用户名: 密码: 验证码:
不同株型水稻品种氮肥利用差异及其生理基础
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国水稻的平均氮肥利用效率为35%。氮肥利用率低不仅造成了资源的浪费,增加了生产成本,更重要的是会导致一系列环境和健康问题。因此,研究作物氮肥利用率及品种间氮肥利用存在差异的生理机制具有重要意义。本文以穗型直立的紧凑型品种沈农07425和穗型弯曲的松散型品种秋光为材料,研究了不同施氮条件下两种株型品种氮肥利用的差异及其生理基础,主要结果如下:
     1、不同株型品种间N2O排放通量差异显著,沈农07425的硝化-反硝化气体损失远小于秋光。不同株型品种N2O排放通量随施氮量的变化存在差异,沈农07425的N2O排放通量随着施氮量提高而增加,高氮处理下N2O排放通量最大;秋光的N2O排放通量则中氮处理下最大。品种与施氮水平的交互作用对N2O排放通量影响较大,与品种因素相比,N2O排放通量受施氮水平影响更大。
     2、不同株型品种间土壤硝化-反硝化细菌数量差异显著。紧凑型品种沈农07425与松散型品种秋光土壤的硝化细菌数量存在较大差异,沈农07425的硝化细菌数量大于秋光;反硝化细菌数量上,紧凑型沈农07425的中氮、高氮处理显著大于松散型秋光。不同株型品种硝化-反硝化细菌数量随施氮量的变化存在差异。紧凑型沈农07425的硝化细菌、反硝化细菌数量均随着施氮水平提高而相应增加。松散型秋光的硝化细菌数量随施氮水平提高而减少,以不施肥对照硝化细菌最多;反硝化细菌数量以不施肥对照最大,但符合高氮>中氮>低氮的规律。
     3、在一定范围内,施氮对两株型水稻品种的株高、分蘖数、叶绿素含量和单株叶面积均起促进作用,均随施氮水平的提高而增大。总根长在不同株型品种间差异显著。紧凑型沈农07425的总根长随施氮量增加而减少,而松散型秋光则在高氮条件下总根长最大。两品种的根干重、根体积表现一致,均随施氮水平的提高而增大。
     4、不同株型水稻的叶片NO3-含量、NO2-含量和NH4+含量、硝酸还原酶活性均随着外源氮素水平的升高而呈上升趋势。沈农07425和秋光的可溶性蛋白含量高氮处理明显高于中、低氮处理,脯氨酸含量、电导率和可溶性糖含量高氮、低氮处理显著大于中氮处理。两品种叶片丙二醛含量随着水稻的逐渐衰老而增加,各处理间低氮、高氮处理丙二醛含量大于中氮处理。叶片CAT、POD和SOD活性均呈现高氮>中氮>低氮的关系。
     5、两株型品种根系NO3-含量、NO2-含量、NH4+含量和硝酸还原酶活性均随着施氮量的增加而增加。齐穗期沈农07425根系NO3-含量与秋光的NO3-含量差异极显著。沈农07425根系NO2-含量拔节之后的增幅远小于秋光。NH4+含量随生育期的变化两品种间差异较大。紧凑型沈农07425与松散型秋光的根系总吸收面积、活跃吸收面积、根系氧化力随着供氮水平的增加而增大。
     6、紧凑型品种沈农07425在高氮处理下达到最大硝化强度,松散型品种秋光低氮处理下土壤硝化强度较大。两品种的土壤反硝化作用强度表现一致,随着施肥水平的提高土壤反硝化强度升高,受施氮水平影响更大。紧凑型品种沈农07425拔节期土壤的硝酸还原酶活性最大,秋光则分蘖期活性最大,品种间差异较大。两株型品种的土壤硝酸还原酶活性均随施氮水平提高而不断增强。各处理间土壤脲酶活性中氮处理高于低氮、高氮处理。紧凑型品种沈农07425土壤还原物质总量随施氮量的增加而增加;松散型品种秋光高氮处理的土壤还原物质总量明显低于中氮和低氮处理。沈农07425土壤活性还原物质含量随施氮量的提高而增加,而施氮量对松散型品种秋光的土壤活性还原物质含量影响不大。土壤全氮含量两品种间差异不显著,但随着施氮水平的提高,两株型水稻品种土壤全氮含量均不同程度增加。
     7、随着施氮量的提高,紧凑型品种沈农07425和松散型品种秋光的产量增加。氮肥对两株型品种有效穗数的影响均达显著水平,品种间差异极显著,有效穗数的大小次序为高氮>中氮>低氮。两株型品种间结实率差异达显著水平,每穗粒数、千粒重达到极显著水平。不同株型品种的氮肥利用率存在差异:沈农07425的氮素谷物生产效率遵循低氮>中氮>高氮的趋势,且各处理间差异显著。秋光中氮处理的氮素谷物生产效率显著大于低氮、高氮处理。氮收获指数、氮肥偏生产力两品种均符合低氮>中氮>高氮的关系。
The average nitrogen use efficiency of rice is only 35% in China. The low nitrogen use efficiency not only result in the waste of resources, increased production costs, but also lead to a series of environmental and healthy problems. Therefore, studies on nitrogen use efficiency and the mechanism of the differences on nitrogen utilization of different varieties play an important role. The compact rice Shennong 07425 with erect panicle and the loose rice Akihikari with curved panicle were used to study the differences on nitrogen utilization and its physiological basis under several nitrogen levels in pot experiment. The main results are as follows.
     1. There is significant difference on N2O Flux between the tow varieties. The nitrification-denitrification gas loss in Shennong 07425 is far less than that of Akihikari. N2O Flux of different plant species changes with different nitrogen levels, the N2O Flux in Shennong 07425 increases with increasing nitrogen application, and it reaches the maximum under high nitrogen treatment. But Akihikari attains its maximum under middle nitrogen treatment. The interaction of variety and nitrogen level affect N2O Flux greatly, relatively speaking, N2O Flux is mostly decided by nitrogen level than variety.
     2. The number of nitrifying-denitrifying bacteria in soil is significantly different between the tow varieties. The number of nitrifying bacteria in the compact variety Shennong 07425 is much larger than that of Akihikari, but only the number of denitrifying bacteria under middle and high nitrogen treatment is significantly greater than the loose variety Akihikari.The number of Nitrifying-denitrifying bacteria of different plant species changes with different nitrogen levels. The number of Nitrifying-denitrifying bacteria in Shennong 07425 increases with increasing nitrogen application. It raises crosscurrent on the number of nitrifying bacteria in the loose variety Akihikari, the CK treatment attains the maximum. The CK treatment handles the largest number of denitrifying bacteria in Akihikari, and it still in line with high nitrogen> middle nitrogen> low nitrogen level.
     3. The increasing application of nitrogen fertilizer enhance plant height,number of tillers,chlorophyll content(SPAD value) and leaf area per plant within a certain range. Total length of root in Shennong 07425 decreases with nitrogen level raised, but it reaches the maximum in high N level in Akihikari. The total length is mainly affected by plant type.It appears similar result on dry weight and root volume between the two varieties, all magnify with increasing levels of nitrogen fertilizer.
     4. NO3- content, NO2- content, NH4+ content, nitrate reductase activity in leaves of both rice increases with elevated levels of nitrogen. Soluble protein content under the high nitrogen treatment reflects significantly higher than the middle and low nitrogen treatment of both. And the proline content, relative conductivity, soluble sugar content under High nitrogen, low nitrogen treatment show significantly greater than that in middle nitrogen level. MDA content in leaves of two varieties elevate with the gradual increase of aging, and it shows that MDA content among treatments for low nitrogen, high nitrogen are bigger than that in middle nitrogen level. The CAT activity, POD activity, SOD activity among these treatments reveal that high nitrogen is greater than middle nitrogen and middle nitrogen is larger than low nitrogen treatment.
     5. NO3- content, NO2- content, NH4+content, nitrate reductase activity in root of both rice increases with elevating levels of nitrogen. NO3- content of the two varieties appears extremely significant difference in the fullheading stage. The growth of NO2- content in Shennong07425 is smaller than Akihikari after jointing stage. The NH4+ content changes with the growth stage differently between the two varieties. Compact and loose Shennong 07425 total absorption area of root Akihikari active absorption area, root oxidation, reducing power as the nitrogen level increases. There is the same trend of root total absorption area, active absorption area, oxidizing ability per gram between Shennong 07425 and Akihikari:nitrogen level is bigger, the items become stronger.
     6. Nitrification intensity of soil in Shennong 07425 increases with nitrogen level, but it reaches the maximum in low nitrogen level in Akihikari. There is the same trend of denitrification intensity between Shennong 07425 and Akihikari:nitrogen level is bigger; the denitrification intensity became stronger. The denitrification intensity is chiefly decided by nitrogen level. The compact variety Shennong 07425 reaches the largest soil nitrate reductase activity in jointing stage, Akihikari is in tillering stage, and soil nitrate reductase activity has large difference between varieties. Soil nitrate reductase activity of two varieties increases with the growing nitrogen level. Urease activity under the middle nitrogen treatment reflects significantly higher than the high and low nitrogen treatment.Total reducing substances of Shennong 07425 increases with the growing nitrogen level. Total reducing substances of Akihikari under the high nitrogen treatment reflects significantly higher than the middle and low nitrogen treatment. The active reducing substances of Shennong 07425 get larger with the increasing nitrogen level, but nitrogen application has no obvious effect to active reducing substances of Akihikari. There is no significant difference of total nitrogen content between the two varieties. Total nitrogen content of two varieties increases to a certain extent with the growing nitrogen level.
     7. Grain yield of compact variety Shennong 07425 and loose variety Akihikari increases significantly with the growing nitrogen level. The panicles indicate significant difference between species, and it in line with high nitrogen> middle nitrogen> low nitrogen level. The full-grain percentage exposes significant difference between species, grain number of per ear and 1000-grain weight reveal extremely significant difference between the two species.Nitrogen grain production efficiency of Shennong 07425 follow the low nitrogen> middle nitrogen> high nitrogen trends, and it has significant differences among treatments. Nitrogen grain production efficiency of Akihikari under the middle nitrogen treatment reflects significantly higher than the high and low nitrogen treatment. Nitrogen harvest index and nitrogen partial factor productivity of two cultivars are in line with low nitrogen> middle nitrogen> high nitrogen.
引文
1. 艾绍英,李生秀.2000.氮素供应水平对蔬菜硝酸盐积累与分布的影响.华南农业大学学报,21(2):14-17.
    2. 安茂业.1998.多元长效尿素及其施用技术.吉林畜牧兽医,(4):35.
    3. 白红英.2003.土壤N20排放的影响因子及其定量模型研究.西北农林科技大学博士论文,16-18.
    4. 鲍士旦.2002.土壤农化分析.北京:中国农业出版社,159.
    5. 蔡贵信.1986.淹水种稻条件下蒯巴的氨挥发损失.中国土壤氮素工作会议论文集.北京:科学出版社,56-61.
    6. 蔡昆争,骆世明,段舜山.2005.水稻群体根系特征与地上部生长发育和产量的关系.华南农业大学学报,26(2):1-4.
    7. 曹赐生,吴岳轩.1997.不同抗性水稻品种叶片中活性氧代谢的比较.湘潭师范学院学报,18(6):67-69.
    8. 曹仁林,贾晓葵.2001.我国集约化农业中氮污染问题及防治对策.土壤肥料,3:3-6.
    9. 曹志洪.2003.施肥与大气环境质量—论施肥对环境的影响(1).土壤,35(4):265-270.
    10.曹志平.2007.土壤生态学.化学工业出版社,32-36.
    11.陈华葵,李阜棣,陈文新,等.1981.土壤微生物学.上海科学技术出版社,190-203.
    12.陈少裕.1991.膜脂过氧化对植物细胞的伤害.植物生理学通讯,27(2):84-90.
    13.陈同斌,陈世庆,徐鸿涛.1998.中国农用化肥氮磷钾需求比例的研究.地理学报,53(1):32-41.
    14.陈温福,徐正进,张龙步,等.1991.不同株型粳稻品种的冠层特征和物质生产关系的研究.中国水稻科学,5(2):67-71.
    15.陈温福,徐正进.2007.水稻超高产育种理论与方法.北京:科学出版社,121-123.
    16.陈温福.2007.北方水稻生产技术问答.北京:中国农业出版社,78-80.
    17.陈子明.1996.氮素产量环境.北京:中国农业科技出版社,160-162.
    18.程建平,曹凑贵,蔡明历,等.2007.水分胁迫与氮素营养对水稻生理特性的影响.干旱地区农业研究,11(25):149-154.
    19.单玉华,王余龙,山本由德,等.2001.常规籼稻与杂交籼稻氮素利用效率的差异.江苏农业研究,1:12-15.
    20.邓荣森,郎建,王涛,等.2002.城市污水生物除磷脱氮机理研究探讨.重庆建筑大学学报,24(3):106-110.
    21.邓云龙,孔光辉,武锦坤.2001.云南烤烟中上部叶片氮化合物代谢规律研究.云南大学学报,23(1):65-70.
    22.刁治民.1996.高寒草地的微生物氮索生理群区系研究.土壤,1:49-51.
    23.丁洪,蔡贵信,王跃思,等.2001.玉米-潮土系统中氮肥硝化反硝化损失与N2O排放.中国农业科学,34(4):416-421.
    24.丁洪,王跃思,项虹艳,等.2003.福建省几种主要红壤性水稻土的硝化与反硝化活性.农业环境科学学报,22(6):715-719.
    25.丁洪,王跃思,项虹艳.2004.菜田氮素反硝化损失与N2O排放的定量评价.园艺学报,31(6):762-766.
    26.董桂春,王余龙,吴华,等.2003.氮素对水稻不同生育阶段根系形态特征的影响.上海交通大学学报(农业科学版),21(4):331-335.
    27.董钻,沈秀瑛.2000.作物栽培学总论.北京:中国农业出版社,12:154-155.
    28.段建军,周建斌,王国栋,等.2001.NO3--N的水杨酸比色法快速测定.西北农林科技大学学报(自然科学版),6,30(3):76-80.
    29.段英华,张亚丽,沈其荣.2004.水稻根际的硝化作用与水稻的硝态氮营养.土壤学报,41(5):803-808.
    30.段英华,张亚丽,王松伟,等.2007.铵硝比(NH4+/NO3-)对不同氮素利用效率水稻的生理效应.南京农业大学学报,30(3):73-77.
    31.冯福生,陈文龙,李洁,等.1986.不同供氮水平下冬小麦叶片中RuBP羧化酶和硝酸还原酶的活性变化.植物生理学通讯,(6):20-22.
    32.冯跃华,邹应斌,敖和军,等.2004.不同施氮量对免耕/翻耕移栽稻生长及产量形成的影响.作物研究,3:145-150.
    33.高士杰,陈温福,张龙步.1999.直立穗型水稻的研究Ⅰ直立穗型水稻形态性状表现及其与产量性状的关系.吉林农业科学,24(6):12-15.
    34.高士杰.2001.直立穗型水稻的研究Ⅳ直立穗型水稻生育后期物质生产与转运.吉林农业科学,26(6):16-19.
    35.高夕全,刘爱荣,叶梅荣,等.2000.水杨酸对水稻幼苗硝酸还原酶活性和根系生长的影响.安徽农业技术师范学院学报,14(1):13-15.
    36.高志岭,陈新平,张福锁.2004.农田N20排放研究进展.生态环境,13(4):661-665.
    37.郝建军,刘延吉.2001.植物生理学试验技术.沈阳:辽宁科学技术出版社,64-181.
    38.贺锋,吴振斌.2005.复合垂直流人工湿地污水处理系统硝化与反硝化作用.环境科学,26(1):47-50.
    39.贺香云,张宇.2003.提高氮肥利用率的途径.山西农业,(5):34.
    40.洪剑明,柴小清,曾晓光,等.1996.小麦硝酸还原酶活性与营养诊断和品种选育研究.作物学报,22(5):633-637.
    41.胡开辉.2004.微生物学实验.中国林业出版社,40-42.
    42.胡文河,王兴录,刘振库.2006.不同密度水稻抽穗后生理特性的研究.吉林农业大学学报,28(6):594-596.
    43.黄碧芳,陈鸿飞,林文雄.2006.水稻超高产经营模式下土壤微生物学特性的研究.中国农学通报,22(11):207-210.
    44.黄绍敏,张鸿程.2000.施肥对土壤硝态氮含量及分布的影响及合理施肥研究.土壤与环境,9:201-203.
    45.黄树辉,吕军,曾光辉.2004.水稻烤田期间N2O排放及其影响因素.环境科学学报,24(6):1084-1090.
    46.黄树辉,吕军.2004.烤田对土壤中氮素和与氮有关的酶活性影响.水土保持学报,18(3):102-105,136.
    47.黄元财,王伯伦,王术,等.2006.施氮量对水稻产量和品质的影响.沈阳农业大学学报,37(5):688-692.
    48.贾德涛,许明,王楠,等.2007.北方粳型超级稻沈农265根系特征的初步研究.华中农业大学学报,26(4):443-447.
    49.江立庚,曹卫星,甘秀芹.2004.不同施氮水平对南方早稻氮素吸收利用及其产量和品质的影响.中国农业科学,37(4):490-496.
    50.姜东,于振文,苏波,等.1997.不同施氮时期对冬小麦根系衰老的影响.作物学报,23(2):181-190.
    51.金峰,陈书强,李培培,等.2008.直立与弯曲穗型水稻穗上不同部位粒形分布特征.沈阳农业大学学报,39(3):279-284.
    52.巨晓棠,刘学军,张福锁.2002.尿素配施有机肥料时土壤不同氮素形态的动态及利用.中国农业大学学报,7(3):52-56.
    53.巨晓棠,张福锁.2003.氮肥利用率的要义及其提高的技术措施.科技导报,(4):51-54.
    54.李阜棣,喻子牛.1996.农业微生物学实验技术.北京:中国农业出版社,:29-63.
    55.李谷,运珞珈.2000.人工养鳖池水质的理化特征和细菌状态的研究.湖北农学院学报,2:157-160.
    56.李菊梅,李冬初,徐明岗,等.2008.红壤双季稻田不同施肥下的氨挥发损失及其影响因素.生态环境,17(4):1610-1613.
    57.李俊,于沪宁,于强,等.2002.农田N2O通量测定方法分析.地学前缘,9(2):377-385.
    58.李荣刚,夏源陵,吴安芝,等.2001.太湖地区水稻竹水灌溉与氮素淋失.河海大学学报,29(3):21-25.
    59.李宪利,高东升,顾曼如,等.1997.铵态氮和硝态氮对苹果植株SOD活性的影响.植物生理学通 讯,33(4):254-255.
    60.李向东,王晓云,张高英,等.2000.花生衰老的氮素调控.中国农业科学,33((5):30-35.
    61.李秀英,赵秉强,李絮花,等.2005.不同施肥制度对土壤微生物的影响及其与土壤肥力的关系.中国农业科学,38(8):1591-1599.
    62.李雪梅,樊金娟,徐正进.2003.不同穗型水稻品种灌浆期生理特性的差异.沈阳农业大学学报,10,34(5):347-350.
    63.李义珍,郑景生,庄占龙.1998.杂交稻施氮水平效应研究.福建农业学报,13(2):58-64.
    64.李永梅,杜彩琼,林春苗.2003.铵态氮肥施入土壤中的转化.云南农业大学学报,18(1):26-29.
    65.李振高,潘映华,伍期途,等.1989.太湖地区水稻土优势反硝化细菌的数量、组成与酶活性.土壤学报,26(1):79-95.
    66.李振高,俞慎,吴胜春,等.2003.不同氮肥对水稻根圈微生物生物量及硝化—反硝化细菌的影响.土壤,35(6):490-494.
    67.梁东丽,方日尧,李生秀,等.2007.硝、铵态氮肥对旱地土壤氧化亚氮排放的影响.干旱地区农业研究,25(1):67-72.
    68.林振武,陈敬祥,汤玉玮,等.1983.硝酸还原酶活力与作物耐肥性的研究.中国农业科学,(3):37-43.
    69.林振武,孙惠珍,陈敬祥.1985.硝酸还原酶活力的体外测定.植物生理学通讯,(3):33-35.
    70.凌启鸿,张鸿程,蔡建中,等.1993.水稻高产群体质量极其优化控制探讨.中国农业科学,26(6):1-11.
    71.凌启鸿.1991.稻麦研究新进展.东南大学出版社,168-211.
    72.凌启鸿.2000.作物群体质量.上海:上海科学技术出版社,96-107.
    73.刘辉,田亚红,劳旺梅,等.2007.测定腌制食品中亚硝酸盐的含量.中国酿造,6:157-160.
    74.刘柏林,陈书强,董丹,等.2009.水稻株型性状与稻曲病发病程度关系的研究.湖北农业科学,48(1):42-46.
    75.刘吉涛,1988.应用15N研究棉田生态系统中氮素动态.农村生态环境,(1):43-46.
    76.刘立军,桑大志,刘翠莲,等.2003.实时实地氮肥管理对超级稻产量和氮素利用率的影响.中国农业科学,36(12):1456-1461.
    77.刘丽,甘志军,王宪泽.2004.植物氮代谢硝酸还原酶水平调控机制的研究进展.西北植物学报,40(10):1-4.
    78.刘乃生,孙维忠,肖免.1994.水稻不同施氮方式对产量的影响.黑龙江农业科学,6:5-8.
    79.刘桃菊,唐建军,胡岳峰,等.1999.水稻根系建成对高产形成的模拟模型与调控决策研究Ⅱ.水稻根系生理参数与产量形成关系及其模拟模型研究.江西农业大学学报,(1):1-5.
    80.刘宛,徐正进,陈温福,等.2001.氮素水平对不同穗型水稻品种植株衰老和产量的影响.沈阳农业 大学学报,32(4):43-246.
    81.刘武,黄林,谢明德,等.2008.氮肥用量和移栽密度对超级早稻产量及某些生理指标的影响.作物研究,22(4):254-262.
    82.刘武,谢明德,黄林等.2008.氮肥用量和移栽密度对超级早稻干物质积累及叶蘖生长的影响.作物研究,22(4):243-248.
    83.刘学军,张福锁.2001.基施尿素对土壤剖面中无机氮动态的影响.中国农业大学学报,6(5):63-68.
    84.刘哲,马殿荣,陈温福.2006.不同施氮水平对水稻根系生理特性的影响.垦殖与稻作,(3):58-59.
    85.陆定志.1984.杂交稻及其优势利用的生理基础.植物生理生化进展,3:1-21.
    86.罗兰芳,郑圣先,廖育林.2007.控释氮肥对杂交水稻糙米蛋白品质和氮代谢关键酶活性的影响.中国水稻科学,21(4):403-410.
    87.毛达如.2002.植物营养研究法.北京:中国农业大学出版社,8-10.
    88.钱晓晴,沈其荣,徐国华.2003.配合施用NH4+-N和NO3--N对早作水稻生长与水分利用效率的影响.土壤学报,40(6):807-812.
    89.乔峻,李勇,李文耀.2004.氮肥损失成因及有效利用.内蒙古农业科技,(5):38-39.
    90.钦绳武,刘芷宇.1989.土壤—根系微区养分状况的研究Ⅵ不同形态氮素在根际的迁移规律.土壤学报,26:117-123.
    91.秦晓波,李玉娥,刘克樱,等.2006.不同施肥处理对稻田氧化亚氮排放的影响.中国农业气象,27(4):273-276.
    92.邱业先,彭仁,陈文荣,等.1999.红壤稻田脲酶增长规律研究.江西农业大学学报,(9):311-313.
    93.屈计宁,金志刚,何群彪,等.1999.高效硝化细菌的富集技术研究.同济大学学报,27(3):351-354.
    94.沈波,王熹.2000.籼粳亚种间杂交水稻关系伤流液强度的变化规律及其与叶片生理的相互关系.中国水稻科学,14(2):122-124.
    95.史奕,黄国宏.1999.土壤中反硝化酶活性变化与N2O排放的关系.应用生态学报,10(3):329-331.
    96.史正军,樊小林.2002.水稻根系生长及根构型对氮素供应的适应性变化.西北农林科技大学学报,30(6):1-6.
    97.宋文质,王少彬.1996.我国农田土壤的主要温室气体CO2、CH4和N2O排放的研究.环境科学,17(1):85-88.
    98.苏正义,韩晓日,李春全,等.1997.氮肥深施对作物产量和氮肥利用率的影响.沈阳农业大学学报,28(4):291-296.
    99.孙静文,陈温福,曾雅琴,等.2003.氮素水平对粳稻根系形态及其活力的影响.沈阳农业大学学报,34(5):344-346.
    100.孙羲1988.植物营养与肥料.北京:农业出版社,42-43.
    101.唐树梅,漆智平.1995.旱地黄壤有效氮测定方法的探讨.热带作物研究,4:41-47.
    102.陶龙兴,王熹,黄效林,等.2004.水稻灌浆期间土壤含水量对根系生理活性的影响.中国农业科学,37(11):1616-1620.
    103.万书波,封海胜.2000.不同供氮水平下花生的氮肥利用率.山东农业科学,(1):31-33.
    104.王艾荣,罗汉金,梁博,等.2008.硝化细菌在3种沉积土壤中的变化规律研究Ⅰ:硝化细菌与土壤种类的关系.农业环境科学学报,27(2):665-669.
    105.王朝晖,田霄红,李生秀.2000.硝态氮累积对蔬菜水分、有机氮的影响.中国环境科学,20(5):481-485.
    106.王强.2003.稻田分次施氮对田面水和渗漏水中氮素变化特征的影响.浙江大学硕士学位论文,1-4.
    107.王曙光,郭伟.2004.不同肥土比对NO-3N浓度变化的影响研究.植物营养与肥料学报,10(2):148-151.
    108.王彦荣,华泽田,陈温福.2003.粳型超级杂交稻辽优3225根系生理特性研究.中国水稻科学,17(1):37-41.
    109.王一凡.2000.北方节水稻作.辽宁:科技出版社,134-145.
    110.王永锐.1989.水稻营养与合理施肥.北京:科学出版社,55-56.
    111.王余龙,蔡建中,何杰升,等.1992.水稻颖花根活量与籽粒灌浆结实的关系.作物学报,18(2):81-88
    112.王余龙,姚庆友,刘宝玉,等.1997.不同生育时期氮素供应水平对杂交水稻根系生长及其生活力的影响.作物学报,23(6):699-705.
    113.王玉峰.2002.保氮素在黑土上的肥效试验.黑龙江农业科学,(4):23-24.
    114.王月福,于振文,李尚霞,等.2003.土壤肥力和施氮量对小麦根系氮同化及籽粒蛋白含量的影响.植物营养与肥料学报,9(1):39-44.
    115.邬非波,成灿土,许馥华.1998.氮素营养对短季棉生理代谢和产量的影响.浙江农业大学学报,24(3):241-247.
    116.吴金水,林启美,黄巧云,等.2006.土壤微生物量测定方法及其应用.气象出版社,137-138.
    117.吴敬民,许学前,姚月明.1999.基肥不同施用方法对水稻生长及稻田周围水体污染的影响.土壤通报,30(5):232-234.
    118.吴岳轩,吴振球.1992.杂交稻根系代谢活性与叶片衰老进程相关研究.杂交水稻,6:36-39.
    119.谢建治,尹君,王殿武,等.1999.田间土壤反硝化作用动态初探.农业环境保护,18(6):272-274.
    120.徐谦.1996.我国化肥和农药非点源污染状况综述.农业生态环境,12(2):39-43.
    121.徐正进,陈温福,张龙步.1993.水稻理想株型育种和研究现状与展望.农业科学集刊,北京:中国农业出版社,122-126.
    122.闫修花,王桂珍.2003.纳氏试剂比色法测定海水中的氨氮.环境监测管理与技术,15(3):21-23.
    123.杨东,陈鸿飞,游晴如.2008.不同施N方式对水稻根际土壤微生物生态效应的影响.西北农林科技大学学报(自然科学版),36(12):88-94.
    124.杨守仁.1982.水稻株形研究的进展.作物学报,8(3):205-210.
    125.杨肖娥,孙羲.1991.杂交稻和常规稻生育后期追施NO3--N和NH4+-N的生理效应.作物学报,17(4):283-291.
    126.衣纯真.1994.麦田土壤反硝化速率变化规律的研究.北京农业大学学报,20(1):68-73.
    127.余泽高,王红闪.2003.小麦抗衰性与丙二醛含量相关性的初步探讨.湖北农业科学,2:28-29,36.
    128.袁新民,王周琼.1997.环境和土壤中硝态氮的研究干旱地区研究,14(4):52-55.
    129.张达,林杉.2002.通气状况与氮素形态对水稻和旱稻生长的影响.哈尔滨师范大学自然科学学报,18(4):97-102.
    130.张国梁,章申.1998.农田氮素淋失研究进展.土壤,30(6):291-197.
    131.张玲华,邝哲师,张宝玲.2002.高效硝化细菌的富集与分离.浙江农业学报,14(6):348-350.
    132.张龙步,董克.1993.水稻田间试验方法和测定技术.沈阳.辽宁科学技术出版社,33-67.
    133.张仁陟,李增风,陶永红.1993.河西灌漠土土壤氮素矿化势的研究.甘肃农业大学学报,9,28(3):261-264.
    134.张绍林,朱兆良,徐银华,等.1988.关于太湖地区稻麦上氮肥的适宜用量.土壤,20:5-9.
    135.张新明,李兴华,吴文良.2002.氮素肥料对环境与蔬菜的污染及其合理调控途径.土壤通报,33(6):471-475.
    136.张行峰.2005.实用农化分析.化学工业出版社,158-159.
    137.张亚丽,沈其荣,段英华.2004.不同氮素营养对水稻的生理效应.南京农业大学学报,27(2):130-135.
    138.张玉铭,胡春胜,董文旭,等.2004.农田土壤N2O生成与排放影响因素及N2O总量估算的研究.中国生态农业学报,12(3):119-123.
    139.张玉屏,李镏金,黄义德,等.2001.水分胁迫对水稻根系生长和部分生理特性的影响.安徽农业科学,9(1):58-59.
    140.张云桥,吴荣生,蒋宁,等.1989.水稻的氮素利用效率与品种类型的关系.植物生理学通讯,2:45-47.
    141.张中杰,朱波,项红艳.2010.氮肥施用对西南地区紫色土冬小麦N2O释放和反硝化作用的影响.农业环境科学学报,29(10):2033-2040.
    142.赵成章.1980.水稻秧苗根系活力的初步研究.植物生理学通讯,3:32-36.
    143.赵国臣,武志海,徐克章.2010.新老水稻品种抽穗后叶片保护酶活性的变化及其与光合速率的关系.安徽农业科学,38(28):15481-15483,15486.
    144.赵建设.2002.提高氮肥利用率的有效方法.长江蔬菜,(12):19.
    145.郑建初,高旺盛.2006.现代农业与农作制度建设.南京:东南大学出版社,375-382.
    146.郑圣先,聂军,戴平安,等.2006.控释氮肥对杂交水稻生育后期根系形态生理特征和衰老的影响.植物营养与肥料学报,12(2):188-194.
    147.中国土壤学会农业化学专业委员会编.1983.土壤农业化学常规分析方法.科学出版社,235-238.
    148.钟文辉,蔡祖聪,尹力初,等.2008.种植水稻和长期施用无机肥对红壤氨氧化细菌多样性和硝化作用的影响.土壤学报,45(1):105-111.
    149.周淑清,牛立娜,张树林,等.2005.氮素水平对不同穗型品种产量性状的影响.中国农学通报,21(12):213-216.
    150.朱兆良,文启孝.1992.中国土壤氮素.南京:江苏科学技术出版社,67-74.
    151.朱兆良.1998.中国土壤的氮素肥力与农业中的氮素管理.见:沈善敏主编.中国土壤肥力.农业出版社,160-211.
    152.朱兆良.2000.农田中氮肥的损失与对策.土壤与环境,9(1):1-6.
    153.邹长明,秦道珠.2002.水稻的氮磷钾养分吸收特性及其与产量的关系.南京农业大学学报,25(4):6-10.
    154.邹春琴,王晓凤,张福锁,等.2004.铵态氮抑制向日葵生长的作用机制初步探讨.植物营养与肥料学报,10(1):82-85.
    155.邹国元,张福锁,李新慧.2001.下层土壤反硝化作用的研究.植物营养与肥料学报,(4):379-384.
    156.A.H.伊利亚列特季诺夫.1985.含氮化合物在土壤中的转化.北京:农业出版社,37.
    157. Abbasi M K,Adams W A.2000.Gaseous N emission during simulations nitrification-denitrification associated with mineral N fertilization to a grassland soil under field conditions.Soil Biol Biochem,32:1251-1259.
    158. Ahmad A R,Zukefli M,Ahmed M,et al.1996.Environmental impact of agricultural inorganic Pollution on ground water resources of the Klansman Plain Malaysia. In:A minuddin BY,Sharma M L and Willett IRed. Agricultural impacts on ground water quality. America breedings.61:8-21.
    159. Aurelio M BJ, Satoshi O, Yoshiaki U, et al.2003.Ammonia-oxidizing bacteria on root bio films and their possible contribution to N use efficiency of different rice cultivars. Plant and Soil,250:335-348.
    160. Bansal U K, Saini R G, Kaur A.1999.Genetic variabity in leaf area and chlorophyll content of aromatic rice. International Rice Research,4(1):21
    161.Bloem, Reas.2000.The influence of residual nitrogen in soil on nitrogen fertilization recommendations of maize.DAI-B.61/01.P.1,Jul.
    162. Bremner J M, Blackmer A M.1978.Nitrous oxide:emission from soil during nitrification of fertilizer nitrogen.Science,199:295-296.
    163. Briones A M,Okabe S,Umemiya Y,et al.2002. Influence of different rice cultivars on populations of ammonia-oxidizing bacteria in the root environment of rice.Apple Environ Microbial,68:3067-3075.
    164. C E Wilson Jr., PK Bollich and RJ Norman.1998.Nitrogen application timing effects on nitrogen efficiency of dry-seeded rice. Soil Science Society of America Journal.62(4):959-964.
    165. Carnd M, Hogenboon L, Jack ME, et al.2002.Elevated atmospheric CO2 in open top chambers increases net nitrification and potential denitrification. Global Change Biology,8:590-598.
    166. Chaillou S and Lamaze T.2001.Ammoniacal nutrition of plants. In:edited by Jean-Francois Morot-Gaudry. Nitrogen Assimilation by Plants. Science Publishers, Inc.(USA).53-69.
    167. Chang C, Janzen HH, Cho C M, et al.1998. Nitrous oxide emission through plants.Soil Science Society of America Journal,62 (1):35-38.
    168. Crawford NM, Glass ADM.1998. Molecular and physiological aspects of nitrate uptake in plants. Trends Plant Sci,3:389-395.
    169. Crutzen P.J. and D.H.Ehhalt.1997.Effects of nitrogen fertilizers and eombustion on the stratus Phereozonelayer.Ambio,6:112-117.
    170. George A K, Joho R S.2001.Ammonia-oxidizing bacteria:a model for molecular microbial ecology. Annu. Rev. Microbiol,55:485-529.
    171. Ghosh P, Kashyap A K.2003.Effect of rice cultivars on rate of N2 mineralization, nitrification and nitrifier population size in an irrigated rice ecosystem. Applied Soil Ecology,24:27-41.
    172. Henriksen G H, Raman D R, Walker L P, et al.1992.Measurement of net fluxes of ammonium and nitrate at the surface of barley root using ion-selective micro electrodes. Plant Physiol.99:734-747.
    173.IPCC.2001. Climate change 2001-synthesis report:Third assessment report of the intergovernmental panel on climate change. Cambridge University Press,256-262.
    174. J.D. Faure, C. Meyer and M. Caboche.2001. Nitrate assimilation:Nitrate and reeducates. In:edited by Jean-Francois Morot-Gaudry. Nitrogen Assimilation by Plants. Science Publishers. Inc. (USA):33-52.
    175. Jenkinson D.S.2001.The impact of humans on the nitrogen cycle with focus on temperate arable agriculture. Plant and Soil,228:3-15.
    176. Jensen K, Revsbech N P, Nielsen L P N.1993.Micro scale distribution of nitrification activity in sediment determined with a shields micro sensor for nitrate. Applies Environmental Microbiology, 59:3287-3296.
    177. Joseph JV, Zhuo DG, and Siddiqi MY, et al.2000.Regulation of high-affinity nitrate transporter genes and high-affinity nitrate influx by nitrogen pools in roots of barley.Plant Physiology.123:307-318.
    178. Kirk G J D,Kronzucker H J.2005.The potential for nitrification and nitrate uptake in the photosphere of wetland Plants:a modeling study. Annals of Botany,96:639-646
    179. Kirk GJD.2001. Plant mediated processes to acquire nutrients:Nitrogen uptake by rice plants.Plant and Soil.232:129-134.
    180. Kronzucker H J, Glass A DM, Siddiqi MY, et al.2000.Comparative kinetic analysis of ammonium and nitrate acquisition by tropical lowland rice:implications for rice cultivartion and yield potential.New Phytol,145:471-476.
    181. Liu Z P, Liu S J.2004.Advances in the molecular biology of nitrifying microorganisms. Chin J Appl Environ Biol,10 (4):521-525.
    182. Madin JW and Parker L L.1979.Water relation of cotton Plants under nitrogen efficiency. Plant Physiol.64:495-498.
    183. Mae T, Inaba A, Kaneta Y, et a.l 2006. A large-grain rice cultivar, Akita 63, exhibits high yields with high physiological N-use efficiency. Field Crops Res,97:227-237
    184. Mosier A R, Mohanty S K, Bhadrschalma, et al.1989. Effect of rice plants on N2 and N2O emissions from flooded soil.Proceedings of International Denitrification Workshop. Giessen, F. R. Germany, 122-129.
    185. Ndayeyamiye A,Cote D.1989.Effect of long-term pig slurry and solid cattle manure application on soil chemical and biological properties. Canadian Journal of Soil Science,69(1):39-47.
    186. Nicolaisen MH, Richard-Petersen N, Revsbech NP, et al.2004.Nitrification denitrification dynamics and community structure of ammonia oxidizing bacteria in a high yield irrigated Philippine rice field. FEMS Microbiology Ecology,49(3):359-369.
    187. Raman DR, Spanswick R M, Walker LP.1995. The kinetics of nitrate uptake from flowing nutrient solutions by rice:influence of pretreatment and light. Bio resource Technology,53:125-132.
    188. Roy R.N.,R.V Misra and A.Montanez.2002.Decreasing Reliance on Mineral Nitrogen—Yet More Food. Ambio,31:177-83.
    189. Rubinigg M, Stulen I, Elzenga JTM,et al.2002.Spatial patterns of radial oxygen loss and nitrate net flux along adventitious roots of rice raised in aerated or stagnant solution.Functional Plant Biology,29:1475-1481.
    190. Samuelson M E, hlen L, Lind M, et al.1995, Nitrate regulation of nitrate uptake and nitrate reeducates expression in barley grown at different nitrate:ammonium ratios at constant relative nitrogen addition rate. Physiological Planetarium,94:254.
    191. Smirnoff N, Cumbs O.J.1989.Hydroxyl radical scavenging activity of compatible solutes. Phytochem, 28:1057-1060.
    192. Takeshita T.1990.Current development and usage situation of plant grow the regulation in Japan. Japan Pesticide Information,57:15.
    193. Varinderpal-Singh, Bijay-Singh, Yadvinder-Singh et al.2010.Need based nitrogen management using the chlorophyll meter and leaf colour chart in rice and wheat in South Asia:a review. Nutr Cycl Agroecosyst,88:361-380.
    194. Wagner B W, Beck E.1993.Cytokinins in the perennial herb Urtica dioica L as influenced by its nitrogen tatus.Planta,190:511-518.
    195. Webster E A, Hopkins D W.1996.Contributions from different microbial processes to N2O emission from soil under different moisture regimes. Biol. Fertile. Soils,22:331-335.
    196. Winogradsky S.1991. Recherches sur les organisms de la nitrification. Ann.Inst. Pasteur,5:16-57.
    197. Zhang H,Forde B.2000. Regulation of carbide. Psis root development by nitrate availability. Journal of Experimental Botally,51(342):51-59.
    198. Zhu Z L.1997.Fate and management of fertilizer nitrogen in agro-eco systems. In:Zhu Z Wen Frency J R. Nitrogen in Soils of China. Kluwer Academic Publishers, Dordrecht, The Netherlands, 239-279.
    199. Zhu Z.L and D.L.Chen.2002.Nitrogen fertilizer use in China-Contributions to food production impacts on the environment and best management strategies. Nutrient Cycling in Agro-economy Systems,63: 117-127.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700