatments of water cultivation wheat seedlings after soaking the seed by humic acid, different action mechanism of salinity-alkalinity stress and control effects of humid acid to saline alkali tolerance of wheat are discussed by the research of seed germination, carbon and nitrogen metabolism, photosynthesis, ion steady-state, antioxidation system and rhizosphere environment.
     The results show that high salt concentration, especially increasing proportion of CO32-decreased water absorption capacity andα-amylase activity, inhibited radicle growth, reduced seed vigor, slowed the germination speed, weakened sprout strength, finally decreased germination rate. After wheat emerge, decreasing total absorption area of root, increasing active absorption area, root vigor and absorption capacity of K+ maintained high K/Na and the activity of phenylalanine aminolyase(PAL) in leaves and relieved enviornment pressure by high concentrations of salinity-alkalinity.
     Seedling maintained plasma membrane integrity under salinity-alkalinity stress by improved the activity of sucrose phosphate synthase(SPS), increasing the content of sucrose, the accumulation of soluble sugar and decreasing osmotic potential. Defense mechanism of seedling decreased with increasing stress concentration, which the content of soluble sugar, endogenous nitrate reductases activity and the concentration of soluble protein decreased, nitrate nitrogen reduced, the activity of glutamine synthase increased. Especially the harm of alkali stress is stronger than salt stress which has a greater effect on the activity of glutamine synthelase(GS), and produce higher accumulation of ammonium nitrogen than salt stress.
     The accumulation of malondialdehyde(MDA)in root and seedling increased further under salinity-alkalinity stress, the activity of peroxidase (POD) enhanced, the activity of super oxide dlsmutase(SOD) decreased, however, the proline content increased, the activity of CAT improved, the activity of POD decreased and the activity of SOD first rises then descends in leaves. The activity of antioxidant enzymes under alkali stress are higher than that under salt stress with same concentration. The production of active oxygen and balance of removing system are broken which improved conductivity of root and leaves dramaticlly by increasing salinity-alkalinity stress concentration.
     Stomatal conductance, transpiration rate and water use efficiency decreased, however, intercellular carbon dioxide concentration increased, Ls and chlorophyll content decreased, net photosynthetic rate decilined under salinity-alkalinity stress of short time. photosynthetic rate of leaves decreased, phosphate concentrations in rhizosphere increased, however, the concentration of Ca2+, Mg2+ and concentration variation of Cl- decreased, inhibited the NSCCs activity, decreased absorption rate of Na+, improved K+/Na+. The content of soluble Ca2+ and Mg2+ decreased dramatically and root secreted largely p-xylene, m-xylene and DIBP especially under alkali environment. However, the release of esters decreased, and inhibited the secretion of alcohols and alkanes.
     Soaking seed by humic acid enhanced a-amylase activity of germinating seed, and improved root shoot ratio of seedling, promoted the accumulation of soluble sugar, enhanced sugar transportation to root, improved the ratio of sucrose to fructose in order to osmotic potential of root and enhance root absorptive capacity by strengthen of root growth.
     Soaking seed by humic acid enhanced the accumulation of soluble protein of seedling, decreased nitrogen tranformation and the activity of GS and nitrate reductase(NR) under salinity-alkalinity stress, however, improved the activity of SPS, SOD and catalase, increased the contwnt of soluble sugar and glutathione (GSH), enhanced elimination to oxygen free radicals, decreased lipid peroxidation. In addition, control effect of humic acid is more markedly for carbon and nitrogen metabolism and oxidation resistance of seedling under alkali stress.
     Soaking seed by humic acid enhanced the absorptionof K+and NSCCs, decreased the absorption of Na+ and ntercellular carbon dioxide concentration, increased the K+/Na+ of rhizosphere and stomatal conductance of leaves, improved the activation of Ca2+ and Mg2+, photosynthetic rate and absorption capacity of mineral nutrition of wheat are improved by regulating stomatal factors and rhizosphere ions balance under salinity-alkalinity stress.
     The study show that the harm to wheat seedling under alkali stress is stronger than that under salt stress by high pH stress as a result of CO32- hydrolyzation and damaging effects of CO32- to rhizosphere and cell microenvironment ion steady. However, soaking seed by humic acid intensify salt resistance mechanism, but control effects was influenced by genotype of wheat.
引文
1.蔡蕾,丁同楼,王宝山.2004.外源GA3、ABA和Ca(NO3)2缓解盐对小麦种子萌发的抑制作用.西北植物学报,24(4):583-587
    2.曹俊梅,周安定,吴新元,等.2010.盐胁迫对新疆三个冬小麦品种发芽及幼苗期耐盐性研究.新疆农业科学,47(5):865-869
    3.曹仪植,吕忠恕.1985.水分胁迫下植物体内游离脯氨酸的累积及ABA在其中的作用.植物生理学报,11(1):26-31
    4.陈炳东,黄高宝,陈玉梁,等.2008.盐胁迫对油葵根系活力和幼苗生长的影响.中国油料作物学报,30(3):327-330
    5.陈际型,宣家祥.1999.低盐基土壤K、Ca、Mg的交互作用对水稻生长与养分吸收的影响.土壤学报,36(4):433-439
    6.陈少良,李金克,毕望富,等.2001.盐胁迫条件下杨树盐分与甜菜碱及糖类物质变化.植物学通报,18(5):587-596
    7.陈英,柴强.2005.小麦的根系分泌物及典型分泌物间甲酚的化感作用研究.兰州大学学报,41(2):26-29
    8.崔震海,王艳芳,樊金娟,等.2007.植物渗透调节的研究进展.玉米科学,15(6):140-143
    9.崔江慧,李霄,常金华2011.NaCl胁迫对高粱幼苗生理生化特性的影响.作物杂志,(1):30-33
    10.董兴红,岳国忠.2010.盐胁迫对刚毛柽柳生长的影响.华北农学报,25:154-155
    11.戴忠民.2008.氮素代谢对小麦生理特性的影响研究进展.河南农业科学,(7):10-13
    12.邓英毅,郑虚.2009.作物叶中蔗糖磷酸合成酶的生物学功能与调控的研究进展.广西科学院学报,25(1):65-71
    13.丁顺华,邱念伟,杨洪兵,王宝山.2001.小麦耐盐性生理指标的选择.植物生理学通讯,37(2):98-102
    14.董秋丽,夏方山,董宽虎.2010.碱性盐胁迫对芨芨草苗期脯氨酸和可溶性蛋白含量的影响.畜牧与饲料科学,31(4):11-12
    15.冯峰,王育鹏,张震,等.2008.水杨酸通过一氧化氮信号诱导抗氧化防护来提高小麦幼苗根部耐盐性.中国农学通报,24(9):248-252
    16.谷艳芳,丁圣彦,李婷婷,等.2009.盐胁迫对冬小麦幼苗干物质分配和生理生态特性的影响.生态学报,2009,29(2):840-845
    17.郭启芳,马千全,孙灿,等.2004.外源甜菜碱提高小麦幼苗抗盐性的研究.西北植物学报,24(9):1680-1686
    18郭书奎,赵可夫2001.NaCl胁迫抑制玉米幼苗光合作用的可能机理.植物生理学报,27(6):461-466
    19.韩冰,孙锦,郭世荣,等.2010.钙对盐胁迫下黄瓜幼苗抗氧化系统的影响.园艺学报2010,37(12):1937-1943
    20.韩春梅,李春龙,贺阳冬,等2009.NaCl胁迫对莴笋种子萌发及幼苗根系生理生化指标的影响.长江蔬菜(学术版),(10):21-23
    21.侯焱焱,展晓莹,刘璇,等.2011.不同形态无机磷对两种磷效率小麦根际特征的影响.中国土壤与肥料,1:30-34
    22.胡冰,贺子义,林国庆,等.2008.高铁血红素对盐胁迫下小麦根部生长受抑的缓解和根尖中离子微域分布的影响.植物生理学通讯,44(5):865-868
    23.胡国松,陈江华,曹志洪,等.1996.田间状况下烤烟养分吸收动力学及其在平衡施肥中的应用.中国烟草学报,3(2):14-21
    24.胡晓辉,杜灵娟,邹志荣.2009.Spd浸种对盐胁迫下番茄(Solanum lycopersicu)幼苗的保护效应.生态学报,29(9):5152-5157
    25.纪淑梅.1999.草坪草耐盐性研究Ⅱ.盐胁迫对草坪草脯氨酸含量的影响.草业科学,1999,16(增刊):54-59
    26.贾洪涛,张立富.2001.油菜素内酯提高小麦萌发期间抗盐性机理初探.临沂师范学报,2001,23(4):58-59
    27.贾娜尔·阿汗,张相锋,赵玉.2010.盐碱胁迫对小冰麦种子萌发和早期幼苗生长的影响.种子,29(9):52-55
    28.江昌俊,余有本.2001.苯丙氨酸解氨酶的研究进展.安徽农业大学学报,28(4):425-430
    29.江行玉,窦君霞,王正秋2001.NaCl对玉米和棉花光合作用与渗透调节能力影响的比较.植物生理学通讯,37(4):303-305
    30.蒋明义.1999.水分胁迫下植物体内的活性氧产生与细胞的氧化损伤.植物学报,41(3):229-234
    31.蒋明义,荆家海.1993.植物体内自由基的产生及其与脂质过氧化作用启动的关系.植物生理学通讯,29(4):300-305
    32.晋艳,雷永和.1999.烟草中钾钙镁相互关系研究初报.云南农业科技,(3):6-9,47
    33.孔垂华,徐涛,胡飞,等.2000.环境胁迫下植物的化感作用及其诱导机制.生态学报,20:849-854
    34.李春喜,张根发,石惠恩,等.1995.氮肥对小麦硝酸还原酶活性和籽粒蛋白质含量变化动态的影响.西北植物学报,15(4):276-281
    35.李广敏,唐连顺,尚振清,等.1994.渗透胁迫对玉米幼苗保护酶系统的影响及其与抗旱性的关系.河北农业大学学报),17(2):1-5
    36.李海云,赵可夫,王秀峰.2002.盐对盐生植物种子萌发的抑制.山东农业大学学报(自然科学版),2002,33(2):170-173
    37.李海燕,丁雪梅,周婵,等.2004.盐胁迫对三种盐生禾草种子萌发及其胚生长的影响.草地学报,12(1):45-50
    38.李娟.2007.植物钾、钙、镁素营养的研究进展.福建稻麦科技,2007,25(1):39-42
    39.李青松.2009.不同基因型冬小麦对钠、钾离子吸收及耐盐机制研究.西北农林科技大学
    40.李品芳,白文波,杨志成2005.NaCl胁迫对苇状羊茅离子吸收与运输及其生长的影响.中国农业科学,38(7):1458-1565
    41.李树华,米海莉,惠红霞,等2000. NaCl胁迫对小麦发芽的影响试验研究.宁夏农林科技,6:11-13
    42.李向前,鲍乾,王艳,等.2010.棉花两品种耐盐性与抗氧化能力的相关性.植物生理学通讯,4(11),1129-1134
    43.梁洪艳,马凤鸣,杨德光,等2008. Na2CO3胁迫对春小麦苗期生理特性的影响.东北农业大学学报,39(1):19-22
    44.廖宝文,邱凤英,张留恩,等.2010.盐度对尖瓣海莲幼苗生长及其生理生态特性的影响.生态学报,30(23):6363-6371
    45.林葆,周卫,谢晓红.1997.钙肥品种及施用方法对花生肥料的影响.土壤通报,28(4):172-184
    46.刘爱荣,赵可夫.2005.盐胁迫下盐芥渗透调节物质的积累及其渗透调节作用.植物生理与分子生物学学报,31(4):389-395
    47.刘彩霞,蒋学皎,陈进红.2008.作物蔗糖磷酸合成酶(SPS)活性调控的研究进展.科技通报,24(3):355-361
    48.刘华,舒孝喜,赵银,等.1997.盐胁迫对碱茅生长及碳水化合物含量的影响.草业科学,14(1):18-19,22
    49.刘洪展,郑风荣.2007.海水胁迫下外源生长素对小麦萌发期根系特性的影响.中国生态农业学报,15(2):205-206
    50.刘丽萍,臧小云,袁巧云,等.2006.外源蔗糖对盐胁迫荞麦幼苗根系生长的缓解效应.植物生理学通讯,42(5):847-850
    51.刘丽云,王明友.2010.CaCl2对盐胁迫下小麦种子萌发及生理效应的影响.河南农业科学,1:5-7
    52.刘丽云.2010. NaCl胁迫下钙对小麦幼苗保护酶及膜质过氧化的影响.江苏农业科学,3:86-88
    53.刘良全,张水利,景小元,等.2010.几种化学调控物质对盐胁迫下小麦幼苗生长及生理指标的调控作用.麦类作物学报,30(1):73-78
    54.刘群录,王沙生,蒋湘宁,等.2002.胡杨耐盐生理机制及分子基础研究.北京:中国环境科学出版社,3-5
    55.卢元芳,冯玉田1999.NaCl胁迫对菠菜叶片中水分和光合气体交换的影响.植物生理学通讯,35(4):290-292
    56.鲁如坤.1998.土壤-植物营养学原理和施肥.北京:化学工业出版社
    57.陆定志,施天生,陈龙飞.1987.杂交水稻及其亲本三系种子萌发过程中淀粉酶活性与胚乳物质消长的关系.杂交水稻,3:21-25
    58.马红媛,梁正伟,孔祥军,等.2008.盐分、温度及其互作对羊草种子发芽率和幼苗生长的影响生态学报,28(10):4710-4717
    59.渠晓霞,黄振英.2005.盐生植物种子萌发对环境的适应对策.生态学报,9(25):2389-2398
    60.曲元刚,赵可夫.2004. NaCl and Na2CO3对玉米生长和生理胁迫效应的比较研究.作物学报,30(4):334-341
    61.沈其荣,左文惠.1990.第三次全国青年土壤学术讨论会南京农业大学论文集:35-36
    62.盛彦敏,石德成,尚洪兴,等.1999.不同程度中碱性复合盐对向日葵生长的影响.东北师大学报(自然科学版),(4):65-69
    63.石德成,盛艳敏,赵可夫.1998.不同盐浓度的混合盐对养草苗的胁迫效应.植物学报,40(12):1136-1142
    64.石德成,盛艳敏,赵可夫.2002.复杂盐碱条件对向日葵胁迫作用主导因素的实验确定.作物学报,28(4):461-467
    65.石德成,李玉明,杨国会,等.2002.盐碱混合生态条件的人工模拟及其对羊草胁迫作用相关分析.生态学报,22(8):1323-1332
    66.石德成,殷立娟1992.Na2CO3胁迫下羊草苗的胁变反应及其数学分析.植物学报,34(5):386-393
    67.石德成,殷丽.1993.盐(NaCl)与碱(Na2CO3)对星星草胁迫作用的差异.植物学报,35(2):144-149
    68.石德成,尹尚君,杨国会,等.2002.碱胁迫下耐碱植物星星草体内柠檬酸特异积累现象.植物学报,44(5):537-540
    69.石德成,赵可夫.1998.复杂盐碱生态条件的人工模拟及其对羊草生长的影响.草业学报,7(1):36-41
    70.史冬平,杨笑,张永清.2008.镧浸种对盐胁迫下小麦幼苗生长及其生理特征的影响.西北植物学报,28(4):730-736
    71.时丽冉,郭晓丽,白丽荣,等.2010.不同基因型小黑麦苗期耐盐性的评价.麦类作物学报,30(3):500-503
    72.孙锋.2009.一氧化氮和亚甲基蓝对盐胁迫抗虫棉根系的抗氧化能力的影响.棉花学报,21(4):313-318
    73.孙金月,赵玉田,常汝镇,等.1997.小麦细胞壁糖蛋白的耐盐性保护作用与机制研究.中国农业科学,30(4):9-15
    74.唐瑞,吴瑜.2007.维生素浸种对盐胁迫下小麦发芽及幼苗生长的影响.种子,26(5):44-47
    75.王春娜,宫伟光.2004.盐碱地改良的研究进展.防护林科技,4(5):38-41
    76.王东明,贾媛,崔继哲.2009.盐胁迫对植物的影响及植物盐适应性研究进展.中国农学通报,25(4):124-128
    77.王芳,段迪,段培,王宝山.2007.不同耐盐性小麦胚芽鞘伸长对盐胁迫的响应.作物学报,33(12):2053-2058
    78.王芳,朱军,布如力,等.2007.盐胁迫对新疆两个小麦品种种子发芽及幼苗生长的影响.新疆农业大学学报,30(1):1-5
    79.王娟,李德全.2001.逆境条件下植物体内渗透调节物质的积累与活性氧代谢.植物学通报,18(4):459-465
    80.王丽燕,赵可夫.2005.玉米幼苗对盐胁迫的生理响应.作物学报,31(2):264-266
    81.王俪梅,李青松,周春菊,等.2009.无菌培养条件下不同基因型小麦耐盐性及其生理机制研究.干旱地区农业研究,27(4):99-104
    82.王素平,郭世荣,胡晓辉,等.2006.盐胁迫对黄瓜幼苗根系生长和水分利用的影响.应用生态学报,17(10):1883-1888
    83.王宪泽,张树芹.1999.不同蛋白质含量小麦品种叶片NRA与氮素积累关系的研究.西北植物学报,19(2):315-320
    84.王学.2009.精胺对氯化钠胁迫下黄瓜幼苗根系活性氧代谢的影响.北方园艺,4:12-14
    85.王学征,李秋红,吴凤芝2010.NaCl胁迫下栽培型番茄Na+、K+吸收、分配和转运特性.中国农业科学,43(7):1423-1432
    86.王小纯,熊淑萍,马新明,等.2005.不同形态氮素对专用型小麦花后氮代谢关键酶活性及籽粒蛋白质含量的影响.生态学报,25(4):802-807
    87.王有华,王素霞.1994.东北地区盐碱灾害及其治理.东北水利水电,10:27-30
    88.王玉倩,汪小丽,盛海君,等.盐胁迫条件下钙离子对不同品种小麦NSCCs转移钾的影响.扬州大学学
    报(农业与生命科学版),2009,30(4):63-6689.王志强,丁立,徐晋豫,等.2008.蔗糖预处理对盐胁迫小麦幼苗氮同化的影响.河南农业大学学报,42(3):268-272
    90.王志强,王春丽,王同朝,等.2009.钙离子对盐胁迫小麦幼苗氮代谢的影响.生态学报,2009,29(8):4339-4345
    91.魏湜.2011.作物逆境与调控.北京:中国农业出版社,141
    92.吴雪霞.2007.外源一氧化氮对盐胁迫下番茄幼苗生理特性影响的研究.南京:南京农业大学
    93.吴永波,薛建辉.2002.盐胁迫对3种白蜡树幼苗生长与光合作用的影响.南京林业大学学报(自然科学版),26(3):19-22
    94.武德,曹帮华,刘欣玲,等.2007.盐碱胁迫下刺槐种子萌发主导因素的确定.山东科学,20(1):25-29
    95.武维华.2003.植物生理学.北京:科学出版社,448
    96.肖媛.2006.不同小麦品种种子萌发期耐盐性的研究.安徽农业科学,34(22):5786-5787
    97.谢振宇,杨光穗.2003.牧草耐盐性研究进展.草业科学,20(8):11-17
    98.徐本美,郑平.1994.在小麦的萌发过程中GA3对盐害的缓解作用.种子,2:48-50
    99.许大全.2002.光合作用效率.上海:上海科学技术出版社,39-98
    100.许大全.1997.光合作用气孔限制分析中的一些问题.植物生理学通讯,33(4):241-244
    101.许能琨,肖召民.1985.从粤西植胶区三种土壤看矿质肥料对胶苗组分缺乏症状和生长的影响.热带作物学报,7(2):47-55
    102.许振柱,周广胜.2004.植物氮代谢及其环境调节研究进展.应用生态学报,15(3):511-516
    103.许详明,叶和春,李国风.2000.植物耐盐机理的研究进展.应用与环境生物学报,6(4):379-387
    104.薛富波,张文彤,田晓燕.2004.SAS8.2统计应用教程.北京:兵器工业出版社,346
    105.薛薇,崔江慧,孙爱芹,等.2009.高粱可溶性糖含量与SS、SPS酶活性的相关性研究.中国农业科技导报,11(2):124-128
    106.颜宏,赵伟,尹尚军,等.2006.羊草对不同盐碱胁迫的生理响应.草业学报,15(6):49-55
    107.颜宏,石德成,尹尚军.外施Ca2+、ABA及H3PO4对盐碱胁迫的缓减效应.应用生态学 报,2000.11(6):889-892
    108.颜宏,尹尚军.2000.盐、碱胁迫对羊草体内N及几种有机代谢产物积累的影响.东北师范大学学报(自然科学版),32(3):47-52
    109.阎秀峰,孙国荣.2000.星星草生理生态学研究.北京:科学出版社
    110.杨春武,李长有,尹红娟,等.2007.小冰麦(Triticum aestivum-Agropyron intermedium)对盐胁迫和碱胁迫的生理响应.作物学报,33(8):1255-1261
    111.杨铁钢,戴廷波,曹卫星.2007.不同施氮水平下GS抑制剂对小麦灌浆期碳氮代谢的影响.麦类作物学报,27(4):671-676
    112.杨文平,单长卷,胡喜巧,李杰.2008.土壤干旱对冬小麦拔节期叶片碳代谢的影响.河南农业科学9:20-23
    113.姚荣江,杨劲松,刘广明.2006.东北地区盐碱土特征及其农业生物治理.土壤,38(3):256-262
    114.叶梅荣,刘玉霞2000.NaCl对吸胀后小麦种子发芽和幼苗生长的影响.安徽农业技术师范学院学报,14(2):35-36
    115.叶武威,庞念厂,王俊娟,等.2006.盐胁迫下棉花体内Na+的积累、分配及耐盐机制的研究.棉花学报,18(5):279-283
    116.尹尚军2002.NaCl与Na2CO3对水培小麦幼苗胁迫作用的比较.浙江万里学院学报,15(1):54-57
    117.游有文,黄鸿翔,王伯仁,等.1999.湘南地区几种土壤钾钙镁施用效果研究.湖南农业科学,1:39-41
    118.於丙军,罗庆云,曹爱忠,等.2001.栽培大豆和野生大豆耐盐性及离子效应的比较.植物资源与环境学报,10(1):25-29
    119.余叔文,汤章城.1999.植物生理与分子生物学(第二版).北京:科学出版社,752-769
    120.于文杰,姚兴海,侯永健,等.2000.牛磺酸对果糖诱导的高血压胰岛素抵抗大鼠红细胞L-精氨酸/一氧化氮途径的影响.中国病理生理杂志,16(11):1202-1206
    121.袁可能.1983.植物营养元素的土壤化学.北京:科学出版社
    122.张海燕.2002.盐胁迫下盐地碱蓬体内无机离子含量分布特点的研究.西北植物学报,22(1):129-135
    123.张华,沈文脱,徐朗莱.2003.一氧化氮对渗透胁迫下小麦种子萌发及其活性氧代谢的影响.植物学报,45(8):901-905
    124.张美丽.2009.缓冲量作为盐碱混合胁迫中碱胁迫强度指标的实验确定.东北师范大学硕士学位论文,20-21
    125.张瑞富,王云,乔宏伟,等.2007.盐胁迫对不同品种小麦发芽的影响.内蒙古民族大学学报,22(3):297-301
    126.张士功,高吉寅,宋景芝.1999.水杨酸对小麦高盐毒害的缓解作用.应用与环境生物学报,5(3):264-267
    127.张辉,黄鹏,柴强,任强.2010.不同供水水平下小麦根系分泌物及典型化感物质的生物学效应.甘肃农业大学学报,45(2):52-57
    128.章文华,刘友良,夏长沛.1991.盐胁迫对大小麦种子萌发时两种酶活性的影响.南京农业大学学报,14(4):18-22
    129.张宪政,汪晓峰,苏正淑.1996.小麦水分胁迫与活性氧伤害.国外农学-麦类作物,1:18-21
    130.张效朴,郑根宝.1987.连续施石灰对作物生长及其养分吸收的影响.土壤学报,24(4):243-251
    131.张锡洲,李廷轩,王永东.2007.植物生长环境与根系分泌物的关系.土壤通报,38(4):785-788
    132.赵春.2010.盐胁迫下小麦氮代谢关键酶活性及籽粒品质研究.安徽农业科学,38(2):646-647
    133.赵春,焦念元,宁堂原,等.2006.不同环境条件下小麦氮代谢关键酶活性及籽粒品质.应用生态学报,17(10):1866-1870
    134.赵可夫1989.NaCl抑制棉花幼苗生长的机理—盐离子效应.植物生理学报,15(2):173-178
    135.赵可夫,卢元芳,张宝泽,衣建龙.1993.Ca对小麦幼苗降低盐害效应的研究.植物学报,35(1):51-56
    136.赵乃妮,侯培强,任珺.2008.模拟盐碱胁迫对小麦种子萌发的影响.环境科学与管理,33(11):42-46
    137.赵鹏,谭金芳,介晓磊,等.2000.施钾条件下烟草钾与钙镁相互关系的研究.中国烟草学报,6(1):23-25
    138.赵锁劳,窦延玲.1998.小麦耐盐性鉴定指标及其分析评价.西北农业大学学报,26(6):80-85
    139.赵听2007.NaCl胁迫对盐芥和拟南芥光合作用的影响.植物学通报,24(2):154-160
    140.赵旭,王林权,周春菊,等.2005.盐胁迫对不同基因型冬小麦发芽和出苗的影响.干旱地区农业研究,23(4):108-112
    141.赵旭,王林权,周春菊等.2006.钙离子对两种基因型冬小麦萌发过程中盐胁迫效应的影响.土壤通报,37(4):748-752
    142.赵旭,王林权,周春菊,等.2007.盐胁迫下两种基因型冬小麦萌发过程中钠离子吸收及对碳、氮代谢的影响.中国生态农业学报,15(4):89-93
    143.郑春芳,姜东,戴廷波,等.2010.外源一氧化氮供体硝普钠浸种对盐胁迫下小麦幼苗碳氮代谢及抗氧化系统的影响.生态学报,30(5):1174-1183
    144.郑国琦,马宏玮,许兴.2003.盐胁迫下宁夏构祀盐分与甜菜碱累积及其与光合作用的关系.中国生态农业学报,11(3):51-54
    145.郑丕尧.1992.作物生理学导论.北京:北京农业大学出版社
    146.郑延海,宁堂原,贾爱君,等.2007.钾营养对不同基因型小麦幼苗NaCl胁迫的缓解作用.植物营养与肥料学报.13(3):381-386
    147.周宝利,吕娜,王子晗,等.2010.NaCl胁迫下嫁接对茄子生长及抗性生理指标的影响.中国蔬菜,20:42-46
    148.周俊国,朱月林,刘正鲁,等2007.NaCl胁迫对中国南瓜杂交种成株期根系生理生化特征的影响.西北植物学报,27(10):2052-2058
    149.周卫,林葆.1995.植物钙素营养机理研究进展.土壤学进展,23(2):12-17
    150.朱德群,朱遐龄,王雁,等.1991.与冬小麦籽粒蛋白质有关的几项生理参数.作物学报,17(2):135-144
    151.朱杭申,黄丕生.1994.土壤水分胁迫与水稻活性氧代谢.南京农业大学学报,17(2):7-11
    152.朱新广,张其德1999.NaCl胁迫对PSⅡ光能利用和耗散的影响.生物物理学报,15(4):789-791
    153.邹声文.2002.我国天然草原90%在退化.草业科学,4:76-78
    154.Agastian P, Kingsley S J, Vivekanandan M.2000. Effect of salinity on photosynthesis and biochemical characteristics in mulberry genotypes. Photosynthetica,38:287-290
    155.Allakhverdiev S I, NishiyamaY, Suzukil, et al.1999. Genetic engineering of the unsaturation of fatty acids in membrane lipids alters the tolerance of Synechocystis to salt stress. Proceedings of the National Academy of Science,96:5862-5867
    156.Allen D J, Ort D R.2001. Impact of chilling temperatures on photo synthesis in warm climate plants. Trends in Plant Science,6:36-42
    157.Allen R D.1995. Dissection of oxidase stress tolerance using transgenetic plant. Physiology, 107(4):1049-1054
    158.Almodares A, Hadi M R, Ahmadpour H.2008.Sorghum stem yield and soluble carbohydrates under different salinity levels. African Journal of Biotechnology,7:4051-4055
    159.Alvarez I, Tomaro M L, Benavides M P.2003. Changes in poly-amines, proline and ethylene in sunflower calluses treated with NaCl. Plant Cell Tissue Organ Culture,74:51-59
    160.Anderson J M, Park Y I, Chow W S.1998. Unifying model for the photoinactivation of photosystem Ⅱ in vivo under steady-state photosynthesis. Photosynthesis Research,56:1-13
    161.Asada K, Takahashi M.1987.Production and scavenging of active oxygen in photosynthesis in photo-inhibition. Elsevier Press
    162.Ashraf M, Shahbaz.2003. Assessment of genotypic variation in salt tolerance of early CIMMYT hexaploid wheat germplasm using photosynthetic and water relations as seleetion criteria. Photosynthetica, 41:273-280
    163.Bar Bulent A k, Murat Ali Turan, Hakan elik, Ali Vahap Katkat.2009.Effects of humic substances on plant growth and mineral nutrients uptake of wheat under conditions of salinity.Asian Journal of Crop Science, 1(2):87-95
    164.Benavides M P, Marconi P L, Callego S M, et al.2000. Relationship between antioxidant defence systems and salt tolerance in Solanum tuberosum. Aust Plant Physiol,27:273-278
    165.Bethke P C, Drew M C.1992. Stomatal and nonstomatal components to inhibition of photosythesis in leaves of Capsicum annuum during progressive exposure to NaCl salinity. Plant Physiol,99:219-226
    166.Blumwald E, Aharon G S, Apse M P.2000. Sodium transport in plant cells. Biochimica et Biophysica Acta,1465:140-151
    167.Boucaud J,Ungar I A.1973.The role of hormones controlling the mechanically induced dormancy of Suaeda spp.Physiology Plant,37:143-148
    168.Bouchereau A, Aziz A, Larher F, et al.1999. Polyamines and environmental changes recent developments. Plant Sci,140:103-125
    169.Brugnoli E, Lauteri M.1991. Effects of salinity on stomatal conductance, photosynthetic capacity, and carbon isotope discrimination of salt-tolerant(Gossypium hirsutum L.) and salt-sensitive(Phaseolus vulgaris L.)C3 non-halophytes. Plant Physioogly,95:628-635
    170.Brugnoli E, Bjorkman O.1992. Growth of cotton under continuous salinity stress:influence on allocation pattern, stomatal and nonstomatal components of photosynthesis and dissipation of excess light energy. Planta,187:335-347
    171.Bush D R.1995. Calcium regulationin plant cell and it srolein signaling. PlantMol Biology,46:95-122
    172.Burman U, Garg BK, Kathju S.2003. Water relations, photosynthesis and nitrogen metabolism of Indian mustard(Brassica juncea Czern.& Coss.) grown under salt and water stress. Journal of Plant Biology, 30:55-60
    173.Chen R D, Gadal P.1990. Structure, functions and regulation of NAD and NADP dependent isocitrate dehydrogenases in higher plants and in other organisms[J].Plant Physiology and Biochemistry,28:411-427.
    174.Colmer T D, Epstein E, Dvorak J.1995. Differential solute regulation in leaf blades of variour ages in salt-sensitive wheat and a salt-tolerant wheat×Lophopyrum elongatum(Host) A. Love amphiploid. Plant Physiology,108(4):1715-1724
    175.Cren M,Hirel B.1999. Glutamine synthetase in higher plants:regulation of gene and protein expression from the organ to the cell.Plant Cell Physiology,40:1187-1193
    176.Dat J, Vandenabeele S, Vranova E, et al. 2000. Dual action of the active oxygen species during stress responses. Cell Mol Life Sci,57:779-795
    177.Delfine S.Arthuro A,1999. Maria concettavillani and Francesco Loreto. Restrietions to carbon dioxide conductance and photosynthesis in spinach leaves recovering from salt stress.Plant Physiol,119:1101-1106
    178.Demidchik V, Davenport R J, Tester M A.2002.Nonselective cation channels in plants. Annual Reviews of Plant Biology,53:67-107
    179.Downton W J S, Grant W J R, Robinson S P.1985. Photosynthetic and stomatal responses of spinach leaves to salt stress. Plant Physiol,77:85-88
    180.Dubey RS, Singh AK.1999. Salinity induces accumulation of soluble sugars and alters the activity of sugarmetabolizing enzymes in rice plants. Biologia Plantarum,42(2):233-239
    181.Dunn G M, Neales T F.1993. Are the effects of salinity on growth and leaf gas exchange related. Photosynthetica,29:33-42
    182.Egan T P,Ungar I A and Meekins J F.1997.The effect of different salts of sodium and potassium on the germination of Atriplex prostrata(Chenopodiaceae).Journal of Plant Nutrition,20:1723-1730
    183.Elstner E F.1982. Oxygen activation and oxygen toxicity. Annu Rev Plant Physiol.,33:73-96
    184.Everard J D, Gucci R, Kann S C, et al.1994. Gas exchange and carbon partitioning in the leaves of celery(Apium graveolens L.) at various levels of root zone salinity. Plant Physiology,106:281-292
    185.Eva-Mari A, Mccaffery S, Anderson J M.1993. Photoinhibition and DI protein degradation in peas acclimated to different growth irradiances. Plant Physiol.,103:835-843
    186.Farquhar G D, Sharkey T D.1982.Stomatal conductance and photosynthesis.Annu Rev Plant Physiol, 33:317-345
    187.Ferrario M S, Hodges M, Hirel B, et al.2002. Photorespiration-dependent increases in phosphoenol pyruvate carboxylase, isocitrate dehydrogenase and glutamate dehydrogenase in transformed tobacco plants deficient in ferredoxin-dependent glutamine-a-ketoglut-arate aminotransferase. Planta,214:877-886
    188.Ferreira R G, Tavora F J A F, Hernandez F F F.2001. Dry matter partitioning and mineral composition of roots, stems and leaves of guava grown under salt stress conditions.Pesquisa Agropecudria Brasileira, 36:79-88
    189.Flexas J, Bota F, Loreto F, et al.2004.Diffosive and metabolic limitations to photo synthesis under drought and salinity in C3 plants. Plant Biol.,6:269-279
    190.Flowers T J, Yeo A R.1995. Breeding for salt tolerance in crop plants:Where next?. Plant Physiol., 22:875-884
    191.Foyer C H, Descourvieres P, Kunert K J.1994. Protection against oxygen radicals:an important defense mechanism studies in transgenic plants.Plant,Cell &Environment,17:507-523
    192.Foyer C H.1996. Oxygen processing in photosynthesis. Biochem Soe Trans.,24:427-433 193.Gadallah.1999. Effects of proline and glycinebetaine on Vicia faba response to salt stress. Biologia Plantarum,42:249-257
    194.Ghoulam C, Foursy A, Fares K.2002. Effects of salt stress on growth,inorganic ions and proline accumulation in relation to osmot adjustment in five sugar beet cultivars. Environ Exp Bot,47(1):39-50
    195.Gibberd M R, Turner N C, Storey R.2002. Influence of saline irrigation on growth, ion accumulation and partitioning, and leaf gas exchange of carrot (Daucus carota L.). Annals of Botany,90:715-724 196.Gibson S 1.2000. Plant sugar-response pathway:Partofa complex regulatory web. Plant Physiology, 124:1532-1539
    197.Glenn E P, Brewn J J, Blumwald E.1999. Salt tolerance and crop potential of halophytes. Crirical Reviews in Plant Scienee,18:227-255
    198.Greenway H, Munns R.1980. Mechanisms of salt tolerance in nonhalophytes. Annual Review of Plant Physiology,31:149-190
    199.Haper J L.1977. Population biology of plants. New York:Academic Press 200.Harper D B, Harvey B M R.1978. Mechanisms of paraquat tolerance in perennial ryegrass II. Role of superoxide dismutase, catalase, and peroxidase. Plant and Cell Environment,1:211-215
    201.Heuer B.1997. Photo synthetic carbon metabolism of crops under salt stress. In:Pessarakli, M.(Ed.), Handbook of Photosynthesis. Marcel Dekker Inc. New York,887-896
    202.Huber S C, Huber J L.1996. Role and regulation sucrose phosphate synthase in higher plants. Annu. Rev. Plant Physical Plant Mol Biol,47:431-445
    203.Jin J, Liu X B, Wang G H.2004. Some eco physiological characteristic R4-R5 stage in relation to soybean yield differing in maturities. Scientia Agricultura Sinica,37:1293-1300
    204.Kao W Y, Tsai H C, Tsai T T.2001. Effect of NaCl and nitrogen availability on growth and photosynthesis of seedlings of a mangrove species, Kandelia candel(L.)Druce. Journal of Plant Physiology, 158:841-846
    205.Kao W Y, Tsai T T, Tsai H C, Shih C N.2006. Response of three Glycine species to salt stress. Environmental and Experimental Botany,56:120-125
    206.Kasukabe Y, He L, Nada K, et al.2004. Overexpression of spermidine synthase enhances tolerance to multiple environmental stresses and up-regulates the expression of various stress-regulated genes in transgenic Arabidopsis thaliana.Plant and Cell Physiology,45(6):712-722
    207.Kaufmann M R.1969. Effects of water potential on germination of lettuce,sunflower,and citrus seeds.Canadian Journal of Botany,47:1761-1764
    208.Kennedy B F.1999. Physiological and oxidative response to NaCl of the salt tolerant Grevillea ilicifolia and the salt sensitive Grevillea arenaria. Journal of Plant Physiology,155:746-754
    209.Kerepesi I, Galiba G.2000.Osmotic and salt stress induced alteration in soluble carbohydrate content in wheat seedlings. Crop Science,40:482-487
    210.Khavarinejad R A, Chaparadeh N.1998. The effects of NaCl and CaCl2 on photosynthesis and growth of alfalfa plants. Photosynthetica,35:461-466
    211.Knox J P, Dodge A D.1985. Singlet oxygen and plants. Phytochem.,24:889-896
    212.Koch KE.1996. Carbohydrate-modulated gene expression in plants. Annual Review of Plant Physiology and Plant Molecular Biology,47:509-540
    213.Koyama H,Kawamura A,Kihara T, et al.2000. Overexpression of mitochondrial citrate synthase in Arabidopsis thaliana improved growth on a phosphorus-limited soil. Plant and Cell Physiology, 41(9):1030-1037
    214. Kronzucker H J, Britto D T, Davenport R J, Tester M.2001. Ammonium toxicity and the real cost of transport. Trends in Plant Science,6(8):335-337
    215.Kumar A, Bahadur B, Sharma B K.1988. Influence of salts on the germination and seeding growth of Hordeum vulgare L. Annals Arid Zone,27:65-66
    216.Kumer A, Altabella T, Taylor M A, et al.1997. Recent advances inpolyamine research.Trends Plant Sci, 2:124-130
    217.Kurban H, Saneoka H, Nehira K, et al.1999. Effect of salinity on growth, photosynthesis and mineral composition in leguminous plant Alhagi pseudoalhagi(Bieb.).Soil Science and Plant Nutrition,45:851-862
    218.Lesko G L and Walker R B.1969. Effect of seawater on seed germination in two Pacific atoll beach species.Ecology,50:730-734
    219.Liu J, Zhu J K.1997. An Arabidopsis mutant that requires increased calcium for potassium nutrition and salt tolerance. Proceedings of the National Academy of Scienees,94:14960-14964
    220.Lu C M, VonshakA.1999. Charaeterization of PSII photochemistry in salt-adapted cells of cyanobaeterium Spirulina platensis. New Phytologist,141:231-239
    221.MacKay J B and Chapman V J.1954. Some notes on Suaeda australis Moq.var.nova zelandicavar.nov.and Mesembryanthemum australe Sol. ex Forst F. Trans.Royal Society of New Zealand 82:41-47
    222.Macke A and Ungar I A.1971. The effect of salinity on seed germination and early growth of Puccinellia nuttalliana.Canadian Journal of Botany,49:515-520
    223.Mahajan S, Tuteja N.2005. Cold, salinity and drought stresses:Anover view. Archives of Biochemistry and Biophysics,4:139-158
    224.Malik I.,Bell,J.N.B.1993. The effects of salinity and O3 on wheat.Air Pollution Research,46:575-578. 225.Manohar M S.1966. Effect of osmotic systems on germination of peas (Pisum sativum L.).Planta, 71:81-88
    226.Maser P, Gierth M, Schroeder J I.2002. Molecular mechanisms of potassium and sodium uptake in plants. Plant and Soil,247(1):43-54
    227.Masojidek J, Hall D O.1992. Salinity and drought stresses are amplified by high irradiance in sorghum. Photosyntherica,27:159-171
    228.Mohammadi G. R..2009.The influence of NaCl Priming on Seed Germination and Seeding Growth of Canola(Brassica napus L.) under salinity conditions.American-Eurasian J. Agric.& Environ. Sci.,5(5): 696-700
    229.Moran J F, Benaca M, Iturbe-Ormaetxe I, et al.1994. Drouglt induces oxidative stress in pea. Planta, 194:346-352.
    230.Morris C F.Shackley B J,King G E. et al.1997.Genotype and environment variation for flour swelling volume in wheat.Cereal Chemistry,74(1):16-21
    231.Munns R.1993. Physiological process limiting plant growth insaline soils some dogmas and hypotheses. Plant Cell Environ,16:15-24
    232.Munns R.2002. Comparative physiology of salt and water stress.Plant Cell Environment,25:239-250
    233.Munns R, Greenway H, Delane R R, et al.1982. Ion concentration and carbohydrate status of the elongating leaf tissue of Hordeum Vulgare growing at high external NaCl. Journal of Experimental Botany, 33(135):574-583
    234.Munns R, Termaat A.I986.Whole plant responsec to salinity.Plant Physiol., (13):143-160
    235.Netondo G W, Onyango J C, Beck E.2004. Sorghum and salinity:II.Gas exchange and chlorophyll fluorescence of sorghum under salt stress. Crop Science,44:806-811
    236.Niu X, Bressan R A, Hasegawa P M and Pardo J M.1995. Ion homeostasis in NaCl stress environments.Plant Physiology,1995,109:735-742
    237.Ott J C, Birks K, Johnson C.1999. Regulation of the photosynthetic electron transport chain. Planta,209:250-258
    238.Ozaki T, Ambe S, Abe T, et al.2005. Competitive inhibition and selectivity enhancement by Ca in the uptake of inorganic elements (Be, Na, Mg, K, Ca, Sc, Mn, Co, Zn, Se, Rb, Sr, Y, Zr, Ce, Pm, Gd, Hf) by carrot (Daucuscarotacv.U.S. harumakigosun). Biol Trace Elem Res,103(1):69-82
    239.Pang C H, Zhang S J, Gong Z Z,e tal.2001. NaCl treatment markedly enhanees H2O2-scavenging system in leaves of halophyte Suaeda salsa.Physiol Plant,125:490-499
    240.Parida A K, Das A B.2005. Salt tolerance and salinity effects on plants a review. Ecotoxicology and Environmental Safety,60(3):324-349
    241.Parida A K, Das A B, Mittra B.2004. Effects of salt on growth, ion accumulation photosynthesis and leaf anatomy of themangrove, Bruguiera parviflora. Trees Structure and Function,18:167-174
    242.Petrusa L M, Winicov L.1997. Proline status in salt tolerance and sasensitive alfalfa cell lines and plants in response to NaCl.Plant Physiol Biochem,35:303-310
    243.Price A M, Atherton N M, Hendry GAF. 1989. Plants under drought stress generate activated oxygen. Free Rad Res Commun.,8:61-66
    244.Rajesh A, Arumugam R, Venkatesalu V.1998. Growth and photosynthetic characterics of Ceriops roxburghiana under NaCl stress. Photosynthetiea,35:285-287
    245.Reddy P. S.,Ramanjulu S.,Sudhakar C.,Veeranjaneyulu K.1998. Differential sensitivity of stomatal and non-stomatal components to NaCl and Na2SO4 salinity in horsegram, Macrotyloma uniflorum(Lam.). Photosynthetica,35:99-105
    246.Rehman S.1998. The effect of sodium chloride on the Ca2+、K+ and Na+ concentrations of the seedcoat and embryo of Acacia totillas.Annuals od Applied Biology,133:269-279
    247.Richter C, Schweizer M.1997. Oxidative stress in mitochondria. In:Oxidative stress and the molecular biology of antioxidant defenses. NY. Cold Spring Harbor Laboratory Press,169-200
    248.Roberts H A,Neilson J E.1980. Seed survival and periodicity of seedling emergence in some species of Atriplex, Chenopodium, Polygonum and Rumex. Annals of Applied Biology,94:111-120
    249.Rodriguez P L.1998. Protein phosphatases 2C (PP2C) function in higher plants.Plant Mol Biol,38: 919-927
    250.Rodriguez P, Dell Amico J, Morales D.1997. Effects of salinity on growth, shoot water relations and root hydraulic conductivity in tomato plants. J Agric Sci,128:439-444
    251.Romeroaranda R, Soria T, Cuartero J.2001. Tomato plant-water uptake and plant-water relationships under saline growth conditions. Plant Science,160:265-272
    252.Rubio F, Gassmann W, Schroeder J I.1995. Sodium-driven potassium uptake by the plant potassium transporter HKT1 and mutations conferring salt tolerance. Science,270(5242):1660-1663
    253.Sairam R K, Rao K V, Srivastava G C.2002. Differeniial response of wheat genotypes to long term salinity stress in relation to oxidative stress. Plant Science,63:1037-1046
    254.Sanada Y, VedaH, KuribayashiK, et al.1995.Novel light-dark change of proline levels in halophyte(Mesembryanthemum crystallinum L.) and glycophytes (Hordeum vulgare L. and Triticumaestivum L.) leaves and roots under salt stress. Plant Cell Physiol,36(6):965-970
    255.Santa C, Acosta M, Rus A, et al.1999. Shortterm salt tolerancemechanisms in differentially salt tolerant tomato species.Plant Physiol Biochem,37(l):65-71
    256.Santos C V.2004. Regulation of chlorophyll biosynthesis and degradation by salt stress in sunflower leaves. Scientia. Horticulturae,103:93-99
    257.Scandalios L G.1993. Oxygen stress and superoxide dismutase.Plant Physiology, (101):7-12
    258.Schachtman D P, Schroeder J I, Lucas W J, et al.1992. Expression of an inward-rectifying potassium channel by the Arabidopsis KAT1 cDNA. Science,258(5088):1654-1658
    259.Seemann J R, Critchley C.1985. Effects of salt stress on the growth, ion contents, stomatal behavior, and photosynthetic capacity of a salt-sensitivesPeeies, Pbaseolus vulgaris. Planta.164:151-162
    260.Seneca E D.1969. Germination response to temperature and salinity of four dune grasses from the outer banks of North Carolina.Ecology,50:45-53
    261.Serrano R, Mulet J M, Rios G, et al.1999. A glimpse of the mechanisms of ion homeostasis during salt stress. Journal of Experimental Botany,50:1023-1036
    262.Shabala S, Demidchik V, Shabala L, et al.2006. Extracellular Ca2+ ameliorates NaCl-induced K+ loss from Arabidopsisroo and leaf cells by controlling plasma membrane K+-permeable channels. Plant Physiol, 141(4):1653-1665
    263.Sharma S S.Yamdagni R.1989. Salt tolerance studies in winter garden annuals I. Effects of salinity on seed germination and survival of the seedlings. Res Dev Rep,6:107-111
    264.Shen J, Zhou L, Jang J C.1996. Sugar as signaling molecules.Current Opinion in Plant Biology, 2:1001-1008
    265.Shi D C, Yin L J.1992. Strain responses in Na2CO3-stressed Leymus chinensis seedlings and their mathematical analysis. Acta Botanica Sinica,34(5):386-393
    266.Silva E C, Nogueira R J M C, Araujo F P, et al.2008. Physiological responses to salt stress in young umbu plants. Environmental and Experimental Botany,63:147-157
    267.Singh S., Singh,M.2000. Genotypic basis of response to salinity stress in some crosses of spring wheat Triticum aestivum L.Euphytica,115:209-219
    268.Smeekens S, Rook E1997. Suger sensing and sugar mediates signal transduction in plants. Plant Physiol,115:7-13
    269.Soussi M, Lluch C, Ocana A.1998. Effects of salt stress on growth, photosynthesis and nitrogen fixation in chick-pea(Cieer arietinum L.). Journal of Experimental Botany,49:1329-1337
    270.Spychalla J P, Desborough S L.1990. Superoxide dismutase, catalase, and alpha-tocopherol content of stored potato tubers. Plant Physiology,94:1214-1218
    271.Sun C, Liu Y L, Zhang W H.2002. Mechanism of the effect of poly-amines on the activity of tonoplasts of barley roots under salt stress. Acta Bot Sin,44:1167-1172
    272.Tiwari B S, Bose A, Ghosh B.1997. Photosynthesis in rice under salt stress. Photosynthetica, 34:303-306
    273.Tobe K, Zhang L and Omasa K.1999. Effects of NaCl on seed germination of five nonhalophytic species from a Chinese desert environment.Seed Science and Technology,27:851-863
    274.Ungar I A, Hogan W.1970. Seed germination in Iva annua L..Ecology,51:150-154
    275.Ungar I A.1987. Population ecology of halophyte seeds. The Botanical Review,53:301-344 276.Vance C P.1997. The molecular biology of N metabolism.In:Dennis DT, Turpin DH, Lefebrre DD, Layzell DB, editors. Plant Metabolism. Ed 2.London:Longman Scientific,449-477
    277.Walker R.R, D.H.1993. Carbon dioxide assimilation and foliar ion concentration in leaves of lemon(Citrus limon L.) trees irrigated with NaCl or Na2SO4. Plant Physiol.20:173-185
    278.Wang Y.1999. Photosynthetic adaptation to salt stress in three-color leaves of a C4 plant Amaranthus tricolor. Plant Cell Physiol,40:668-674
    279.Wang Z Q, Yuan Y Z, Ou J Q, et al.2007. Glutamine synthetase and glutamate dehydrogenase contribute differentially to proline accumulation in leaves of wheat (Triticum aestivum) seedlings exposed to different salinity. Journal of Plant Physiology,164(6):695-701
    280.Watson R.,Pritchard,J.,Malone,M.2001. Direct measurement of sodium and potassium in the transpiration stream of salt-excluding and non-excluding varieties of wheat. Journal of experimental botany, 52:1873-1881
    281.Xue Y F,Liu Z P.2008. Antioxidant enzymes and physiological characteristics in two Jerusalem artichoke cultivars under salt stress.Russian Journal of Plant Physiol,55(6):863-858
    282.Yamaguehi T, Blumwald E.2005. Developing salt tolerant crop plants:challenges and opportunities. Trends in Plant Science,10:615-620
    283.Yan S QShen Y Y.1996. Effects of ecological factors on salt-tolerance of Puccinellia tenuiflora seeds during germination.Acta Phytoecologica Sinica,20(5):414-422
    284.Yang X, Lu C.2005. Photosynthes is improved by exogenous glycinebetaine in salt-stressed maize plants. Physiologia Plantarum,124:343-352
    285.Yeo A R.1998. Molecular biology of salt tolerance in the context of whole plant physiology, Journal of Experimental Botany,49:915-929
    286.Zhao F G, Sun C, Liu Y L, et al.2003. Relationship between poly-aminemetabolism in roots and salt tolerance of barley seedling. Acta Bot Sin,45(3):295-300
    287.Zhang F S, Shen J, Li L, et al.2004. An overview of rhizosphere processes under major cropping systems in China. Plant Soil,260(1-2):89-99
    288.Zhou Y M, Yang C Q, Wang S J.2003. The effect of exogenous sugar solution and high concentration of CO2 on the contents of sugarand protein of Betula platyphylla leaves. Journal of Forestry Research, 14(1):61-63
    289.Zhu J K.2001. Plant salt tolerance. Trends in Plant Sci,6(2):66
    290.Zhu J K, Liu J P, Xiong L M.1998. Genetic analysis of salt tolerance in Arabidopsis:evidence for a critical role of potassium nutrition. Plant Cell,10(7):1181-1191
    291.Zhu J K.2003. Regulation of ion homeostasis under salt stress. Current Opinion in Plant Biology, 6:441-445
    292.Ziska L H, Seemann J R, Dejong T M.1990. Salinity indueed limitations on photosynthesis in Prunus salieina, a deciduous tree species. Plant Physiology,93:864-870

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700