用户名: 密码: 验证码:
甜菜亚硝酸还原酶基因的克隆和氮代谢关键酶调控的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究于2009年、2010年在东北农业大学校内和香坊科研实习基地进行。校内试验以二倍体纯系品种甜研7号为材料,运用RT-PCR和5'/3'-RACE法首次进行了NiR基因cDNA全长的克隆;田间框栽试验以当前生产主栽品种KWS0143为材料,采用测土配方施肥项目中推荐的“3414”肥料效应田间试验设计方案,进行氮磷钾3因素4水平试验。根据试验结果得出的肥料效应函数确定甜菜适宜的肥料用量及比例;测定甜菜不同生育时期、不同器官的氮代谢关键酶活性,分析各酶间的活性变化关系及其对甜菜产质量的影响;研究各营养元素对氮代谢关键酶活性的调控规律,进而探讨甜菜氮素同化的代谢机理,为提高肥料利用率提供理论依据。研究结果如下:
     1.以经30mmol/L KNO3-诱导4h的甜菜幼苗叶片为材料,采用Trizol法获得的总RNA,具有清晰的28S,18S和5S三个条带,RNA完整性好、质量高,可以满足后续的分子生物学实验。根据已知的甜菜NiR基因的DNA部分序列(AF173663,638bp)和菠菜mRNA的部分序列(X07568)设计特异引物,经RT-PCR和5'-RACE及3'-RACE试剂盒扩增了cDNA 5'端序列(489bp)、cDNA3'端序列(1600bp)以及中间序列P0(423bp)全长序列,运用DNANMAN软件将所有的片段进行拼接,得到了拼接的全长cDNA。依据拼接的全长序列设计引物,扩增cDNA全长,首次得到甜菜NiRcDNA全长序列(全长为2014bp,登录号HQ224499),将所得序列进行ORF分析,其含有完整的读码框,编码599个氨基酸。
     2.NR与NiR的偶联调节作用:在甜菜生育期间,叶片enNRA、exNRA的变化动态基本上是一致的,呈双峰曲线变化,在苗期活性最高,叶丛形成末期至块根增长初期出现第二个高峰,峰值远小于苗期;NiRA亦呈双峰曲线变化,叶片NiRA在6月22日出现第一个高峰,叶片和块根NiRA在8月7日同步出现峰值。NiRA高峰出现时间较NRA滞后一个取样时期。各生育时期内,exNRA均高于enNRA、块根NiRA均低于叶片NiRA。各生育时期均为高氮处理的酶活性大于低氮处理的酶活性,对照酶活性均最低。
     NRA、NiRA与氮素处理间,除叶片NiRA与氮素处理在7月24日相关不显著外,其它时期均表现出显著或极显著正相关关系,不同氮素水平处理间的NRA、NiRA表现出很强的规律性:即随氮素水平的升高,酶活性增强。磷、钾肥与NRA均在叶丛形成未期表现出极显著相关,与NiRA均在6月22日和8月7日表现出显著正相关,与酶活性的变化动态相一致。NiR与NR分别在6月6日、6月22日、9月11日表现出显著正相关关系,在8月7日和生育末期与exNRA相关达极显著水平,NR、NiR变化极其同步,存在偶联作用。
     3.GS与GOGAT的协同作用:在生育期间,叶片GSA呈双峰曲线变化,苗期活性最高,8月7日出现第二个高峰,峰值小于苗期;根中GSA呈单峰曲线变化,高峰出现在块根增长初期。GOGATA呈低—高—低的变化动态,在块根增长初期达极值。在各生育时期GSA、GOGATA随氮肥水平的升高而升高,高氮处理均大于其它处理,无氮处理酶活性一直处于最低水平。各生育时期均为叶片的GSA大于块根GSA,在酶活性高峰期(8月初)表现的更为明显,且叶片酶活性高峰期持续的时间长;叶片GOGATA亦同样大于块根GOGATA.
     各元素与GSA、GOGATA在全生育时期内均保持着不同程度的正相关关系,与叶片GSA在苗期显著正相关,与根中GSA在8月7日(酶活性高峰期)表现显著相关;与GOGATA在块根增长期相关达到显著或极显著水平。甜菜GS和GOGAT,除在7月8日叶片GSA与根中GOGATA相关不显著外,其它各生育期一直呈显著正相关关系,表明在甜菜氮代谢中,GS和GOGAT两者是协同作用进行氨的同化。
     4.各氮代谢酶的相关关系:内、外源NRA间,分别在苗期、叶丛形成末期、块根增长初期和糖分积累期呈显著相关,这与甜菜各生育期NR的变化动态一致;叶片与块根NiRA间除幼苗期相关不显著外,其它时期均呈显著正相关;叶片和块根的GSA间、GOGAT间全生育期内相关显著。
     NRA和叶片GSA在苗期极显著相关,NRA和GSA在叶丛形成末期、糖分积累期保持着显著相关关系;GOGATA在7月8日与exNRA间、在8月25日与enNRA间相关不显著,其它时期与NRA相关均达显著水平;NiR与氨同化酶的关系,除了NiRA与根中GSA间在苗期相关不显著和叶片NiRA在7月24日与GSA间、与叶片GOGATA间相关不显著外,其它时期均呈显著或极显著相关关系,NiR与氨同化酶的关系变化比NR更同步。
     5.氮磷钾肥对不同取样时期的氮素代谢酶活性表现不同程度的促进作用,而这种促进作用以氮肥为最大,磷钾肥次之,且存在明显的互作效应。在不同的生育期内,氮代谢关键酶活性对甜菜块根产量、含糖率和产糖量的影响作用也不同。除了9月11日,酶活性与含糖率的回归方程不显著外,在其它各取样时期,各酶活性与产量、含糖率和产糖量的回归方程均达极显著水平。在生育前期对产量形成影响最大的是NiRA,对含糖率影响最大的是GOGATA,对产糖量影响最大的是NiRA和根中GOGATA,而到生育后期,NRA、GSA则成为影响甜菜块根产量、含糖率和产糖量的最主要因素。
     6.各因素对甜菜产质量的影响不同。氮、磷、钾肥的用量和配比是影响甜菜产量的重要因素,N、P、K各养分施用的最高增产率分别为56.0%、13.51%和10.64%;从养分效率看,中氮、中磷和中钾水平利用效果最好;氮、磷、钾肥之间存在一定的交互作用,配合施用能提高肥效和促进甜菜的生长。本试验条件下,最大施用量N、P205和K20分别为198.51kg·hm-2、115.97kg·hm-2和103.63kg·hm-2,三要素比例为1:0.584:0.522时,甜菜块根产量最高为65005.59kg·hm-2。氮肥用量对品质有主要影响作用,在同等肥力下,含糖率随着施氮量的增加而下降,随着磷肥的增加而升高,钾肥对含糖率影响不大。随着氮肥施用量的增加氨态氮的含量呈升高趋势,其中氮磷肥表现出相互促进作用。钾离子含量与氮肥、钾肥的施用量相关,钠离子含量与氮肥、磷肥的施用量相关。
In this dissertation, the experiments were made in the campus and practice base of Xiangfang from 2009 to 2010. Tianyan 7, the diploid pure lines of sugar beet as materials, Full-length NiR gene was the first cloned by the method of RT-PCR and 5'/3'-RACE; KWS0143, the current large-scale cultivars as materials, dynamic activities of key enzymes of nitrogen assimilation of sugar beet leaf and root at different growth stages and the impact of nitrogen, phosphorus, potassium on the yield and quality of sugar beet were systematically studied by the means of the field experiments with 3414 best regression design of fertilizer effect. According to test results concluded the fertilizer effect function and further determined appropriate fertilizer application for sugar beets.Through measured nitrogen metabolism key enzymes activity of different organs at different growth stage, we comprehensively analyzed the relationship between various enzyme activity and effect of them on yield and quality; the control laws of nutrition elements on the key enzyme activity, further explored beets nitrogen assimilation mechanism. These researches will provide theoretical basis for improve fertilizer efficient utilization. The results were as follows:
     l.With beet seedling leaves through 30mmol/L KNO3 induced 4h for materials, we got total RNA by the Trizol method, with clear 285,18 S and 5S three bands, RNA integrity, good quality, it could satisfy the follow-up of molecular biology experiment. Specific primers was designed according to DNA partial sequencing of the known beet NiR gene (AF173663,638bp) and mRNA part of the sequence (X07568) of spinach. Telomere sequence cDNA 5'(489bp), cDNA 3 (1600bp) and full-length sequence P0 (423bp) were amplified by RT-PCR,5'-RACE and 3'-RACE kit. All the fragments were joined together Using software of DNANMAN, got the whole length of the mosaics cDNA. According to the length of the length of stitching sequence designed cDNA primers, amplification, and then sugar beets Full-length NiR gene was the first obtained (registration number, HQ224499). By ORF analysis, the series contained the complete read code box, coding 599 amino acids.
     2.Coupling regulatory role between NR and NiR:The dynamic change of enNRA、exNRA in leaf were basically the same during growth stage of sugar beets, they were diauxie curve changes and with the highest activity in seedling stage, the second peak appeared in telophase of leafage form to initial stage of root growth and the peak was far less than seedling stage's. NiRA also showed diauxie curve changes, the first peak of leaf NiRA appeared on June 22, peak of leaf and root NiRA were synchronous on 7 August. NiRA peak time was more NRA lag appear a sampling period. The time of NiRA peak appearance was lag a growth period than NRA's. Each growth stage, exNRA were all higher than the enNRA, root NiRA were below blade NiRA.Enzyme activity in high nitrogen treatment was greater than low nitrogen treatment at different growth period, and enzyme activity was lowest in the control treatment.
     There was significant or very significant positive correlation between NRA、NiRA and nitrogen application at all growth stage expect leaf NiRA and nitrogen application on July 24. The NRA and NiRA showed a strong regularity between different nitrogen applied:With nitrogen level increased, enzyme activity enhanced. P, k and the NRA had a very significant correlation at the end of leafage formation, a significant positive correlation with NiRA on June 22 and August 7, and also same to the changes dynamic of enzyme activity. Nitrogen and NiR, NR showed significant positive correlation respectively on June 6,June22 and September 11,had a very significant with exNRA on Augst 7 and growth late stage.On 7 August and birth late exNRA related with significantly positively, NR, NiR change extremely synchronization, exist coupling effect. The change of NR and NiR were extremely synchronization, and between them had coupling effect.
     3.GS and GOGAT Synergy:GSA in leaf was diauxie curve changes during growth stage of sugar beets and with the highest activity in seedling stage, the second peak of leaf GSA appeared on August 7, and the peak was lower than seedling stage's. GSA in root was single-peak curve changes during growth stage of sugar beets and with the highest activity in root growth of early stage. GOGATA showed low-high-low dynamics, and got extreme value in root growth of early stage. With nitrogen level increased, GSA and GOGATA enhanced. High nitrogen treatment was larger than other treatments, without nitrogen treatment had been in the lowest level of enzyme activity. The GSA of blades was greater than root's, especially in the strongest period of Enzyme activity (in early August), and Enzyme activity, and it could continues a long time. Leaves GOGATA were also greater than roots GOGATA.
     There was different degree of positive correlativity between nitrogen, phosphorus, potassium and GSA and GOGATA from the foliage formation period to the end stage of tuber growth. Each element had significant positive correlation with GSA of leaves at seedling, with GSA of roots on August 7 (enzyme activity strongest period); and with GOGATAGOGATA at root growth stage reached significant or very significant correlation. GS was positive related with GOGAT in all growth stage of sugar beets expect in July 8, in which GSA in leaves and GOGATA in roots hadn't significant correlation. These indicated that GS and GOGAT were synergistic action for ammonia assimilation in nitrogen metabolism of beet.
     4.The relationship of nitrogen metabolic enzymes:The change tendencies of inside NRA and exogenous NRA were the same to NR. They had significant correlation at seedling stage, the end of leafage formation, at the initial of root growth and sugar accumulation period. NiRA in leaves and roots were significant correlation in all growth stage of sugar beets expect at seeding stage. GSA in leaves and roots were significant relationship in all growth stage, GOGAT either.
     There was a very significant correlation between NRA and GSA of leaves at seedling stage, and they were significant correlation at leafage formation stage and sugar accumulation stage. GOGATA was significant related with NRA in all growth stage, but not significant with exNRA On July 8, with enNRA on August 25. There were significant or very significant correlation between NiR and Ammonia assimilation enzyme in all growth stage in addition to NiRA and GSA of roots in seeding, NiRA and GSA on July 24, NiRA and GOGATA. The relationship changes of NiR and ammonia assimilation enzyme were more synchronized than NR.
     5.NPK fertilizers would increase different degree of the activity of nitrogen metabolic enzymes at different growth stage. The promoting function was the largest with nitrogen and phosphorus, potassium was the second, there existed obvious interaction effect among them. In different growth stage, activity of nitrogen metabolism key enzyme had different effect on sugar beets root yield and sugar content and sugar yield. Regression equations of enzyme activity and yield and sugar content and sugar yield production were very significant correlation in every sampling period, in addition to September 11, the regression equation of enzyme activity and sugar content was not significant correlation. In the early growth stage, NiRA was the greatest influence factor on yield formation, GOGATA was the greatest influence factor on sugary rate, NiRA and GOGATA of roots were important factors to sugar yield production; in the late growth stage, NRA and GSA were the most main affecting factor to root yield and sugar yield rate and sugar yield production of sugar beet.
     6.Different N,P,K factors had different effect on the quality of beet. The fertilizing amounts and proportion of nitrogen, phosphorus and potassium fertilizer are important factors which affect sugar beet yield. The highest increasing yield rate is 56.0%、13.51% and 10.64% respectively by fertilizing N、P and K. According to the nutrient efficiency, the fertilizer application of nitrogen, phosphorus, potassium at medium level has the best effect; There were interactions among nitrogen, phosphorus and potassium fertilizer, coordinated applications of nitrogen, phosphorus and potassium fertilizer improve fertilizer efficiency and promote sugar beet growth. The condition of the experiment, the best NPK application of sugar beets with maximum economical yield of 65005.59 kg·hm-2 was N 198.51 kg·hm-2, P2O5 115,97kg·hm-2 and K2O 103.63 kg·hm-2.The rate of N:P:K was 1:0.584:0.522. The amount of applied nitrogen had a major impact on quality. Under equal fertilization, the sugar content decreases with the amount of nitrogen increased, phosphorus is conducive to the increase of sugar content, potassium has little effect on sugar content. Along with the increase of nitrogen application, content of ammonia nitrogen was enhanced. Nitrogen and phosphorus could promote each other. Potassium ion content was related with the nitrogen and potash application; the sodium content of was related with the nitrogen and phosphorus application.
引文
1. 蔡柏岩,葛菁萍,曲文章.2004.氮素水平对甜菜干物质积累与分配的影响.中国糖料,(2):6-8.
    2. 陈金英.2010.甘薯不同磷肥用量的肥效.农技服务,27(8):993-994.
    3. 陈胜勇,李彩凤,马凤鸣,杨德光,侯静,孙世臣,尹春佳,黄兆峰,赵丽影,陈业婷,越鹏.2008.甜菜谷氨酰胺合成酶基因在不同氮素条件下的表达分析.作物杂志,(4):64-67.
    4. 陈卫平,诸秀次1991.NO2-,Fe2+对稻苗亚硝酸还原酶和硝酸还原酶活性的影响,西南农业大学学报,3(2):207-209.
    5. 陈新平,张福锁.2006.通过"3414"试验建立测土配方施肥指标体系.中国农技推广,22(4):36-39.
    6. 陈燕.2008.不同甜菜品种对某些矿质元素吸收性能的研究.内蒙古农业大学硕士学位论文.
    7. 陈志英.2008.甜菜氮素同化与蔗糖代谢机理研究及人工调控.东北农业大学博士学位论文.
    8. 程大友,伊尚武.1990.关于糖甜菜工艺品质的研究及其育种现状.中国甜菜,1990(2):41-44.
    9. 崔健.1997.甜菜叶片硝酸还原酶纯化及其活力与氮素营养关系的研究.东北农业的大学硕士学位论文.
    10.丁伟,程鹏等.2001.不同施钾水平下甜菜干物质积累与分配规律的研究.中国糖料,(1):14-17
    11.丁伟,程茁,程鹛,曲文章.2002.不同施钾水平下甜菜对钾吸收与分配规律的研究.中国糖料,1:17-19.
    12.范勇毅,祁连弟,李国龙.2010.氮磷钾配比施用对包头地区甜菜增产增糖效用的研究.农业科技通讯,1:67-70.
    13.高妙真,蔡伯岩,曲文章.1999.氮素水平对甜菜干物质积累分配和产糖量的影响.中国甜菜糖业,25(5):5-9.
    14.高祥照,马常宝,杜森.2005.测土配方施肥技术.北京:中国农业出版社.
    15.高祖明,渡边陆生,王子善清,冈本三郎.1986.以NADH、NADPH、MV作为电子供体的亚硝酸还原酶的分离研究.南京农业大学学报,4:121-124.
    16.龚学臣,袁进成,乔永明,徐景秀,范云.2003.氮磷钾肥配合施用对甜菜含糖率的效应分析.中国甜菜糖业,4:6-8.
    17.关听昕,严重玲,刘景春,敖子强.2011.钙对镉胁迫下小白菜生理特性的影响.厦门大学学报(自然科学版),50(1):132-137.
    18.管怀明,王嵩柏,何明才,李文鹏,杨辉珍1998.氮磷不同用量对甜菜产量和品质的影响.土壤肥料,(6):24-26.
    19.侯静,马凤鸣,陈胜勇,丁广洲,李彩凤.2008.甜菜基因组DNA的提取及Southern杂交分析,东北农业大学学报,39(12):14-18.
    20.黄德明.2003.十年来我国测土施肥的进展.植物营养与肥料学报,9(4):495-499.
    21.黄勤妮,印莉萍.1995.不同氮源对小麦幼苗谷氨酰胺合成酶的影响.植物学报(英文版),11:856-862.
    22.金英姿.2005.影响甜菜品质的障碍因素及对策.新疆农业科技, (5):35-36.
    23.李彩凤,马凤鸣,赵越,李文华.2003.氮素形态对甜菜氮糖代谢关键酶活性及相关产物的影响.作物学报,29(1):128-132.
    24.李彩凤.2000.甜菜高同化氨途径及其与蔗糖代谢关系的初步研究.东北农业大学硕士学位论文.
    25.李春喜,姜丽娜,李秀明,代西梅,尚玉磊,徐夏莲,张书霞.1998.不同氮肥运筹对超高产小麦NR活性和产量影响的研究.作物学报,6(24),847-853.
    26.李迪秦,唐启源,秦建权,张运波,郑华英,杨胜海,陈立军,邹应斌.2010.施氮量与氮管理模式对超级稻产量和辐射利用率影响.核农学报,24(4):809-814.
    27.李强,章建新,甘玉柱.2008.施氮对高产甜菜干物质积累分配及产量和品质的影响.干旱地区农业研究,26(5):55-59.
    28.李强.2008.高产甜菜纤维根系生长及氮、磷、钾吸收分配规律研究.新疆农业大学硕士学位论文
    29.李生秀.1999.植物营养与肥料学科的现状与展望.植物营养与肥料学报,5(3):193-205.
    30.李伟波,张效朴.1998.吉林中部玉米高产施肥与提高化肥利用率研究.玉米科学,6(2):65-68.
    31.李文华.2002.氮素水平和形态对甜菜(Beta vulgaris L.)形态建成和氮素同化的影响.东北农业大学博士学位论文.
    32.林忠平等编著.2000.《走向21世纪的植物分子生物学》,北京,科学出版社,271-287.
    33.刘晔,周建朝,耿贵,许风琪,王亚珍.1992.钾对甜菜品质和抗逆性效应.中国甜菜,(4):15-20.
    34.鲁剑巍,陈防,张竹青,李剑夫,陈健.2003.磷钾肥配合施用对油菜产量及养分积累的影响.中国油料作物学报,25(2):52-55.
    35.陆彬彬,周卫,张吉,潘磊,林清华,张楚富.2002.温度对水稻谷氨酰胺合成酶和NADH-谷氨酸合酶表达的影响.武汉大学学报(理学版),48(2):239-242.
    36.洛育.2006.生长调节物质对甜菜氮代谢相关酶活性及产质量的影响.东北农业大学硕士学位论文,6-7.
    37.马凤鸣,高继国.1996.硝酸还原酶活力作为甜菜氮素营养诊断及预测产糖量指标的研究.中国农业科学,(5):16-22.
    38.马凤鸣、高继国、姜福臣,甜菜子叶期幼苗硝态氮吸收特性及其与硝酸还原酶活性的关系。作物学报。1996,22(6):681-687.
    39.莫良玉,吴良欢,陶勤南.2001.高等植物GS/GOGAT循环研究进展.植物营养与肥料学报,7(2):223-231.
    40.内蒙古农牧学院甜菜生理研究室.1990.甜菜不同类型品种品质指标的初步研究,中国甜菜,(2):1-8.
    41.农业部全国土壤肥料总站.1993.土壤分析技术规范.北京:农业出版社,34-63.
    42.欧吉权,魏国威,张楚富,张吉,林清华.2003.甜瓜子叶发育过程中蛋白质水平和氨同化酶活性变化.武汉大学学报(理学版),49(4),538-542.
    43.祁连弟,侯俊林,李国龙.2010.微肥配比施用对甜菜增产增糖效用的研究.农业科技通讯,3:61-65.
    44.钱晓华,朱义龙,胡荣根.2001.精准施肥技术及推广应用措施.安徽农学通报,7(2):44-45.
    45.曲文章,崔杰,高妙贞,白祥和,李宾胜.1994.施氮量对甜菜氮代谢及产量与品质的影响.中国甜菜,(4):16-21.
    46.曲文章,高妙贞,白祥和.1993.施肥量对甜菜产量和生理指标的影响.中国甜菜,(2):53-57.
    47.曲文章,耿立清,王红钢,高妙真.2002.磷素水平对甜菜生育及产质量的影响.中国甜菜糖业,(3):7-9.
    48.曲扬,高妙真,耿立清.2002.磷素水平对甜菜干物质积累与分配的影响.中国甜菜糖业,1:11-13
    49.曲扬.2006钾对甜菜主要营养的影响.中国甜菜糖业,(2):5-12.
    50.任志山,陈拴彪,石海刚,郭瑞,袁金柱.2003.氮磷钾不同配比对甜菜产质量的影响.中国糖料,4:22-24.
    51.邵金旺,蔡葆.1991.甜菜生理学.北京:农业出版社.
    52.邵兰军,陈建军,王维.2010.水分亏缺对烤烟光合特性和氮代谢的影响.中国农学通报.21:136-141.
    53.申建波,李仁岗.1994.不同土壤肥力水平下水稻氮磷肥效应与经济合理施肥量的确定.河北农业大学学报,17(增刊):7-14.
    54.宋泉,郭占斌,刘世华.1998.控施氮肥是内蒙古河套地区提高甜菜品质的关键措施,中国糖料,(4):47-49.
    55.孙义祥,郭跃升,于舜章,蒋庆功,程琳琳,崔振岭,陈新平,江荣风,张福锁.2009.应用"3414”试验建立冬小麦测土配方施肥指标体系.植物营养与肥料学报,15(1):197-203.
    56.王圣瑞,陈新平,高祥照,毛达如,张福锁.2002."3414"肥料试验模型拟合的探讨.植物营养与肥料学报,8(4):409-413.
    57.王淑春.2007.甜菜谷氨酰胺合成酶基因的克隆.黑龙江大学硕士学位论文:1-12.
    58.王小纯,程振云,何建国,熊淑萍,马新明.2008.不同氮素形态对专用小麦苗期氨同化关键酶活性的影响.麦类作物学报,28(5):836-840.
    59.王兴仁,张福锁.1996.现代肥料试验设计.北京:中国农业出版社,168-190.
    60.王英,吕德国,秦嗣军,马怀宇,刘国成,孟倩.2009.低温对不同供氮水平下山定子幼苗根系氮代谢的影响.果树学报,26(6):769-773.
    61.王玉琴.1988.内外生理条件下对小麦黄化幼苗叶片亚硝酸还原酶活力的影响.植物生理学通讯,(4):18-20.
    62.王月福,于振文,李尚霞,余松烈.2003.土壤肥力和施氮量对小麦氮素吸收运转及籽粒产量和蛋白质含量的影响.应用生态学报,14(11):1868-1872.
    63.邢雪荣,吕春生,郭大立.1995.有机酸对蔬菜硝酸还原酶亚硝酸还原酶活性的影响,植物学通报,12:156-162.
    64.薛鸿雁,公丽凤,张文成,李宝玉,曲晓蓉.2004.氮素不同用量对甜菜产质量的影响.中国糖料,(2):28-29.
    65.阎桂萍,马凤鸣,李文华.1999.甜菜氨同化途径的研究.东北农业大学学报,30(4):318-323.
    66.叶利庭,吕华军,宋文静,图尔迪,沈其荣,张亚丽.2011.不同氮效率水稻生育后期氮代谢酶活性的变化特征.土壤学报,48(1):132-140.
    67.于海彬,蔡葆,孙国琴,王秋.1993.甜菜硝酸还原酶活性研究.中国甜菜,(3):18-23.
    68.于海彬,蔡葆,王桂岚.1995.甜菜氮营养对蔗糖积累转化及有关酶活性的调节.中国甜菜莱糖业,(6):6-12.
    69.于海彬,蔡葆.1992.不同氮素水平甜菜生长量与产质量关系初探.中国甜菜,2:14-19.
    70.于天一,李玉义,逢焕成,王伯仁,隋方功.2010.长期不施磷肥对早地红壤养分比例与玉米产量的影响.中国土壤与肥料,(2):25-28.
    71.张多英,马凤鸣.2005.甜菜高同化氨途径研究进展.中国糖料,(1):54-56.
    72.张福锁.2006.测土配方施肥技术要览.北京:中国农业大学出版社,93-110.
    73.张洪程,王秀芹,戴其根,霍中洋,许轲.2003.施氮对杂交稻两优培九产量、品质及吸氮特性的影响.中国农业科学,36(7):800-806.
    74.张吉.2004.丝瓜种子萌发及子叶发育阶段碳氮代谢相关酶的研究.硕士学位论文.
    75.张杰,彭胜民,周波,战晴晴,张荣沭,马凤鸣2008.RT-PCR克隆甜菜硝酸还原酶cDNA全长序列及分析.植物研究,28(4):412-416.
    76.张杰,屈红军,任静,李雪婧,张永强,梁明,马凤鸣.2008.甜菜硝酸还原酶全长基因的克隆及其在缺氮胁迫下表达与活性分析.黑龙江大学学报,25(5):614-620.
    77.张杰,吴迪,彭胜民,姜月,刘岩,马凤鸣.2008.甜菜硝酸还原酶活性分析及基因片段的克隆,哈尔滨商业大学学报,24(5):610-613.
    78.张文君,鲁剑巍,蒋志平,王先挺.2009.盆栽矮牵牛氮、磷、钾肥效应及推荐用量研究.植物营养与肥料学报,15(5):1147-1153.
    79.张玉龙,杨丹,刘鸣达,李军.2003.北方酸性水稻土上氮磷硅肥配施对水稻产量影响的研究.土壤通报,34(5):432-435.
    80.张云生,李文先.1997.氮磷用量配比对甜菜块根产量及含糖量的影响.新疆农业科学,166-167.
    81.赵越,马凤鸣,王丽艳,刘涧洋.2001.不同氮源对甜菜蔗糖合成酶的影响.黑龙江农业科学,2:11-12.
    82.赵越,马凤鸣,张多英.2006.甜菜对不同氮素吸收动力学的研究.东北农业大学学报,37(3):294-298.
    83.郑怀忠,陈发河,李淑燕,孙君社,刘萍.2009.亚硝酸还原酶高产菌株的筛选及发酵条件优化.中国农业科技导报,11(3):81-87.
    84.郑淑琴.2001.钾对大豆生理效应及产量和品质的影响.黑龙江农业科学,4:25-27.
    85.周海燕.2008.甜菜高产高糖源—库关系的研究.内蒙古农业大学博士学位论文.
    86.朱涛,张中原,李金凤,夏永胜.2004.应用二次回归肥料试验“3414”设计配置多种肥料效应函数功能的研究.沈阳农业大学学报,35(3):211-215.
    87. Antoine Martina,Judy Leeb, Thomas Kicheyc, Denise Gerentesd, Michel Zivye, Christophe Tatoutd, Frederic Duboisc, Thierry Balliaue, Benoit Valote, Marlene Davanturee, Therese Terce-Laforguea, Isabelle Quillerea, Marie Coquee, Andre Gallaise, Maria-Begona Gonzalez-Morof, Linda Bethencourta, Dimah Z. Habashg, Peter J. Leah, Alain Charcossete, Pascual Perezd, Alain Murigneuxd, Hitoshi Sakakibarai, Keith J. Edwardsb and Bertrand Hirela.2006.Two cytosolic glutamine synthetase isoforms of maize are specifically involved in the control of grain production.The Plant Cell,8:3252-3274.
    88. Ashton J,Delauney,Desh Pal S.Verma.1993.Proline biosynthesis and osmoregulation in plants.The Plant Journal,4(2):215-223.
    89. Bertrand Hirel,Pascal Bertin,Isabelle Quillerel,William Bourdoncle,Celine Attagnant,Christophe Dellay, Aurelia Gouy,Sandrine Cadioul,Catherine Retailliaul,Mathieu Falque and Andre Gallais.2001.Towards a better understanding of the genetic and physiological basis for nitrogen use efficiency in maize.Plant Physiology,125:1258-1270.
    90. Celine Masclaux-Daubresse, Elisa Carrayol and Marie-Helene Valadier.2005.The two nitrogenmobilisation and senescence-associated GS1 and GDH genes are controlledby C and N metabolites.Planta,221:580-588.
    91. Christman J.1990.Application of Nitrogen Fertilizer to Sugar-beet. Parisla Defense,20:16-18.
    92. Cren M and Hirel B.1999.Glulamine synthetase in higher plants Regulation of gene and protein expression from the organ to the cell.Plant & Cell Physiology,40:1187-1193.
    93. D Z Habash,A J Massiah,H L Rong,Rond,R M Wallsgrove,R A Leigh.2001.The role of cytosolic glutamine synthetase in wheat. Annals of Applied Biology,138:83-89.
    94. Eduard Back, William Dunne, Alois Schneiderbauer, Anic Framond,Rajeev Rastogi and Steven J. Rothstein.1991.Isolation of the spinach nitrite reductase gene promoter which confers nitrate inducibillity on GUS gene expression in transgenic tobacco.Plant Mol. Biol.17:9-18.
    95. Faure J D, Vincentz M, Kronenberger J, Caboche M.1991.Co-regulated expression of nitrate and nitrite reductase. Plant J,1:107-113.
    96. Frederic Dubois,Norbert Brugiere,Rajbir S.Sangwan and Bertrand Hirel.1996.Localization of tobacco cytosolic glutamine syntheses enzymes and the corresponding transcripts shows organ and cell specific patterns of protein synthesis and gene expression. Plant Mol Biol,31(4):803-17.
    97. Gallais A, Hire B.2004.Anapproachto the genetics of nitrogen use effciency in maize. Journal of Experimental Botany.55(396):295-306.
    98. Givan C V.1980. Aminotransferases in higher plants. In (B J Miflined) The Biochemistry of Plants,5:329-357.
    99. Gunther Ochs,Gerald Schock, Martin Trischler, Kirstin Kosemund and Aloysius Wild.1999.Complexity and expression of the glutamine synthetase multigene family in the ampnidiploid crop Brassica napus. Plant Mol Bio,39(3):395-405.
    100. H.-M.Lam,K.T.Coschigano,I. C.Oliveira,R.Melo-Oliveira, and G.M.Coruzzi.1996.The molecular genetics of nitrogen assimilation into amino acids in higher plants.Annual Review Plant Physiology Plant Molecular Biology,47:569-593.
    101. Hecht U, Oelmueller R,Schmidt S,Mohr H.1988.Action of light,nitrate and ammonium on the levels of NADH-and ferredoxin-dependent glutamate synthase in the cotyledons of mustard seedlings.Planta,175:130-138.
    102. Hitoshi Sakakibaral,Shiro Kawabatal, Toshiharu Hase and Tatsuo Sugiyama.1992.Differential effect of nitrate and light on the expression of glutamine synthetase and ferredoxin dependent glutamate synthase in maize.Plant Cell Physiology,33:1193-1198.
    103. Hocking, P.J.;Steer, B.T.;Pearson,C.J.1984.Nitrogen nutrition of non-leguminous crops. A review. Part 2. Field Crop Abstracts.9:721-741.
    104. Igor C.Oliveira,Timothy Brears,Thomas J.Knight,Alexandra Clark1 and Gloria M.Coruzzi.2002.Overexpression of cytosolic glutamine synthetase relation to nitrogen, light, and photorespiration.Plant Physiology,129:1170-1180.
    105. Jones G D, Lutz J A, Smith T J.1977.Effects on phosphorus and potassium on soybean nodules and seed yield.Apron J,69:1003-1006.
    106. Judith Harrison, Marie-Anne Pou de Crescenzo, Olivier Sene and Bertrand Hirel.2003.Does lowering glutamine synthetase activity in nodules modify nitrogen metabolism and growth of lotus japonicus.Plant Physiology,133:253-262.
    107. Keys A J.2006.The reassimilation of ammonia produced by photorespiration and the nitrogen economy of C3 higher plants. Photosynth Res,14:1-11.
    108. Kristine Lahners,Vance Kramer,Eduard Back,Laura Privalle,Skristine Lahners,Vahners,Vance Kramer,Eduard Back,Laura Privalle and Steven Rothstein.1988.Molecular cloning of complementary DNA encoding Maize nitrite reductase.Plant Physiol,88:741-746.
    109. Lea P J, Blackwell R D, Joy K W.1992.Ammonia assimilation in higher plants.In: Mengel K and Pilbeam D J (eds.).Nitrogen,Metabolism of Plant.Oxford University Press, New York,153-186.
    110. Lea P J, Irel R J.1999.Nitrogen metabolism in higher plants//Singh B K. Plant Amino Acids, Biochemistry and Biotechnology.Marcel Dekker, New York,1-47.
    111. Lea P J, Miflin B J.1974. An alternative route for nitrogen assimilation in higher plants.Nature, 251:614-616.
    112. Lea P J, Miflin B J.2003.Glutamate synthase and the synthesis of glutamate in plants.Plant Physiol Biochem,41:555-564.
    113. Li Caifeng, Ma Fengming.2002.The Effect of Different Nitrogen Form on Key Enzyme Activity of Sugar bee (Beta vularis L.)Carbon and Nitrogen Metabolism,Journal of NEAU(English Edition),9(1):22-27.
    114. Li Wenhua,Yan Guiping,Ma Fengming,Gao Jiguo.1994.Studies on some characteristics of nitrate reductase from sugar beet leaves.The Journal of Northeast Agricultural University, 1(1):20-25.
    115. Limami A M, Rouillon C, Glevarec G.2002.Genetic and physiological analysis of germination efficiency in maize in relation to nitrogen metabolism reveals the importance of cytosolic glutamine synthetase.Plant Physiology,130:1860-1870.
    116. M. S. Naik, Y. P. Abrol, T. V. R. Nair and C.S. Ramarao.1982.Nitrate assimilation-its regulation and relationship to reduced nitrogen in higher plants. Phytochemistry.21(3)495-504.
    117. Mack G.1998.Glutamine synthetase isoenzymes,oligomers and subunits from hairy roots of Beta vulgaris.var.lutea.Planta,205:113-120.
    118. Melo-oliveira R, Oliveira I C,Coruzzi G M.1996.Arabidopsis mutant analysis and gene regulation define a nonredundant role for glutamate dehydrogenase in nitrogen assimilation.Proc.Natl.Acad.Sci. USA,93:4718-4723.
    119. Miguel G. Guerrero, Jose M Vega, and Manuel Losada.1981.The assimilatory nitrate-reducing system and its regulation. Annual Review of Plant Physiology,32 (2):169-204.
    120. Misa Takahashil, Yukari Sasaki 1, Shoji Ida and Hiromichi Morikawa.2001.Nitrite Reductase Gene Enrichment Improves Assimilation of NO2- in Arabidopsis,plant physiology,126:731-741.
    121. Muhitch M J.2003.Distribution of the glutamine synthetase isoezyme GS1 in maize (Zea mays).Journal of Plant Physiology,160:601-605.
    122. Muntz K, Belozersky M A, Dunaevsky Y E.2000.Stored proteinases and the initiation of storage protein mobilization in seeds during germination and seedling growth.Journal of Experimental Botany,52:1741-1752.
    123. Neininger A.1992.Coaction of light,nitrate and plastidic factor in controlling nitrite-reductase gene expression in tobacco.Planta 187:381-387.
    124. Norbert Brugierea,Frederic Duboisb,Anis M.Limamia,Maud Lelandaisa,Yvette Rouxa,Rajbir S.Sangwanb, and Bertrand Hirela.1999.Glutamine Synthetase in the Phloem Plays a Major Role in Controlling Proline Production. Plant Cell,11(10):1995-2012.
    125. Rajeev Rastogi.1997.Footprinting of the spinach nitrite reductase gene promoter reveals the preservation of nitrate regulatory elements between fungi and higher plants. Plant Molecolar Biology 34:465-476.
    126. Sobhana Sivasankar.1988.Analysis of cis-acting DNA elements mediating induction and repression of the spinach nitrite reductase gene. Planta,206:66-71.
    127. Suzuki A, Gadal P.1982. Glutamate Synthase from Rice Leaves. Plant Physiol,69,848-852.
    128. Theodore K R, Norman T.1995.Carbon, nitrogen, and nutrient interactions in Beta v ulgaris L. asinfluenced by nitrogen source, NO3- versus NH4+.Plant Physiology,107:575-584
    129. Wagner R E.1979.Interactions of plant nutrients in high yield agriculture.Spec Bull No1.Potash and Phosphate Institute, Atlanta, USA,1979.
    130. Wray J L, Fido R J,Nitrite reductase and Lea P J.1990.Methods in Plant Biochemistry.Vol.3.Enzymes of Primary Metabolism. New York:Academic Press,249-253.
    131. Yan Guiping, Li Wenhua, Ma Fengming.1998.Research on Glutamate Dehyrogenase Activity in Sugar Beet (Beta Vulgaris L.)under Different Nitrogen levels.Journal of NEAU (English Edition),5(2):117-121.
    132. Yan Guiping, Ma Fengming, Li Wenhua.1998.Research on glutamate synthase activity in sugar beet (Beta vulgaris L) under different levels of nitrogen. Journal of NEAU,5(1):5-11.
    133. Yan Guiping,Ma Fengming,Li Wenhua,Gao Jiguo.1995.Studies on Glutamine Synthetase Activiy in Sugar beet(Beta vulgaris L.)under Different Level of Nitrogen,Joural of NEAU(English Edition),2(1),17-24.
    134. Yu Haibin, Cai Bao.1995.Nitrogen nutrition regulate sucrose accumulation and relative enzyme activity. China Beet and Sugar,(6):39-42.
    135. Yu HaiBin.1988.The research of nitrogen and sugar metabolic characteristics on sugar beet.China Sugar Beet,4:11-17.
    136. Zelmer L, Guenther G.1988.Activities of glutamate dehydrogenase(GDH) glutamine synthetase(GS) and glutamate synthetase(GOGAT) in suspension cultures of Beta- vulgaris sugar beet and chenopodium-album.Biochemie und physiologie der pflanzen(BPP),183(5)397-405.
    137. Zhangduoying, Mafengming, Zhaoyue, Licaifeng.2004.Influence of Different NO3-/NH4+ on Nitrate and Ammonium Uptake Kinetics of Sugar Beet (Beta vularis L.)Seedlings,Nature and Science, 11(3):70-78
    138. Zhou X-R.1986.Nitrogen metabolism and its relation to sugar metabolism on sugar beet. Beet and Sugar,4:12-14.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700