用户名: 密码: 验证码:
木薯等大戟科植物耐寒抗旱相关miRNA的分离与鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
microRNA(miRNA)是一类~21nt的,在转录后水平上调节mRNA的非编码RNA。miRNA的调控作用涉及几乎所有重要的生物学过程。为了解miRNA在重要显花植物家族大戟科中的作用,本研究运用计算预测和实验分析相结合的方法,克服了多数大戟科物种缺乏基因组信息的问题,开展了在基因组水平上的大规模发掘和分析大戟科miRNA功能的系统研究。本研究利用已经释放的蓖麻基因组序列信息在蓖麻中预测了23个miRNA家族的85个miRNA,随后利用蓖麻(Ricinus communis),木薯(Manihot esculenta),橡胶树(Hevea brasiliensis)和麻风树(Jatropha curcas)这4个物种的苗期样品对这85个miRNA进行差异表达分析,发现其中58个miRNA(占85 miRNA的68.2%)至少在4个大戟科物种之一中表达,进一步研究发现48个miRNA(85 miRNA的56.5%)在低温和干旱胁迫条件下,以及在胁迫后的回复过程中有明显表达。以上研究结果表明miRNA具有物种和环境特异性的表达模式。另外,本研究利用Hitsensor软件,预测出63个miRNA与83个靶基因之间的258对互作,并对其中10个互作对进行了验证,证实了其中的6个互作对,并确定了靶基因的剪切位点。本研究是第一次在大戟科植物中收集miRNA及其靶基因,这些研究成果为今后在大戟科植物家族中研究生物和非生物胁迫奠定了基础。
MicroRNA(miRNA) is a class of~21nt non-coding RNAs that regulate mRNAs at the post-transcriptional level,miRNAs are key regulators of nearly all essential biological processes.Aiming at understanding miRNAs' functions in Euphorbiaceae, a large flowering plant family,we performed a genome-scale systematic study of miRNAs in Euphorbiaceae,by combining computational prediction and experimental analysis to overcome the difficulty of lack of genomes for most Euphorbiaceous species.Specifically,we predicted 85 conserved miRNAs of 23 miRNA families in Castor bean,and then experimentally verified and characterized 58(68.2%) of the 85 miRNAs in at least one of four agri-economically important Euphorbiaceous species, Castor bean(Ricinus communis),Cassava(Manihot esculenta),Rubber tree(Hevea brasiliensis),and Jatropha(Jatropha cureas),during normal seedling development. To elucidate their functions in stress response,we further verified and profiled 48 (56.5%) of the 85 miRNAs under cold and drought stresses as well as during the processes of stress recovery.The results revealed speciesandcondition-specific miRNA expression patterns.Finally,we predicted 258 miRNA:target binding partners, and identified the cleavage sites of six out of ten miRNA targets by modified 5' RACE.This study produced the first collection of miRNAs and their targets in Euphorbiaceae.Our results revealed wide conservation of many miRNAs and their diverse functions in Euphorbiaceous plants during seedling growth and in response to abiotic stresses.
引文
1. Abdel-Ghany SE and Pilon M. MicroRNA-mediated systemic down-regulation of copper protein expression in response to low copper availability in arabidopsis. J Biol Chem, 2008, 283:15932-15945.
    2. Abe H, Yamaguchi-Shinozaki K, Urao T, Iwasaki T, Hosokawa D, Shinozaki K. Role of arabidopsis MYC and MYB homologs in drought- and abscisic acid-regulated gene expression. Plant Cell. 1997, 9(10): 1859-68.
    3. Achard P, Herr A, Baulcombe DC and Harberd NP. Modulation of floral development by a gibberellin-regulated microRNA. Development, 2004, 131:3357-3365.
    4. Adai A, Johnson C, Mlotshwa S, Archer-Evans S, Manocha V, Vance V, Sundaresan V. Computational prediction of miRNAs in Arabidopsis thaliana. Genome Res, 2005, 15(1):78-91
    5. Agarwal M, Hao Y, Kapoor A, Dong CH, Fujii H, Zheng X, and Zhu JK. A R2R3 Type MYB transcription factor is involved in the cold regulation of CBF genes and in acquired freezing tolerance. The Journal of Biological Chemistry, 2006, 281(49):37636-37645.
    6. Allen E, Xie ZX, Gustafson AM and Carrington JC. microRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell, 2005, 121:207-221.
    7. Allen RS, Li JY, Stahle MI, Dubroue A, Gluber F and Millar AA. Genetic analysis reveals functional redundancy and the major target genes of the Arabidopsis miR159 family. Proc Natl Acad Sci USA, 2007, 104:16371-16376.
    8. Alvarez J P, Pekker I, Alexander G, Blum E, Amsellem Z, and Esheda Y. Endogenous and Synthetic MicroRNAs Stimulate Simultaneous, Efficient, and Localized Regulation of Multiple Targets in Diverse Species. Plant Cell, 2006,18:1134-1151.
    9. Ambros V, Lee R C. Identification of microRNAs and other tiny noncoding RNAs by cDNA cloning. Methods Mol Biol, 2004, 265:131-158.
    10. Ambros V. miRNAs: tiny regulators with great potential. Cell, 2001, 107 (7): 823-826.
    11. Arteaga-Vazquez M, Caballero-Perez J and Vielle-Calzada JP. A family of microRNAs present in plants and animals. Plant Cell, 2006, 18:3355-3369.
    12. Ason B, Darnell DK, Wittbrodt B, Berezikov E, Kloosterman WP, Wittbrodt J, Antin PB and Plasterk RHA. Differences in vertebrate microRNA expression. Proc Natl Acad Sci USA, 2006, 103:14385-14389.
    13. Aukerman MJ and Sakai H. Regulation of flowering time and floral organ identity by a MicroRNA and its APETALA2-like target genes. Plant Cell, 2003, 15:2730-2741.
    14. Barakat A, Wall K, Leebens-Mack J, Wang YJ, Carlson JE and dePamphilis CW. Large-scale identification of microRNAs from a basal eudicot (Eschscholzia californica) and conservation in flowering plants. Plant J, 2007, 51: 991-1003.
    15. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 2004, 116:281-297.
    
    16. Bartels D, Sunkar R. Drought and salt tolerance in plants. Criti Rev Plant Sci, 2005, 24 (1):23-58.
    
    17. Bentwich I. Prediction and validation of microRNAs and their targets. FEBS Letter, 2005, 579(26): 5904-5910.
    18. Berger Y, Harpaz-Saad S, Brand A, Melnik H, Sirding N, Alvarez JP, Zinder M, Samach A, Eshed Y and Ori N. The NAC-domain transcription factor GOBLET specifies leaflet boundaries in compound tomato leaves. Development, 2009, 136:823-832.
    19. Bollman KM, Aukerman MJ, Park MY, Hunter C, Berardini TZ, Poethig RS. HASTY, the Arabidopsis ortholog of exportin 5/MSN5 regulates phase change and morphogenesis. Development, 2003, 130(8):1493-1504.
    20. Boualem A, Laporte P, Jovanovic M, Laffont C, Plet J, Combier JP, Niebel A, Crespi M and Frugier F. MicroRNA 166 controls root and nodule development in Medicago truncatula. Plant J, 2008, 54:876-887.
    21. Bray EA. Plant responses to water deficit. Trends Plant Sci, 1997, 2:48-54.
    22. Brodersen P and Voinnet O. Revisiting the principles of microRNA target recognition and mode of action. Nat Rev Mol Cell Bio, 2009, 10:141-148.
    23. Brodersen P, Sakvarelidze-Achard L, Bruun-Rasmussen M, Dunoyer P, Yamamoto YY, Sieburth L and Voinnet O. Widespread translational inhibition by plant miRNAs and siRNAs. Science, 2008,320:1185-1190.
    24. Chen PY, Manninga H, Slanchev K, Chien M, Russo JJ, Ju J, Sheridan R, John B, Marks DS, Gaidatzis D, Sander C, Zavolan M, Tuschl T. The developmental miRNA profiles of zebrafish as determined by small RNA cloning. Genes Dev, 2005, 19(11): 1288-1293.
    25. Chen X. A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science, 2004, 303:2022-2025.
    26. Chen X. microRNA biogenesis and function in plants. FEBS Letters, 2005, 579:5923-5931.
    27. Chinnusamy V, Zhu J and Zhu JK. Gene regulation during cold acclimation in plants. Physiologia Plantarum, 2006, 126: 52-51.
    28. Chiou TJ, Aung K, Lin SI, Wu CC, Chiang SF, and Su C. Regulation of Phosphate Homeostasis by MicroRNA in Arabidopsis. The Plant Cell, 2006, 18: 412-421.
    29. Chiou TJ. The role of microRNAs in sensing nutrient stress. Plant Cell Environ, 2007, 30:323-332.
    30. Cimmino A, Calin GA, Fabbri M, Iorio MV, Ferracin M, Shimizu M, Wojcik SE, Aqeilan RI, Zupo S, Dono M, Rassenti L, Alder H, Volinia S, Liu CG, Kipps TJ, Negrini M, Croce CM. miR15 and miR16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci USA, 2005, 102 (39): 13944-13949.
    31. Doerner P. Phosphate starvation signaling: a threesome controls systemic Pi homeostasis. Curr Opin Plant Biol, 2008, 11:536-540.
    32. Dong CH, Agarwal M, Zhang Y, Xie Q, Zhu JK: The negative regulator of plant cold responses, HOS1, is a RING E3 ligase that mediates the ubiquitination and degradation of ICE1. Proc Natl Acad Sci USA, 2006, 103:8281 -8286.
    33. Dong CH, Hu X, Tang W, Zheng X, Kim YS, Lee B, and Zhu JK. A Putative Arabidopsis Nucleoporin, AtNUP160, Is Critical for RNA export and required for plant tolerance to cold stress. Mole Cell Biol, 2006, 26(24):9533-9543.
    34. Dugas DV and Bartel B. Sucrose induction of Arabidopsis miR398 represses two Cu/Zn superoxide dismutases. Plant Mol Biol, 2008, 67:403-417.
    35. El-Sharkawy M A. Cassava biology and physiology. Plant Mole Biol, 2004, 56:481-501.
    36. Emery JF, Floyd SK, Alvarez J, Eshed Y, Hawker NP, Izhaki A, Baum SF and Bowman JL. Radial patterning of Arabidopsis shoots by class III HD-ZIP and KANADI genes. Curr Biol, 2003, 13:1768-1774.
    37. Farh KKH, Grimson A, Jan C, Lewis BP, Johnston WK, Lim LP, Burge CB and Bartel DP. The widespread impact of mammalian microRNAs on mRNA repression and evolution. Science, 2005, 310:1817-1821.
    38. Forrest KL, Bhave M. The PIP and TIP aquaporins in wheat form a large and diverse family with unique gene structures and functionally important features. Funct Integr Genomics. 2008, 8(2):115-133.
    39. Fujii H, Chiou TJ, Lin SI, Aung K and Zhu JK. A miRNA involved in phosphate-starvation response in Arabidopsis. Curr Biol, 2005, 15:2038-2043.
    40. Gandikota M, Birkenbihl RP, Hohmann S, Cardon GH, Saedler H and Huijser P. The miRNA 156/157 recognition element in the 3' UTR of the Arabidopsis SBP box gene SPL3 prevents early flowering by translational inhibition in seedlings. Plant J, 2007, 49:683-693.
    41. Gong Z, Dong CH, Let: H, Zhu J, Xiong L, Gong D, Stevenson B, Zhu JK: A DEAD box RNA helicase is essential form RNA export and important for development and stress responses in Arabidopsis. Plant Cell 2005, 17:256-267.
    42. Grimson A, Farh KKH, Johnston WK, Garrett-Engele P, Lim LP and Bartel DP. MicroRNA targeting specificity in mammals: Determinants beyond seed pairing. Mol Cell, 2007, 27:91-105.
    43. Guo AY, Zhu QH, Cu XC, Ge S, Yang J and Luo JC. Genome-wide identification and evolutionary analysis of the plant specific SBP-box transcription factor family. Gene, 2008, 418:1-8.
    44. Guo HS, Xie Q, Fei J? and Chua NH. MicroRNA directs mRNA cleavage of the transcription factor NAC1 to downregulate auxin signals for Arabidopsis lateral root development. Plant Cell, 2005, 17:1376-1386.
    45. Guo P, Baum M, Grando S, Ceccarelli S, Bai G, Li R, von Korff M, Varshney RK, Graner A, Valkoun J. Differentially expressed genes between drought-tolerant and drought-sensitive barley genotypes in response to drought stress during the reproductive stage. J Exp Bot, 2009, 60(12):3531-3544.
    46. Ha M, Pang MX, Agarwal V and Chen ZJ. Interspecies regulation of microRNAs and their targets. BBA-Gene Regul Mech, 2008, 1779:735-742.
    47. Hammell M, Long D, Zhang L, Lee A, Carmack CS, Han M, Ding Y and Ambros V. mirWIP: microRNA target prediction based on microRNA-containing ribonucleoprotein-enriched transcripts. Nat Methods, 2008, 5:813-819.
    48. Helvik SA, Snove O Jr, Saetrom P. Reliable prediction of Drosha processing sites improves microRNA gene prediction. Bioinformatics, 2007, 23(2): 142-149.
    49. Hertel J, Stadler PF. Hairpins in a Haystack: recognizing microRNA precursors in comparative genomics data.Bioinformatics, 2006, 22(14):197-202.
    50. Hirsch J, Lefort V, Vankersschaver M, Boualem A, Lucas A, Thermes C, Aubenton-Carafa Y and Crespi M. Characterization of 43 non-protein-coding mRNA genes in Arabidopsis, including the MIR162a-derived transcripts. Plant Physiol, 2006, 140:1192-1204.
    51. Hoekstra FA, Golovina EA, Buitink J. Mechanisms of plant desiccation tolerance. Trends Plant Sci, 2001,6:431-438.
    52. Hofacker IL. (2003) Vienna RNA secondary structure server. Nucleic Acids Res, 31, 3429-3431.
    53. Hutvagner G, Simard MJ, Mello CC, Zamore PD. Sequence-specific inhibition of small RNA function. PLoS Biol, 2004, 2 (4): E98.
    54. Ibanez-Ventoso C, Vora M and Driscoll M. Sequence relationships among C. elegans, D. melanogaster and human microRNAs highlight the extensive conservation of microRNAs in biology. PLoS One, 2008, 3:e2818.
    55. Ingram J, Bartels D. 1996. The molecular basis of dehydration tolerance in plant. Annu Rev Plant Physiol Plant Mol Bio, 47:377-403.
    56. Iwasaki T, Yamaguchi-Shinozaki K, Shinozaki K. Identification of a cis-regulatory region of a gene in Arabidopsis thaliana whose induction by dehydration is mediated by abscisic acid and requires protein synthesis. Mol Gen Genet, 1995, 247:391-398.
    57. Jagadeeswaran G, Saini A and Sunkar R. Biotic and abiotic stress down-regulate miR398 expression in Arabidopsis. Planta, 2009, 229:1009-1014.
    58. Jiang P, Wu H, Wang W, Ma W, Sun X, Lu Z. MiPred: classification of real and pseudo microRNA precursors using random forest prediction model with combined features. Nucleic Acids Res, 2007, 35(Web Server issue):W339-W344.
    59. Jonak C, Kiegerl S, Ligterink W, Barker PJ, Huskisson NS, Hirt H. Stress signaling in plants: A mitogen-activated protein kinase pathway is activated by cold and drought. Proc Natl Acad Sci USA, 1996,93:11274-11279.
    60. Jones-Rhoades MW and Bartel DP. Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Mol Cell, 2004, 14:787-799.
    61. Kasschau K, Xie Z, Allen E, Llave C, Chapman EJ, Krizan KA, and Carrington JC. P1/HC-Pro, a viral suppressor of RNA silencing interferes with Arabidopsis development and miRNA function. Dev Cell, 2003,4:205-217.
    62. Kim VN, Nam JW. Genomics of microRNA. Trends Genet, 2006, 22(3): 165-173.
    63. Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T. Identification of novel genes coding for small expressed RNAs. Science, 2001, 294(5543): 853-858.
    64. Lau NC, Lim LP, Weinstein EG, Bartel DP. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science, 2001, 294: 858-862
    65. Lauter N, Kampani A, Carlson S, Goebel M and Moose SP. microRNA 172 down-regulates glossy15 to promote vegetative phase change in maize. Proc Natl Acad Sci USA, 2005, 102:9412-9417.
    66. Levitt J. Responses of plants to environmental stresses. Voll.2nd edn. Academic Press, 1980.
    67. Lewis BP, Burge CB and Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell, 2005, 120:15-20.
    68. Li AL and Mao L. Evolution of plant microRNA gene families. Cell Res, 2007, 17:212-218.
    69. Liu DM, Song Y, Chen ZX and Yu DQ. Ectopic expression of miR396 suppresses GRF target gene expression and alters leaf growth in Arabidopsis. Physiol Plantarum, 2009, 136:223-236.
    70. Liu PP, Montgomery TA, Fahlgren N, Kasschau KD, Nonogaki H and Carrington JC. Repression of AUXIN RESPONSE FACTOR 10 by microRNA 160 is critical for seed germination and post-germination stages. Plant J, 2007, 52:133-146.
    71. Llave C , Xie Z X, Kasschau K D , Carrington J C. Cleavage of Scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA. Science, 2002a, 297(5589):2053-2056.
    72. Llave C, Kasschau K D, Rector M A, Carrington J C. Endogenous and silencing associated small RNAs in plants. Plant Cell, 2002b, 14(7): 1605-1619.
    73. Lu SF, Sun YH and Chiang VL. Stress-responsive microRNAs in Populus. Plant J, 2008, 55:131-151.
    74. Lu SF, Sun YH, Shi R, Clark C, Li LG and Chiang VL. Novel and mechanical stress-responsive microRNAs in Populus trichocarpa that are absent from Arabidopsis. Plant Cell, 2005, 17:2186-2203.
    75. Mallory AC, Bartel DP and Bartel B. MicroRNA-directed regulation of Arabidopsis AUXIN RESPONSE FACTOR 17 is essential for proper development and modulates expression of early auxin response genes. Plant Cell, 2005, 17:1360-1375.
    76. Mallory AC, Dugas DV, Bartel DP and Bartel B. MicroRNA regulation of NAC-domain targets is required for proper formation and separation of adjacent embryonic, vegetative, and floral organs. Curr Biol, 2004, 14:1035-1046.
    77. Maniataki E, Mourelatos Z. A human, ATP-independent, RISC assembly machine fueled by pre-miRNA. Genes Dev. 2005, 19(24):2979-90.
    78. Mattick J S, Gagen M J. The evolution of controlled multitasked gene networks : The role of introns and other noncodmg RNAs in the development of complex organisms. Mol Biol Evol, 2001, 18(9):1611-1630.
    79. Meister G, Landthaler M. Dorsett Y, Tuschl T. Sequence-specific inhibition of microRNA- and siRNA-induced RNA silencing. RNA , 2004, 10:544-550.
    80. Meyers BC, Axtell MJ, Bartel B, Bartel DP, Baulcombe D, Bowman JL, Cao X, Carrington JC, Chen XM, Green PJ. Criteria for Annotation of Plant MicroRNAs. Plant Cell, 2008, 20:3186-3190.
    81. Millar AA and Gubler F. The Arabidopsis GAMYB-like genes, MYB33 and MYB65, are MicroRNA-regulated genes that redundantly facilitate anther development. Plant Cell, 2005, 17:705-721.
    82. Mizoguchi T, Irie K, Hirayama T, Hayashida N, Yamaguchi-Shinozaki K, Matsumoto K, Shinozaki K. A gene encoding a mitogen-activated protein kinase kinase kinase is induced simultaneously with genus for a mitogen-activated protein kinase and an S6 ribosomal protein kinase by touch, cold and water stress in Arabidopsis thaliana. Proc Natl A cad Sci USA, 1996, 93: 765-769.
    83. Moxon S, Jing RC, Szttya G, Schwach F, Pilcher RLR, Moulton V and Dalmay T. Deep sequencing of tomato short RNAs identifies microRNAs targeting genes involved in fruit ripening. Genome Res, 2008, 18:1602-1609.
    84. Nam JW, Shin KR, Han J, Lee Y, Kim VN, Zhang BT. Human microRNA prediction through a probabilistic co-learning model of sequence and structure. Nucleic Acids Res, 2005, 33(11): 3570-3581.
    85. Naya L, Ladrera R, Ramos J, Gonzalez EM, Arrese-Igor C, Minchin FR, Becana M. The response of carbon metabolism and antioxidant defenses of alfalfa nodules to drought stress and to the subsequent recovery of plants. Plant Physiol. 2007, 144(2): 1104-14.
    86. Nikovics K, Blein T, Peaucelle A, Ishida T, Morin H, Aida M and Laufs P. The balance between the MIR164A and CUC2 genes controls leaf margin serration in Arabidopsis. Plant Cell, 2006, 18:2929-2945.
    87. Niu X, Zheng W, Lu BE., Ren G, Huang W, Wang S, Liu J, Tang Z, Luo D, Wang Y, Liu Y. An unusual posttranscriptional processing in two betaine aldehyde dehydrogenase loci of cereal crops directed by short, direct repeats in response to stress conditions. Plant Physiol. 2007, 143(4): 1929-42.
    88. Palatnik JF, Allen E, Wu X, Schommer C, Schwab R, Carrington JC and Weigel D. Control of leaf morphogenesis by microRNAs. Nature, 2003,425:257-263.
    89. Palatnik JF, Wollmann H, Schommer C, Schwab R, Boisbouvier J, Rodriguez R, Warthmann N, Allen E, Dezulian T, Huson D. Sequence and expression differences underlie functional specialization of Arabidopsis MicroRNAs miR159 and miR319. Dev Cell, 2007, 13:115-125.
    90. Papadopoulos GL, Reczko M, Simossis VA, Sethupathy P and Hatzigeorgiou AG. The database of experimentally supported targets: a functional update of TarBase. Nucleic Acids Res, 2009, 37:155-158.
    91. Park M Y, Wu G, Gon2alez2Sulser A, Vaucheret H, Poethig R S. Nuclear processing and export of microRNAs in Arabidopsis. Proc Natl Acad Sci USA, 2005, 102(10):3691-3696.
    92. Park W, Li J J, Song R T, Messing J, Chen X M. CARPEL FACTORY, a Dicer homolog , and HEN1, a novel protein , actin microRNA metabolism in Arabidopsis thaliana. Curr Biol, 2002, 12(17):1484-1495.
    93. Peaucelle A, Morin H, Traas J and Laufs P. Plants expressing a miR164-resistant CUC2 gene reveal the importance of post-meristematic maintenance of phyllotaxy in Arabidopsis. Development, 2007, 134:1045-1050.
    94. Pruss GJ, Nester EW and Vance V. Infiltration with Agrobacterium tumefaciens Induces Host Defense and Development-Dependent Responses in the Infiltrated Zone. Mol Plant Microbe, 2008, 21:1528-1538.
    95. Reinhart B J , Weinste(?)n E G, Rhoades MW, Bartel B, Bartel D P. MicroRNAs in plants. Genes Dev, 2002, 16 (13): 1616-1626.
    96. Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE, Horvitz HR, Ruvkun G. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature, 2000, 403: 901-906.
    97. Rhoades MW, Reinhart BJ, Lim LP, Burge CB, Bartel B and Bartel DP. Prediction of plant microRNA targets. Cell, 2002, 110:513-520.
    98. Riese M, Hohmann S, Saedler H, Munster T and Huijser P. Comparative analysis of the SBP-box gene families in P-patens and seed plants. Gene, 2007,401.28-37.
    99. Schwab R, Ossowski S, Riester M, Warthmann N, and Weigel D.Highly Specific Gene Silencing by Artificial MicroRNAs in Arabidopsis. Plant Cell, 2006, 18:1121-1133.
    100. Schwab R, Palatnik JF, Riester M, Schommer C, Schmid M and Weigel D. Specific effects of MicroRNAs on the plant transcriptome. Dev Cell, 2005, 8:517-527.
    101. Shi R and Chiang VL. Facile means for quantifying microRNA expression by real-time PCR. Biotechniques, 2005, 39:519-525.
    102. Smith TF and Waterman MS. Identification of common molecular subsequences. J Mol Biol, 1981, 147:195-197.
    103. Sunkar R and Jagadeeswaran G. In silico identification of conserved microRNAs in large number of diverse plant species. BMC Plant Biol, 2008, 8:37-42.
    104. Sunkar R and Zhu JK. Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell, 2004, 16, 2001-2019.
    105. Sunkar R, Chinnusamy V, Zhu JH and Zhu JK. Small RNAs as big players in plant abiotic stress responses and nutrient deprivation. Trends Plant Sci, 2007, 12:301-309.
    106. Tahtiharju S, Sangwan V, Monroy AF, Dhindsa RS, Borg M. The induction of kingenes in cold acclimation Arabidopsis thaliana. Evidence of a role for calcium. Planta, 1997, 203: 442-447.
    107. Tang GL, Reinhart B J, Bartel D P, Zamore P D. A biochemical framework for RNA silencing in plants. Genes Dev, 2003,17(1):49-63.
    108. Valencia-Sanchez MA, Liu J., Harmon GJ, et al. Control of translation and mRNA degradation by miRNA and siRNAs. Genes Dev, 2006, 20:515-524.
    109. Vaucheret H, Mallory AC and Bartel D.P. AGO1 homeostasis entails coexpression of MIR168 and AGO1 and preferential stabilization of miR168 by AGO1. Mol Cell, 2006, 22:129-136.
    110. Wang XJ, Reyes JL, Chua NH, Gaasterland T. Prediction and identification of Arabidopsis thaliana microRNAs and their mRNA targets. Genome Biol, 2004, 5(9): R65.
    111. Williams L, Grigg SP, Xie MT, Christensen S and Fletcher JC. Regulation of Arabidopsis shoot apical meristem and lateral organ formation by microRNA miR166g and its AtHD-ZIP target genes. Development, 2005, 132:3657-3668.
    112. Wu MF, Tian Q and Reed JW. Arabidopsis microRNA 167 controls patterns of ARF6 and ARF8 expression, and regulates both female and male reproduction. Development, 2006, 133:4211-4218.
    113. Xiao B, Huang Y, Tang N X, Xiong L. Over-expression of a LEA gene in rice improves drought resistance under the field conditions. Theo Appl Genet, 2007,115 (1):35-46.
    114. Xie Z, Kasschau KD and Carrington JC. Negative feedback regulation of Dicer-Like1 in Arabidopsis by microRNA-guided mRNA degradation. Curr Biol, 2003, 13:784-789.
    115. Xin Z, Mandaokar A, Chen J, Last RL, Browse J. Arabidopsis ESK1 encodes a novel regulator of freezing tolerance. Plant J., 2007, 49:786-799.
    116. Xue LJ, Zhang JJ and Xue HW. Characterization and expression profiles of miRNAs in rice seeds. Nucleic Acids Res, 2009, 37:916-930.
    117. Yamada M, Morishita H, Urano K, Shiozaki N, Yamaguchi-Shinozaki K, Shinozaki K, Yoshiba Y. Effects of free proline accumulation in petunias under drought stress. J Exp Bot. 2005, 56(417):1975-1981.
    118. Yang JH, Han SJ, Yoon EK and Lee WS. Evidence of an auxin signal pathway, microRNA167-ARF8-GH3, and its response to exogenous auxin in cultured rice cells. Nucleic Acids Res, 2006, 34:1892-1899.
    119. Zeng Y, Cai X, Cullen B R. Use of RNA polymerase II to transcribe artificial microRNAs. Methods Enzymol, 2005, 392:371-380
    120. Zhang BH, Pan XP, Cannon CH, Cobb GP and Anderson TA. Conservation and divergence of plant microRNA genes. Plant J, 2006, 46:243-259.
    121. Zhang J Z, Creelman R A, and Zhu JK. From laboratory to field using information from Arabidopsis to engineer salt, cold, and drought tolerance in crops. Plant Physiol, 2004, 135:615-621.
    122. Zhang P, Bohl-Zenger S, Puonti-Kaerlas J, Potrykus I, Gruissem W. Two cassava promoters related to vascular expression and storage root formation. Planta, 2003, 218(2):192-203.
    123.Zhang P,Vanderschuren H,Futterer J,Gruissem W Resistance to cassava mosaic disease in transgenic cassava expressing antisense RNAs targeting vires replication genes.Plant Biotech,2005,3(4):385-397.
    124.Zhao BT,Ge LF,Liang RQ,Li W,Ruan KC,Lin HX and Jin YX.Members of miR-169 family are induced by high salinity and transiently inhibit the NF-YA transcription factor.BMC Mol Biol,2009,10:29-32.
    125.Zhao BT,Liang RQ,Ge LF,Li W,Xiao HS,Lin HX,Ruan KC and Jin YX.Identification of drought-induced microPNAs in rice.Biochem Bioph Res Co,2007,354:585-590.
    126.Zhao L,Kim YJ,Dinh TT and Chen XM.miR172 regulates stem cell fate and defines the inner boundary of APETALAB and PISTILLATA expression domain in Arabidopsis floral meristems.Plant J,2007,51:840-849.
    127.Zhou GK,Kubo M,Zhoag RQ,Demura T and Ye ZH.Overexpression of miR165 affects apical meristem formation,organ polarity establishment and vascular development in Arabidopsis.Plant Cell Physiol,2007,48:391-404.
    128.Zhou XF,Wang GD and Zhang WX.UV-B responsive microRNA genes in Arabidopsis thaliana.Mol Syst Biol,2007,3:103.
    129.Zhou XF,Wang GD,Sutoh K,Zhu JK and Zhang WX.Identification of cold-inducible microRNAs in plants by transcriptome analysis.BBA-Gene Regul Mech,2008,1779:780-788.
    130.Zhu J,Dong CH and Zhu JK.Interplay between cold-responsive gene regulation,metabolism and RNA processing during plant cold acclimation.Curr Opin in Plant Biol,2007,10:290-295.
    131.Zhu J,Shi H,Lee BH,Damsz B,Cheng S,Stirm V,Zhu JK,Hasegawa PM,Bressan RA:An Arabidopsis homeodomain transcription factor gene,HOS9,mediates cold tolerance through a CBF-independent pathway.Proc Natl Acad Sci USA,2004,101:9873-9878.
    132.Zhu J,Verslues PE,Zheng X,Lee BH,Zhan X,Manabe Y,Sokolchik I,Zhu Y,Dong CH,Zhu JK,Hasegawa PM,Bressan RA.HOS10 encodes an R2R3-type MYB transcription factor essential for cold acclimation in plants.Proc Natl Acad Sci USA,2005,102:9966-9971.
    133.陈亚娟,李付广,刘传亮,张朝军,武芝侠,张雪研.植物渗透调节研究进展及与棉花耐旱遗传改良.分子植物育种,2009,7(1):149-154.
    134.杜洪伟,陈芬,肖国樱.提高作物耐旱性的DREB转录因子研究进展.生物技术通报,2008,6:1-6.
    135.侯妍妍,应晓敏,李伍举.microRNA计算发现方法的研究进展.遗传,2008,30(6):687-696.
    136.黄沽,木薯丰产栽培技术.三环出版社,2007.
    137.金龙国,王川,刘进元.植物MicroRNA.中国生物化学与分子生物学报,2006,22(8):609-614.
    138.李海明.miRNA-种新的调控基因表达的小分子RNA.中国癌症杂志,2006,16(8):675-678.
    139.刘运华,刘灶长,罗利军.植物miRNA及其在植物发育进程和环境胁迫响应中的潜在功能.植物生理学通讯 2007,43(5):987-992.
    140.宋松泉,王彦荣.植物对干旱胁迫的分子反应.应用生态学报,2002,13(8):1037-1044.
    141.孙宪芝,郑成淑,王秀峰.木本植物抗旱机理研究进展.西北植物学报,2007,27(3):629-634.
    142.唐益苗,赵昌平,高世庆,田立平,单福华,吴敬新.植物抗旱相关基因研究进展。麦类作物学报,2009,29(1):166-173.
    143.王芳,余佳,张俊武.小RNA(MicroRNA)研究方法.中国生物化学与分子生物学报,2006,22(10):772-779.
    144.王均华,苏波,马冲,王国胜,沈向.植物抗旱基因工程研究进展.生物技术通报,2008,1:20-24.
    145.杨淑慎,山仑,郭蔼光,高梅,孙达权,邵艳军.水通道蛋白与植物的抗旱性.干旱地区农业研究,2005,23(6):214-218.
    146.叶茂,陈跃磊,明镇寰.miRNA(microRNA)家族的研究进展.生物化学与生物物理进展,2003;30(3):370-374.
    147.张松莲,曾富华,喻宁华,饶力群.植物miRNA的功能及其作用机制.热带亚热带植物学报,2006,14(5):444-450.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700