用户名: 密码: 验证码:
辣椒疫霉颉颃菌的筛选鉴定、生防机制及与杀菌剂的协同作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
辣椒疫病是一种对甜椒、辣椒具有毁灭性的病害,在我国的辣椒产地均有发生为害。利用生物防治控制辣椒疫病能减少化学药剂的使用数量和缓解病菌的抗药性,但生防菌防治病害的不稳定性限制了生物防治的发展。采用生防菌与杀菌剂协同防治病害,既能克服化学药剂的问题,也能弥补生物防治的不足。本文以辣椒疫霉为靶标病原菌,开展了颉颃微生物的分离筛选、候选菌的鉴定、候选菌对辣椒疫霉的颉颃作用特点、与卵菌杀菌剂的协同作用以及重金属离子的影响研究。结果如下:
     以辣椒疫霉为靶标病原菌,采用对峙培养的方法筛选得到了105个颉颃菌株,以辣椒疫霉Phytophthora capsici、辣椒炭疽病菌Collectotrichum capsici、番茄灰霉病菌Botrytis cinerea、番茄早疫病菌Alternaria solani、番茄枯萎病菌Fusarium oxysporum f. sp. lycopersici、小麦赤霉病菌Fusarium graminearum、黄瓜蔓枯病菌Mycosphaerella melonis等7种病原菌进行复筛,结果表明,放线菌中以A001菌株对辣椒疫霉菌的作用最强;细菌中以B100菌株最好,对7种植物病原菌的抑菌带达11.3-18.5mm,生长抑制率达50%-84.3%。
     在定殖试验和盆栽试验中,B100可在辣椒根表面的稳定定殖,在处理后20d根部的菌量仍能达到7.06×105cfu/g(根重),而B148的定殖能力则明显差于B100。在盆栽试验中,B148对辣椒疫病的防治效果最好,B100处理的次之,根据抑制力-定殖力双重筛选的方法,确定与卵菌杀菌剂进行协同防治辣椒疫病的菌株为B100。
     利用形态、生理生化特征以及16S rDNA序列扩增分析对B100进行了鉴定。结果表明,菌株B100是一株好氧或兼性厌氧的革兰氏阳性的芽孢杆菌,生理生化特性与多粘类芽孢杆菌最相似;16S rDNA序列与GenBank中登录号为AY359623的Paenibacillus polymyxa GB-465具有最高的同源性,达99.9%,在系统发育树上两者也最接近。由此将B100鉴定为多粘类芽孢杆菌(Paenibacillus polymyxa)。
     在离体条件下研究了多粘类芽孢杆菌B100菌株的生长条件及对辣椒疫霉的抗菌作用,结果表明,马铃薯葡萄糖培养液、牛肉膏酵母膏蛋白胨蔗糖培养液以及NA是适合B100生长的培养液,培养条件为28℃、培养液初始pH为6.0-8.0时B100生长最好;B100活菌菌液、无菌滤液、灭菌菌液对辣椒疫霉抗菌作用的顺序为:活菌菌液>灭菌菌液>无菌滤液,灭菌后的菌液有抗菌活性表明抗菌物质具有耐热性能。B100能造成辣椒疫霉菌菌丝畸形、分枝增多,细胞质异常浓缩、菌丝破裂、原生质外溢等。
     用B100菌液浇灌处理甜椒根部,测定了其叶片和根部中防御酶的活性变化,结果表明,B100能使甜椒(茄门甜椒)幼苗叶片和根中过氧化物酶、多酚氧化酶活性明显提高,但植株中苯丙氨酸解氨酶的活性没有显著变化。
     离体测定的B100与嘧菌酯抑制辣椒疫霉的联合作用试验结果表明,当B100浓度高于103cfu/ml时,与嘧菌酯0.5-50μg a.i./ml混用,对辣椒疫霉菌丝的实际抑制率均高于理论抑制率,显示为增效作用,而在B100浓度为102cfu/ml时,与嘧菌酯混合对辣椒疫霉菌丝的实际抑制率则低于理论值,两者混用后则为颉颃作用;而采用等效线法判断,则明确表明菌-药混用具有增效作用。在盆栽试验中,处理后7d,嘧菌酯与B100混用对辣椒疫病的防效显著高于B100单用。在田间试验中,采用游动孢子悬浮液灌根接种,B100分别与嘧菌酯、甲霜灵混用对辣椒疫病的效果好且稳定,防效高于药剂单用;通过菌丝块田间接种试验,B100与这两种卵菌杀菌剂混用的防效也高于药剂单用。B100与嘧菌酯、甲霜灵可以协同防治辣椒疫病。
     离体下研究了化学因子对辣椒疫霉和B100生长繁殖的影响,结果表明,氟吗啉、甲霜灵对辣椒疫霉菌丝生长抑制力强,而嘧菌酯对辣椒疫霉的作用力弱,而三种药剂在试验浓度下均未对B100有明显的抑制作用;重金属离子中,只有10mg/L的Ag+和Cu2+对辣椒疫霉菌丝生长有明显的抑制作用,其他4种重金属离子在≤10 mg/L浓度下对辣椒疫霉菌丝生长没有明显的抑制作用。而对于B100,Cu2+、Bi3+、Pb2+处理的菌浓度与对照的没有显著差异,0.1-1 mg/L的Cd2+、0.5mg/L的Ag+处理,B100的浓度显著高于对照,只有0.5-1mg/L的Hg2+处理后B100的浓度显著低于对照。如果土壤受到了重金属离子的污染,那么生防菌B100对辣椒疫病的防治效果可能会受影响。
Bell pepper blight caused by Phytophthora capsici L. is one of the most important diseases of pepper growing in open and greenhouse in China. Application of biocontrol agent could reduce application quantity of chemicals for controlling plant disease and delay the development of fungicide resistance in pathogen population. However, development of biocontrol was limited because of the instability of biocontrol efficacy. A new control measure, which combined fungicide with biocontrol agent for disease, was attempted to develop. The approach could solve both problem of chemicals and shortage of biocontrol. This paper carried out a series of experiments on Phytophthora capsici as a target pathogen suppressed by antagonistic microbes, which screened, identificated. Additionally, it was involved in mechanism of biocontrol, combination of antagonistic agent and fungicide, and impact of heavy metal ions on antagonistic agent. The results showed as followed:
     Antagonistic microbes from soil were screened with dual incubation in vitro. One hundred five isolates were collected. Thirteen antagonistic agents from these were bioassayed in dual incubation suppressing seven pathogens, such as Phytophthora capsici, Collectotrichum capsici, Botrytis cinerea, Alternaria solani, Fusarium oxysporum f. sp. lycopersici, Fusarium graminearum and Mycosphaerella melonis. The results indicated that antagonistic activitiy of A001 was the strongest among 5 antinomycetes and B100 was a best bacterium isolate.
     In colonization experiment, antagonistic bacterium B100 could colonize along root surfacees of pepper successfully though its efficiency controlling pepper blight was lower than B148. Colonies of regained from root of pepper reached to 7.06×105 cfu/g (root weight) after 20 days of inoculation. The colonization of B148 was much less than that of B100 isolate.Thereby, isolate B100 was determined as a candidate for biocontrol P. capsici according to a screening method of suppression-colonization.
     The identification of B100 was based on the morphological characteristics, physiological and biochemical characteristics and analysis of 16S rDNA sequence comparison. The results indicated that B100 was a spore producing bacilliform bacterium, which owed to aerobic or facultative anaerobic, gram positive. It was the most similar with Paenibacillus polymyxa on physiological and biochemical characteristics. The 16S rDNA sequence of B100 possessed high identities compared with Paenibacillus polymyxa GB-465 that its accession number was AY359623 on GenBank, and identities reached to 99.9%. Similarly, B100 mostly closed to Paenibacillus polymyxa in Phylogenetic tree. Therefore, B100 was identified as a bacterium of Paenibacillus polymyxa.
     The growth condition of B100 and its antagonism to P. capsici were studied in vitro. The results showed that the PD medium, beef extract-yeast extract peptone sucrose broth or NA broth were optimum to growth of B100. The optimum original pH values of the medium broth were from 6.0 to 8.0 in 28℃. In antagonism test, the antifungal rank as followed:B100 suspension> sterilized suspension> filtrate. Light microscopic studies clearly showed the effect of B100 on hyphal morphology of P. capsici. Exposure to B100, phytopathogen produced swelled or increased divaricator hyphae, abnormal contraction of cytoplasm, lysis of hyphae and cell.
     The variations in three defense enzymes activities were determined in leaf and root of the 5-6 leaf-old seedlings of bell pepper, which had been treated with B100 at concentration of 108 cfu/ml. The results indicated that the activities of peroxidase and polyphenol oxidase were significantly induced by B100 in both leaf and roots of bell pepper. However, the activities of phenylalanine ammonia-lyase in leaf and root were no obviously induced by B100 compared with untreated plant.
     The joint action between B100 and Amistar (azoxystrobin), against P. capsici was determined in vitro. The synergistic effect each of Azoxystrobin and B100, which concentration was beyond 102 cfu/ml, suppress hyphae growth of P. capsici in that the inhibitions of observed was higher than those of expected. The same effect was observed based on isobole of 90% inhibition. The combined Azoxystrobin or metalaxyl with B100 against bell pepper Phytophthora blight would provide more effectiveness than fungicide alone respectively in field.
     The impacts of three fungicides and six heavy metal ions on both mycelium growth of Phytophthora capsici and reproduction of B100 were determined in vitro. The results showed that inhibition of flumorph or mefenoxam on mycelium growth of P. capsici was much more than that of azoxystrobin, and there was no inhibition on B100. Only the inhibition of Ag+ or Cu2+ at concentration of 10mg/L amending PDA media on growth of P. capsici was observed in six heavy metal ions. In experiment for B100, There were no obviously differences in the bacteria concentration of B100, which had been respectively treated by Cu2+, Bi3+ and Pb2+, compared with control. The concentrations of B100 in nutrient broth amended 0.1-1 mg/L of Cd2+ and 0.5mg/L Ag+ were obviously higher than that of control. However, the concentrations of B100 in broth amended Hg2+ at 0.5-1.0 mg/L was obviously lower than that of control. Then, heavy metal ions may decrease efficacy of biocintrol agent B100 in the field soil polluted by the ions.
引文
[1]戴小枫,叶志华,曹雅忠,等.浅析我国农作物病虫草鼠害成灾特点与减灾对策[J].应用生态学报,1999,10(1):119-122.
    [2]张会云,陈荣振,冯国华,等.中国小麦纹枯病的研究现状与展望[J].麦类作物学报,2007,27(6):1150-1153.
    [3]Compant S, Duffy B, Nowak J, et al. Use of plant growth-promoting bacteria for biocontrol of plant disease:principles, mechanisms of action and future prospects [J]. Applied and Environmental Microbiology,2005,71(9):4951-4959.
    [4]Shoda M. Bacterial control of plant diseases [J].Journal of Bioscience and Bioengineering,2000, 89(6):515-521.
    [5]Gerhardson B. Biological substitutes for pesticides[J]. Trends Biotechnology,2002,20:338-343.
    [6]Robbert DP and Lohrke SM. United States department of agriculture- agricultural research service research programs in biological control of plant diseases [J]. Pest Management Science,2003,59: 654-664.
    [7]Pal KK, McSpadden, Gardener B. Biological Control of Plant Pathogens. The Plant Health Instructor,2006, DOI:10.1094/PHI-A-2006-1117-02 (http://www.apsnet.org/online/future/biocontrol).
    [8]Barea JM, Pozo M J, Azcon R, et al. Microbial co-operation in the Rhizosphere[J]. Journal of Experimental Botany,2005,56,417:1761-1778.
    [9]杨怀文,我国农业病虫害生物防治进展,见:杨怀文主编,迈入二十一世纪的中国生物防治,北京:中国农业科技出版社,2005年,p1-5.
    [10]Weilding R. Trichoderma lignorum as a parasite of other soil fungi [J]. Phytopathology,1932,22: 837-845.
    [11]于新,田淑慧,徐文兴,等.木霉菌生防作用的生化机制研究进展[J].中山大学学报(自然科学版),2005,44(2):86-90.
    [12]唐家斌,马炳田,王玲霞,等.用木霉、类木霉对水稻纹枯病进行生物防治的研究[J].中国水稻科学,2002,16(1):63-66
    [13]张广志,文成敬.木霉对玉米纹枯病的生物防治[J].植物保护学报,2005,32,(4):353-356.
    [14]李雪玲,厉云,张天宇,等.利用木霉防治棉花黄萎病.植物保护学报,2003,30(3):284-288.
    [15]李作森,何月秋,夏贤仁.5个木霉菌株的抑菌谱及部分生物学特性[J].云南农业大学学报,2004,19,(3):267-271.
    [16]田连生,王伟华,石万龙,等.木霉对尖镰孢菌的拮抗机制及生防效果研究[J].植物保护,2001,27(4):47-48.
    [17]田连生,石万龙,杨迎霞,等.木霉对腐霉菌的拮抗机制及生防效果研究[J].河北省科学院学报,2001,18(2):114-117.
    [18]庄敬华,刘淑花,王传世,等.木霉菌多功能生防菌剂对瓜类枯萎病的防治效果[J].北方园艺,2005(5):90-91.
    [19]Datnoff LE, Nemec S, Pernezny K. Biological control of Fusarium crown and root rot of tomato in Florida using Trichoderma harzianum and Glumus intraradices[J]. Biological Control,1995,5: 427-431.
    [20]Nemec S, Datnoff LE, Strandberg J. Efficacy of biocontrol agents in planting mixes to colonize plant roots and control root diseases of vegetables and citrus [J]. Crop Protection,1996,15: 735-742.
    [21]Harman GE. Myths and dogmas of biocontrol:changs in perceptions derived from research on Trichoderma harzianum T-22[J]. Plant Disease,2000,84:377-393.
    [22]鄢洪海,赵志强,卢钰,等.花生叶部菌核病流行规律及生物防治初报[J].花生学报,2006,35(3):28-31.
    [23]赵蕾,杨合同.蔬菜灰霉病生防菌的筛选与防效试验初报[J].应用与环境生物学报,1999,5(1):85-88.
    [24]Elad Y, Kapat A. The role of Trichoderma harzinum protease in the biocontrol of Botrytis cinerea [J]. European Journal of Plant Pathology,1999,105:177-189.
    [25]田连生,张根伟,黄亚丽.木霉对蔬菜立枯丝核菌病害的生防效果研究[J].河北省科学院学报,2002,19(4):254-256.
    [26]丁彩平,陆少峰,黄思良.木霉Fg菌株防治韭菜白绢病研究[J].广西农业生物科学,2006,25(2):142-144.
    [27]李梅云,李天飞,刘开启,等.烟草黑胫病木霉生防菌株的筛选[J].中国烟草科学,2001,(2):43-46.
    [28]Etebarian HR, Scott ES, Wicks TJ. Trichoderma harzianum T39 and T. virens DAR 74290 as potential biological control agents for Phytophthora erythroseptica[J]. European Journal of Plant Pathology,2000,106:329-337.
    [29]Bankole SA, Adebanjo A. Biocontrol of brown blotch of cowpea caused by Colletotrichum truncatum with Trichoderma viride[J]. Crop Prorecrron,1996,15(7):633-636.
    [30]Koch E. Evaluation of commercial products for microbial control of soil-borne plant diseases. Crop Protection,1999,18:119-125.
    [31]Rojo FG, Reynoso MM, Ferez M, et al. Biological control by Trichoderma species of Fusarium solani causing peanut brown root rot under field conditions [J]. Crop Protection,2007,26:549-555.
    [32]Batta YA. Control of postharvest diseases of fruit with an invert emulsion formulation of Trichoderma harzianum Rifai[J]. Postharvest Biology and Technology,2007,43:143-150.
    [33]Thomashow LS, Weller DM. Role of a phenazine antibiotic from Pseudomonas fluorescens in biological control of Gaeumannomyces graminis var tritici[J].Journal of Bacteriology,1988,170: 3499-3508.
    [34]Pfender WF, Kraus J, Loper JE. A genomic trgion from Pseudomonas fluorescens Pf-5 required for pyrrolnitrin production and inhibition of Pyrenophora tricici-repentis in wheat straw [J]. Phytopathology,1993,83:1223-1228.
    [35]Howell CR, Stipanovic RD. Suppression of Pythium ultimum-induced damping-off of cotton seedlings by Pseudomonas fluorescens and its antibiotic pyoluteorin[J].Phytopathology.1980, 70:712-715.
    [36]Keel C, Schnider U, Maurhofer M, et al. Suppression of root diseases by Pseudomonas fluorescens CHAO:importance of the bacterial secondary metabolite 2,4-diacetylphloroglucinol [J]. Molecular Plant-Microbe Interaction,1992,5:4-13.
    [37]肖炎农,程瑜,王明祖,等.假单胞杆菌B301对稻温病菌的拮抗性[J].植物保护学报,2000,27(3):227-230.
    [38]李湘民,胡白石,许志刚,等.拮抗细菌菌株Pseudomonas fluorescens 7-14在水稻植株上的时间、空间定殖型[J].植物病理学报,2003,33(5):468-473.
    [39]任小平,谢关林,赵丽涵.水稻纹枯病拮抗细菌的筛选与利用[J].植物保护学报,2005,32(4):337-342.
    [40]郑爱萍,李平,王世全,等.水稻纹枯病菌强拮抗菌B34的分离与鉴定[J].植物病理学报,2003,33(1):81-85.
    [41]魏海雷,王烨,张力群,等.生防菌株2P24与CPF-10的鉴定及其生防相关性状的初步分析[J].植物病理学报,2004,34(1):80-85.
    [42]魏海雷,周洪友,张力群,等.抗生素2,4-二乙酰基间苯三酚作为荧光假单胞杆菌2P24菌株生防能因子的实证分析[J].微生物学报,2004,44(5):663-666.
    [43]Amein T, Omer Z, Welch C. Application and evaluation of Pseudomonas strains for biocontrol of wheat seedling blight[J].Crop Protection,2007, in press.
    [44]Fernando WGD, Nakkeeran S, Zhang Y, et al. Biological control of Sclerotinia sclerotiorum (Lib.) de Bary by Pseudomonas and Bacillus species on canola petals [J]. Crop Protection,2007,26:100-107.
    [45]Mercado-Blanco J, Rodriguez-Jurado D, Hervas A, et al. Suppression of Verticillium wilt in olive planting stocks by root-associated fluorescent Pseudomonas spp. [J].Biological Control,2004, 30:474-486.
    [46]Wang H, Hwang SF, Chang K.F, et al. Suppression of important pea diseases by bacterial antagonists [J]. BioControl,2003,48:447-460.
    [47]Mikani A, Etebarian HR, Sholberg PL. Biological control of apple gray mold caused by Botrytis mali with Pseudomonas fluorescens strains[J].Postharvest Biology and Technology,2007. in press.
    [48]Guo JH, Qi HY, Guo YH, et al. Biocontrol of tomato wilt by plant growth-promoting rhizobacteria [J]. Biological Control,2004,29:66-72.
    [49]Viji G, Uddin W, Romaine CP. Suppression of gray leaf spot (blast) of perennial ryegrass turf by Pseudomonas aeruginosa from spent mushroom substrate [J]. Biological Control,2003,26: 233-243.
    [50]Ran LX, Xiang ML, Zhou B, et al. Siderophores are the main determinants of fluorescent Pseudomonas strains in suppression of grey mould in Eucalyptus urophylla[J],植物病理学报, 2005,35(1):6-12.
    [51]石晶盈,刘爱媛,冯淑杰,等.番木瓜内生细菌MG-Y2的鉴定及其生防作用[J].果树学报2007,24(6):810-814.
    [52]李静,冯淑杰,肖晶,等.小白菜内生假单胞菌XBC-PS的生防作用[J].中国蔬菜,2007,(5):21-23.
    [53]邱晓,裴炎,王瑜宁,等.棉花体内的假单胞菌及其对棉苗根病的防效[J].植物保护学报,1990,17(4):303-306
    [54]Paulitz TC, Belanger RR. Biological control in greenhouse system [J]. Annual Review of Phytopatholgy,2001,39:104-133.
    [55]陈志谊,高泰东,严大富,等.枯草芽孢杆菌Bs-916防治水稻纹枯病的田间试验[J].中国生物防治,1997,13(2):75-78.
    [56]陈志谊,许志刚,高泰东,等.水稻纹枯病拮抗细菌的评价与利用[J].中国水稻科学,2000,14(2):98-102.
    [57]黎起秦,林纬,陈永宁,等.芽孢杆菌对水稻纹枯病的防治效果[J].中国生物防治,2000,16(4):160-16.
    [58]陈敏,康晓慧.芽孢杆菌Drt-11防治水稻纹枯病研究[J].西南农业学报,2006,19(1):53-57.
    [59]胡水秀,李湘民,华菊玲.拮抗细菌菌株B5423和Pf7-14对稻瘟病的防效及其在稻株上的种群动态[J].江西农业学报,2003,15(4):27-30.
    [60]华菊玲,李湘民,罗任华.拮抗细菌B-77的种类鉴定及对水稻恶苗病的防治效果[J].江西农业学报,2004,16(3):62-64.
    [61]王刚,沈永红,王俊芳,等.蜡样芽孢杆菌B3-7菌株对小麦全蚀病菌的抑制作用[J].河南大学学报(自然科学版),2005,35(1):62-64.
    [62]韩艳霞,陈太政,侯彦喜,等.小麦全蚀病拮抗微生物的分离及其拮抗性能研究[J].河南农业科学,2007,(8):60-63.
    [63]余桂容,叶华智,张敏,等.小麦赤霉病的生物防治研究Ⅱ.拮抗芽孢杆菌在麦穗上的消长动态及生物学特性[J].四川农业大学学报,2002,20(4):324-327.
    [64]刘伟成,潘洪玉,席景会,等.小麦赤霉病拮抗性芽孢杆菌生防作用的研究[J].麦类作物学报,2005,25(4):95-100.
    [65]Cavaglieri L, Orlando J. Rodriguez MI. Biocontrol of Bacillus subtilis against Fusarium verticillioides in vitro and at the maize root level [J]. Research in Microbiology,2005,156: 748-754.
    [66]李社增,鹿秀云,马平,等.防治棉花黄萎病的生防细菌NCD-2的田间效果评价及其鉴定[J].植物病理学报,2005,35(5):451-455.
    [67]孔建,王文夕,赵白鸽,等.枯草芽孢杆菌B-903菌株的研究Ⅰ:对植物病原菌的抑制作用和防治试验[J].中国生物防治,1999,15(4):157-161.
    [68]童蕴慧,徐敬友,陈夕军.灰葡萄孢拮抗细菌的筛选[J].中国生物防治,2000,16(3):123-126.
    [69]童蕴慧,徐敬友,陈夕军.番茄灰霉病菌拮抗细菌的筛选和应用[J].江苏农业研究,2001,22(4):25-28.
    [70]童蕴慧,纪兆林,徐敬友,等.灰葡萄孢拮抗细菌在番茄植株体表的定殖[J].中国生物防治,2003,19(2):78-81.
    [71]童蕴慧,郭桂萍,徐敬友,等.拮抗细菌对番茄植株抗灰霉病的诱导[J].中国生物防治,2004,20(3):187-189.
    [72]林福呈,李德葆.枯草芽孢杆菌(Bacillus subtilis)S9对植物病原菌的溶菌作用[J].植物病理学报,2003,33(2):174-177.
    [73]顾真荣,马承铸,韩长安.枯草芽孢杆菌G3防治植病盆栽试验[J].上海农业学报,2002,18(1):77-80.
    [74]尹敬芳,张文华,李健强,等.辣椒疫病生防菌的筛选及其抑菌机制初探[J].植物病理学报,2007,37(1):88-94.
    [75]何红,蔡学清,陈玉森,等.辣椒内生枯草芽孢杆菌BS-2和BS-1防治香蕉炭疽病[J].福建农林大学学报(自然科学版),2002,31(4):442-444.
    [76]何红,蔡学清,关雄,等.辣椒内生枯草芽孢杆菌BS-2和BS-1防治辣椒炭疽病[J].植物病理学报,2003,33(2):170-173.
    [77]邱思鑫,何红,阮春宏,等.内生芽抱杆菌TB2防治辣椒疫病效果及其机理初探[J].植物病理学报,2004,34(2):173-179.
    [78]马艳,赵江涛,常志州,等.西瓜内生枯草芽孢杆菌BS211的拮抗活性及盆栽防效[J].江苏农业学报,2006,22(4):388-393.
    [79]杨佐忠,叶建仁.枯草芽孢杆菌PRS5菌剂控制水果贮藏期病害的研究[J].南京林业大学学报(自然科学版),2006,30(1):89-92.
    [80]齐东梅,惠明,梁启美,等.枯草芽孢杆菌H110对苹果梨采后青霉病和黑斑病的抑制效果[J].应用与环境生物学报,2005,11(2):171-174.
    [81]刘淑芳,檀根甲,李娜,等.苹果采后炭疽病高效拮抗菌的筛选与应用[J].安徽农业大学学报,2007,34(1):111-116.
    [82]Silimela M, Korsten L. Evaluation of pre-harvest Bacillus licheniformis sprays to control mango fruit diseases [J].Crop Protection,2007,26:1474-1481.
    [83]范青,田世平,李永兴,等.枯草芽孢杆菌(Bacillus subtilis)B-912对采后柑桔果实青、绿霉病的抑制效果[J].植物病理学报,2000,30(4):343-348.
    [84]Jiang YM, Zhu XR, Li YB. Postharvest Control of Litchi Fruit Rot by Bacillus subtilis[J]. Lebensm.-Wiss. u.-Technol.,2001,34:430-436.
    [85]Xu LH, Li QR, Jiang CL. Diversity of soil actinomycetes in Yunnan, China[J]. Applied Environmental Microbiology.1996,62:244-248.
    [86]Suzuki K, Nagai K, Shimizu Y, et al. Search for actnomycetes in screening for new bioactive compounds [J]. Actinomycetologica,1994,8:122-127.
    [87]Lee JP, Hwang BK. Diversity of antifungal atinomycetes in various vegetative soils of Korea[J]. Canadian Journal of Microbiology,2002,48(5):407-417.
    [88]安德荣,慕小倩,刘翠娟,等.土壤拮抗放线菌的分离和筛选.见:周明国主编《中国植物病害化学防治研究》(第三卷).北京:中国农业科技出版社,2002年7月,p137-141.
    [89]刘宇,刘建华,刘伟成,等.利迪链霉菌A02诱导番茄抗灰霉病作用机制研究--对植株防御酶系的影响[J].华北农学报,2007,22(2):152-155.
    [90]潘争艳,刘伟成,裘季燕,等.放线菌Ⅲ-61和A-21对蔬菜枯萎病和灰霉病的控制作用[J].华北农学报,2005,20(4):92-97.
    [91]郝永丽,宗兆锋.4株放线菌的防病促生作用研究[J].西北农业学报,2007,16(3):257-259.
    [92]杨秀芳,刘伟成,卢彩鸽,等.拮抗放线菌A03的生防作用及其分类鉴定[J].植物保护学报,2007,34(1):73-77.
    [93]杜春梅,吴元华,平文祥.菌株S.tz的抗菌活性及其生物学研究[J].生物技术,2005,15(1):18-20.
    [94]涂璇,薛泉宏,张宁燕,等.辣椒疫病生防放线菌筛选及其对辣椒根系微生物区系的影响[J].西北农林科技大学学报(自然科学版),2007,35(6):141-146.
    [95]杨文香,张汀,刘大群.三株链霉菌对黄瓜白粉病及黄瓜生长的影响[J].河北农业大学学报,2005,28(4):80-84.
    [96]李正辉,向晶晶,陈婧鸿,等.小麦赤霉病拮抗菌的分离与鉴定[J].麦类作物学报,2007,27(1):149-152.
    [97]张波,吴文君,宗兆锋.放线菌Z139菌株的分离、鉴定及其生物活性[J].西北农林科技大学学报(自然科学版),2005,33(8):69-72.
    [98]刘冰,宗兆锋,王记侠.重寄生链霉菌F46与生防放线菌SC11融合菌株的筛选[J].西北农林科技大学学报(自然科学版),2006,34(3):93-97.
    [99]乔宏萍,宗兆锋.重寄生菌F46和PR对苹果采后病害三种致病菌的控制作用[J].中国生物防治,2003,19(1):47一封三.
    [100]胡俊,刘正坪,周洪友,等.向日葵菌核病生防放线菌的分离筛选及拮抗作用的初探[J].华北农学报,2006,21(1):96-99.
    [101]Sardi P, Saracchi M, Ouaroni S, et al. Isolation of endophytic Streptomyces from surface sterilized roots [J]. Applied and Environmental Microbiology,1992,58:2691-2693.
    [102]Tian XL, Cao LX, Tan HM, et al. Study on the communities of endophytic fungi and endophytic actinomycetes from rice and their antipathogenic activities in vitro[J].World Journal of Microbiology & Biotechnology,2004,20:303-309.
    [103]Taechowisan T, Peberdy JF, Lumyong S. Isolation of endophytic actinomycetes from selected plants and their antifungal activity [J]. World Journal of Microbiology & Biotechnology,2003, 19:381-385.
    [104]荣小萦,詹刚明,张荣,等.拮抗内生放线菌在番茄体内的定殖研究[J].西北农林科技大学学报(自然科学版),2005,33(增):266.
    [105]郭小芳,宗兆锋,杨洪俊.6种放线菌抗药性标记及其在植株体内定殖能力测定[J].西北农业学报,2005,14(2):69-73.
    [106]司美茹,薛泉宏,余博,等.辣椒疫霉生防菌的双重筛选[J].植物保护学报,2006,33(1):41-46.
    [107]阿里玛斯,黄丽丽,涂璇,等.内生放线菌gCLA4对辣椒疫病的防治研究[J].西北农业学报,2007,16(5):256-261,270.
    [108]高俊明,马丽娜,李欣,等.植物内生放线菌ts-6对灰葡萄孢菌的拮抗作用及其防病效果[J].植物保护学报,2007,34(1):107-108.
    [109]马强,宗兆锋,梁亚萍.凤县几种野生植物内生放线菌的分离筛选[J].西北农业学报,2007,16(3):269-273.
    [110]姚敏,涂璇,黄丽丽,等.番茄叶霉病拮抗内生放线菌的筛选及其生防效果初报[J].西北农林科技大学学报(自然科学版)2007,35(10):146-150.
    [1]Pal KK, McSpadden, Gardener B. Biological control of plant pathogen. The Plant Health Instructors,2006, DOI:10.1094/PHI-A-2006-1117-02 (http://www.apsnet.org/online/future/biocontrol).
    [2]Adams PB. The potential of mycoparasites for biological control of plant diseases [J]. Ann Rev Phytopathology,1990,28:59-72.
    [3]Vinalea F, Sivasithamparam K, Ghisalberti E L, et al. Trichoderma-plant-pathogen interactions [J]. Soil Biology & Biochemistry,2008,40:1-10.
    [4]于新,田淑慧,徐文兴,等.木霉菌生防作用的生化机制研究进展[J].中山大学学报(自然科学版),2005,44(2):86-90.
    [5]Kubicek CP, Mach RL, Peterbauer CK, et al. Trichoderma:from genes to biocontrol[J].Journal of Plant Pathology,2001,83:11-23.
    [6]Howell CR. Mechanisms employed by Trichoderma species in the biological control of plant diseases:the history and evolution of current concepts [J].Plant Disease,2003,87:4-10.
    [7]Woo SL, Scala F, Ruocco M, et al. The molecular biology of the interactions between Trichoderma spp., phytopathogenic fungi, and plants[J]. Phytopathology,2006,96:181-185.
    [8]Harman GE, Howell CR, Viterbo A, et al. Trichoderma species-opportunistic, avirulent plant symbionts [J]. Nature Review Microbiology,2004,2:43-56.
    [9]Woo SL, Lorito M. Exploiting the interactions between fungal antagonists, pathogens and the plant for biocontrol. In:Vurro M, Gressel J(Eds.), Novel Biotechnologies for Biocontrol Agent Enhancement and Management. IOS, Springer Press, Amsterdam, the Netherlands,2007, pp. 107-130 (Chapter 6) http://www.springer.com/italy/home/life+sci/agriculture?SGWID= 6-10028-22-173712051-detailsPage=ppmmedia/toc.
    [10]薛宝娣,李娟,陈永萱.木霉(TR-5)对病原真菌的拮抗机制和防病效果研究[J].南京农业大学学报,1995,18(1):31-36.
    [11]田连生,石万龙,杨迎霞,等.木霉对腐霉菌的拮抗机制及生防效果研究[J].河北省科学院学报,2001,18(2):114—117.
    [12]田连生,王伟华,石万龙,等.木霉对尖镰孢菌的拮抗机制及生防效果研究[J].植物保护,2001,27(4):47-48.
    [13]高克祥,刘晓光,郭润芳.木霉菌对五种植物病原真菌的重寄生作用[J].山东农业大学学报(自然科学版),2002,33(1):37-42.
    [14]Jones EE, Mead A, Whipps JM. Effect of inoculum type and timing of application of Coniothyrium minitans on Sclerotinia sclerotiorum: Control of sclerotinia disease in glasshouse lettuce [J]. Plant Pathology,2004,53:611-620.
    [15]Adams PB, Fravel DR. Dynamics of sporidesmium, a naturally occuring fungal mycoparasite [A]. In:Lumsden RD and Vaughn JL (eds.) Pest Management:Biologically based Technologies[C] (1993, p.189-195), American Chemical Society, Washington DC.
    [16]乔宏萍,宗兆锋.重寄生菌F46和PR对苹果采后病害三种致病菌的控制作用[J].中国生物防治,2003,19(1)47-封三.
    [17]Gullino ML. Control of Botrytis rot of grapes and vegetables with Trichoderma spp[A]. In:Tjamos EC, Papavizas GC, Cook RJ (Eds.), Biological Control of Plant Diseases, Progress and Challenges for the Future[C]. Plenum Press, New York,1992, p.125-132.
    [18]Sivan A, Chet I. The possible role of competition between Trichoderma harzianum and Fusarium oxysporum on rhizosphere colonization [J]. Phytopathology,1989,79:198-203.
    [19]Benitez T, Rincon AM, Limon MC, et al. Biocontrol mechanisms of Trichoderma strains [J]. International Microbiology,2004,7:249-260.
    [20]燕嗣皇,吴石平,陆德清,等.木霉生防菌对根际微生物的影响与互作[J].西南农业学报,2005,18(1):40-46.
    [21]Lutz MP, Wenger S, Maurhofer M, et al. Signaling between bacterial and fungal biocontrol agents in a strain mixture [J]. FEMS Microbiological Ecology,2004,48:447-455.
    [22]Boer M. Control of Fusarium wilt of radish by combining Pseudoonas putida smlius that have ditfferent diseasc-suppressive mechanisms [J]. Phytopatbology,2003,93(5):626-632.
    [23]许煜泉,高虹.假单胞菌株JKD22分泌铁载体抑制稻瘟病菌[J].微生物学通报,1999,26(3):180-183.
    [24]冉隆贤,向妙莲,周斌.荧光假单胞杆菌的嗜铁素是控制桉树灰霉病的主要因子(英文)[J]植物病理学报,2005,35(1):6-12.
    [25]Lorito M, Harman GE, Hayes CK, et al. Chitinolytic enzymes produced by Trichoderma harzianum: antifungal activity of purified endochitinase and chitobiosidase[J]. Phytopathology,1993,83: 302-307.
    [26]Lorito M, Woo SL, D'Ambrosio M, et al. Synergistic interactions between cell awll degrading enzymes and membrane affection compounds [J]. Molecular Plant-Microbe Interaction,1996,9: 206-213.
    [27]Frankowski J, Lorito M, Scala F, et al. Purification and properties of two chitinolytic enzymes of Serratia plymuthica HRO-C48[J]. Arch. Microbiol.,2001,176:421-426.
    [28]Lim HS, Kim YS, Kim SD. Pseudomonas stutzeri YPL-1 genetic transformation and antifungal mechanism against Fusarium solani, an agent of plant root rot[J].Applied Environmental Microbiology,1991,57:510-516.
    [29]Singh PP, Shin YC, Park CS, et al. Biological control of Fusarium wilt of cucumber by chitinolytic bacteria [J]. Phytopathology,1999,89:92-99.
    [30]林福呈,李德葆.枯草芽孢杆菌(Bacillus subtilis)S9对植物病原真菌的溶菌作用[J].植物病理学报,2003,33(2):174-177.
    [31]侯珲,朱建兰.枯草芽孢杆菌对番茄茎基腐病菌和葡萄灰霉病菌的抑制作用研究[J].甘肃农业大学学报,2003,38(1):51-56.
    [32]尹敬芳,张文华,李健强,等.辣椒疫病生防菌的筛选及其抑菌机制初探.植物病理学报,2007,37(1):88-94.
    [33]Cook RJ, Thomashow LS, Weller DM, et al. Molecular mechanisms for biological control of plant pathogens [J]. Phytopathology,1995,31:53-80.
    [34]Ghisalberti EL, Sivasithamparam K. Antifungal antibiotics produced by Trichoderma spp.[J]. Soil Biology & Biochemistry,1991,23:1011-1020.
    [35]Le Doan T, El-Hajii M, Rebuffat S, et al. Fluorescein studies on the interaction of trichorzianine A IIIc with model membranes[J]. Biochimica et BiophysicaActa,1986,858:1-5.
    [36]Rebuffat S, El Hajji M, Hennig P, et al. Isolation, sequence and conformation of seven trichorzianines B from Trichoderma harzianum[J]. International Journal of Peptide and Protein Research,1989,34:200-210.
    [37]张伟琼,聂明,肖明.荧光假单胞菌生防机理的研究进展[J].生物学杂志,2007,24(3):9-12.
    [38]Shanahan P, O'Sullivan D J, Simpson P, et al. Isolation of 2,4-Diacetylphloroglucinol from a fluorescent pseudomonad and investigation of physiological parameters influencing its production [J]. Applied Environmental Microbiology,1992,58:353-358.
    [39]Kerr A. Biological control of crown gall through production of agrocin 84 [J]. Plant Disease, 1980,64:25-30.
    [40]Moyne AL, Shelby R, Cleveland TE, et al. Bacillomycin D:an iturin with antifungal activity against Aspergillus flavus[J].Journal Applied Microbiology,2001,90:622-629.
    [41]Koumoutsi A, Chen XH, Henne A, et al. Structural and functional characterization of gene clusters directing nonribosomal synthesis of bioactive lipopeptides in Bacillus amyloliquefaciens strain FZB42[J]. Journal of Bacteriology,2004,186:1084-1096.
    [42]Islam T M, Hashidoko Y, Deora A, et al. Suppression of damping-off disease in host plants by the rhizoplane bacterium Lysobacter sp. strain SB-K88 is linked to plant colonization and antibiosis against soilborne peronosporomycetes[J].Applied Environmental Microbiology,2005,71: 3786-3796.
    [43]Wilhite SE, Lunsden RD, Strancy DC. Peptide synthetase gene in Trichoderma virens[J]. Applied Environmental Microbiology,2001,67:5055-5062.
    [44]Sandra AI, Wright CH, Zumoff LS, et al. Pantoea agglomerans strain EH318 produces two antibiotics that inhibit Erwinia amylovora in vitro[J].Applied Environmental Microbiology, 2001,67:282-292.
    [45]Paulitz TC, Belanger RR. Biological control in greenhouse systems [J]. Annual Review Phytopathology,2001,39:103-133.
    [46]Kloepper JW, Ryu CM, Zhang S. Induce systemic resistance and promotion of plant growth by Bacillus spp. [J]. Phytopathology,2004,94:1259-1266.
    [47]Leclere V, Bechet M, Adam A, et al. Mycosubtilin overproduction by Bacillus subtilis BBG100 enhances the organism's antagonistic and biocontrol activities [J]. Applied Environmental Microbiology,2005,71:4577-4584.
    [48]Thomashow LS, Weller DM, Bonsall RF, et al. Production of the antibiotic phenazine-1-carboxylic acid by fluorescent pseudomonas in the rhizosphere of wheat[J].Applied Environmental Microbiology,1990,56:908-912.
    [49]Howell CR, Stipanovic RD. Suppression of Pythium ultimum induced damping -off of cotton seedlings by Pseudomonas fluorescens and its antibiotic, pyoluterin[J].Phytopathology,1980, 70:712-715.
    [50]Homma Y, Kato Z, Hirayama F, et al. Production of antibiotics by Pseudomonas cepacia as an agent for biological control of soilborne plant pathogens [J]. Soil Biology & Biochemistry,1989, 21:723-728.
    [51]Smith KP, Havey MJ, Handelsman J. Suppression of cottony leak of cucumber with Bacillus cereus strain UW85[J].Plant Disease,1993,77:139-142.
    [52]Kim BS, Lee JY, Hwang BK. In vivo control, and in vitro antifungal activity of rhamnolipid B, a glycolipid antibiotic, against Phytophthora capsici and Colletotrichum orbiculare[J]. Pest Management Science,2000,56:1029-1035.
    [53]Pedrasa MSC, Ismaila N, Quaila JW, et al. Structure, chemistry, and biological activity of pseudophomins A and B, new cyclic lipodepsipeptides isolated from the biocontrol bacterium Pseudomonas fluorescens [J]. Phytochemistry,2003,62:1105-1114.
    [54]Beatty PH, Jensen SE. Paenibacillus polymyxa produces fusaricidin-type antifungal antibiotics active against Leptosphaeria maculans, the causative agent of blackleg disease of canola[J]. Canadian Journal of Microbiology,2002,48(2):159-169.
    [55]唐丽娟,纪兆林,徐敬友,等.地衣芽孢杆菌W10对灰葡萄孢的抑制作用及其抗菌物质[J].中国生物防治,2005,21(3):203-205.
    [56]梁启美,齐东梅,贾洁,等.棉花黄枯萎病拮抗菌的筛选及抗菌蛋白B1102a的初步测定[J].植物保护,2005,31(5):25-28.
    [57]Stover AG, Driks A. Secretion, localization, and antibacterial activity of Tas A, a Bacillus subtills spore-associated protein [J]. Journal of Bacteriology,1999.181:1664-1672.
    [58]陈雪丽,郝再彬,王光华,等.多粘类芽孢杆菌BRF21抗菌蛋白的分离纯化[J].中国生物防治,2007,3(2):156-159.
    [59]宋永燕,李平,郑爱萍,等.生防细菌LM23的鉴定及其抗菌蛋白的研究[J].四川大学学报(自 然科学版),2006,43(5):1110-1115.
    [60]周华强,周颖,罗飞,等.新型微生物源生防乳剂对稻瘟病的防效[J].安徽农业科学,2007,35(13):3893-3894.
    [61]姚乌兰,王云山,韩继刚,等.水稻生防菌株多粘类芽孢杆菌WY110抗菌蛋白的纯化及其基因克隆[J].遗传学报,2004,31(9):878-887.
    [62]郝晓娟,刘波,谢关林,等.短芽孢杆菌JK22菌株抑菌物质特性的研究[J].浙江大学学报(农业与生命科学版),2007,33(5):484-489.
    [63]De Meyer G, Bigirimana J, Elad Y, et al. Induced systemic resistance in Trichoderma harzianum T39 biocontrol of Botrytis cinerea[J]. European Journal of Plant Pathology,1998,104:279-286.
    [64]Yedidia I, Benhamou N, Chet I. Induction of defence responses in cucumber plants (Cucumis sativus L.) by the biocontrol agent Trichoderma harzianum [J]. Applied Environmental Microbiology,1999,65:1061-1070.
    [65]Hanson LE, Howell CR. Elicitors of plant defense responses from biocontrol strains of Trichoderma virens[J]. Phytopathology,2004,94:171-176.
    [66]Harman GE. Myths and dogmas of biocontrol:changes in perceptions derived from research on Trichoderma harzianum T-22[J].Plant Disease,2000,84:377-393.
    [67]黄有凯,罗曼,蒋立科,等.哈茨木霉对水稻过氧化物酶及多酚氧化酶活性的影响[J].微生物学通报,2003,30(5):1-4.
    [68]Howell CR, Hanson LE, Stipanovic RD, et al. Induction of terpenoid synthesis in cotton roots and control of Rhizoctonia solani by seed treatment with Trichoderma virens[J].Phytopathology, 2000,90:248-252.
    [69]庄敬华,高增贵,杨长城,等.绿色木霉菌T23对黄瓜枯萎病防治效果及其几种防御酶活性的影响[J].植物病理学报,2005,35(2):179-183.
    [70]黄艳青,庄敬华,高增贵,等.木霉菌诱导甜瓜抗枯萎病相关防御反应酶系的研究[J].沈阳农业大学学报,2005,36(5):546-549.
    [71]Nzojiyobiri JB,徐同,宋凤鸣,等.哈茨木霉NF9菌株对水稻的诱导抗病性[J].中国生物防治,2003,19(3):111-114.
    [72]Vinale F, D'Ambrosio G, Abadi K, et al. Application of Trichoderma harzianum (T22) and Trichoderma atroviride (P1) as plant growth promoters, and their compatibility with copper oxychloride[J].Journal of Zhejiang University Science,2004,30:2-8.
    [73]陈小均,喻会平,顾怀胜,等.木霉菌防治烟草根腐病及其土壤优势微生物的相互作用[J].贵州农业科学2007,35(5):57-59.
    [74]陈志谊,许志刚,陆凡,等.拮抗细菌B-916对水稻植株的抗性诱导作用[J].西南农业学报,2001,14(2):44-48.
    [75]Smith JA, Hammerschmidt R, Fulbright DW. Rapid induction of systemic resistance in cucumber by Pseudomonas syringae pv. Syringae [J]. Physiological and Molecular Plant Pathology,1991, 38(3):223-235.
    [76]吴蔼民,顾本康,傅下擎,等.内生菌73a防治棉花黄萎病机制[J].江苏农业学报,2002,18(1):48-51.
    [77]梁建根,张炳欣,陈振宇,等.促生菌CH1诱导黄瓜对猝倒病抗性的研究[J].园艺学报,2006,33(2):283-288.
    [1]东秀珠,蔡妙英,等.常见细菌系统鉴定手册[M].科学出版社,2001年.
    [2]Ash C. Priest FG, Collins MD. Molecular identification of ribosomal-RNA group 3 bacilli using a PCR probe test-proposal for the creation of a new genus Paenibacillus[J].Antonie van Leeuwenhoek Int. J. Gen. Mol. Microbiol.1993,64:253-260.
    [3]Patrick RM, Ellen JB. Bacillus and Recently Derived Genera. Manual of Clinical Microbiology, 1999,357-366.
    [4]Lindberg T, Granhall U. Isolation and characterization of dinitrogen- fixing bacteria from the rhizosphere of temperate cereals and forage grasses[J]. Applied Environmental Microbiology. 1984,48:683-689.
    [5]Holl FB, Chanway CP, Turkington R, et al. Response of crested wheatgrass(Agropyron cristatum L.), perennial ryegrass(Lolium perenne L.) and white clover (Trifolium repens L.) to inoculation with Bacillus polymyxa[J]. Soil Biology & Biochemistry,1988,20:19-24.
    [6]Holl FB, Chanway CP. Rhizosphere colonization and seedling growth promotion of lodgepole pine by Bacillus polymyxa[J].Canadian Journal of Microbiology,1992,38:303-308.
    [7]Shishido M, Massicotte HB, Chanway CP. Effect of plant growth promoting Bacillus strains on pine and spruce seedling growth and mycorrhizal infection[J]. Annals of Botany.1996,77:433-441.
    [8]Petersen DJ, Srinivasan M, Chanway CP. Bacillus polymyxa stimulates increased Rhizobium etli populations and nodulation when coresident in the rhizosphere of Phaseolus vulgaris[J]. FEMS Microbiology Letter,1996,42:271-276.
    [9]Kajimura Y, Kaneda M, Fusaricidin A. a new depsipeptide antibiotic produced by Bacillus polymyxa KT-8. Taxonomy, fermentation, isolation, structure elucidation, and biological activity [J]. J. Antibiot.1996,49:129-135.
    [10]李畅方,罗时华,何强,等.康地蕾得防治番茄青枯病药效试验[J].广东农业科学,2003,6:38-39.
    [11]罗小华,肖明徽,胡德广.生物农药--康地蕾得防治青枯病初报[J].江西植保,2006,29(1):38-40.
    [12]何亮,宋新华,王智文,等.1株植物病原真菌拮抗细菌的鉴定[J].西北农林科技大学学报(自然科学版)2007,35(2):120-124.
    [13]陈海英,廖富蘋,林健荣,等.CP7菌株的抗菌活性及菌种鉴定[J].中国生物防治,2007,23(增刊):16-21.
    [14]伍明俊,金丹,李晖,等.抗真菌菌株JW-725的分离、鉴定及发酵产物性质的初步分析[J].四川大学学报(自然科学版),2003,40(5):945-948.
    [15]赖翼,刘成君,李晖,等.青稞散黑穗病拮抗菌LN-176的分离鉴定、发酵条件及发酵产物的研究[J].植物保护,2005,31(3):31-34.
    [16]姚乌兰,王云山,韩继刚,等.水稻生防菌株多粘类芽孢杆菌WY110抗菌蛋白的纯化及其基因克隆[J].遗传学报,2004,31(9):878-887.
    [17]Khan Z., Kim SG, Jeon YH, et al. A plant growth promoting rhizobacterium, Paenibacillus polymyxa strain GBR-1, suppresses root-knot nematode[J]. Bioresource Technology,2007,(in press), doi:10.1016/j.biortech.2007.06.031.
    [18]刘训理,孙长坡,马迎飞,等.一株家蚕病原物拮抗细菌的分离与鉴定[J].蚕业科学,2004,30(3):273-276.
    [19]王智文,刘训理,何亮,等.Cp-S316菌株发酵培养基的优化及其对烟草赤星病菌的抑制作用[J].农业环境科学学报,2007,26(2):723-728.
    [20]童蕴慧,,纪兆林,徐敬友,等.灰葡萄孢拮抗细菌营养与发酵配方的研究[J].扬州大学学报(农业与生命科学版),2002,Vol.23 No.4:79-83.
    [21]刘丽.小麦内生菌的分离与鉴定[J].沈阳师范学院学报(自然科学版),1998,16(4):41-46.
    [22]饶小莉,沈德龙,李俊,等.甘草内生细菌的分离及拮抗菌株鉴定[J].微生物学通报,2007年34(4):700-704.
    [23]石志琦,胡梁斌,于淑池,等.细菌P-FS08的鉴定及其对几种植物病原真菌的拮抗作用[J].南京农业大学学报,2005,28(3):48-52.
    [24]童蕴慧,郭桂萍,徐敬友,等.拮抗细菌对番茄植株抗灰霉病的诱导[J].中国生物防治,2004,20(3):187-18.
    [25]郭桂萍,童蕴慧,徐敬友,等.拮抗细菌诱导番茄植株抗灰霉病机制研究[J].植物病理学报,2004,34(6):507-511.
    [26]宋永燕,李平,郑爱萍,等.生防细菌LM-3的鉴定及其抗菌蛋白的研究[J].四川大学学报(自然科学版,2006,43(5):1110-1115.
    [27]周华强,周颖,罗飞,等.抗菌多肽APPML3乳剂的制备及其对稻瘟病的效果[J].种子世界,2004,(4):22-24.
    [28]谢晶,葛绍荣,陶勇,等.多粘类芽孢杆菌BS04拮抗成分分离纯化及其特性[J].化学研究与应用,2004,16(6):775-777.
    [29]Beatty PH, Jensen SE. Paenibacillus polymyxa produces fusaricidin-type antifungal antibiotics active against Leptosphaeria maculans, the causative agent of blackleg disease of canola[J]. Canadian Journal of Microbiology,2002,48(2):159-169.
    [30]王智文,袁士涛,何亮,等.多粘类芽孢杆菌Cp-S316抗真菌活性物质的提取及其部分性质研究[J].农业环境科学学报,2007,26(4):1464-1468.
    [31]宋永燕,李平,李姝晋,等.生防细菌LM-3对水稻的促生性和诱导抗性研究[J].西南农业学报,2006,19,(3):438-441.
    [32]陈雪丽,郝再彬,王光华,等.多粘类芽孢杆菌BRF-1抗菌蛋白的分离纯化[J].中国生物防治,2007,23(2):156-15.
    [33]魏鸿刚,邓嘉璐,李元广,等.青枯病生防菌的筛选、鉴定及其活性物质特性[J].中国生物防 治,2007,23(3):237-24.
    [34]Kavitha S, Senthilkumar S, Gnanamanickam S, et al. Isolation and partial characterization of antifungal protein from Bacillus polymyxa strain VLB16[J]. Process Biochemistry,2005,40: 3236-3243.
    [35]Senthilkumar M, Govindasamy V, Annapurna K. Role of Antibiosis in Suppression of Charcoal Rot Disease by Soybean Endophyte Paenibacillus sp. HKA-15[J]. Current Microbiology,2007, 55:25-29.
    [36]Hong TY, Meng M. Biochemical characterization and antifungal activity of an endo-1,3-β-glucanase of Paenibacillus sp. isolated from garden soil[J]. Appl Microbiol Biotechnol,2003, 61:472-478.
    [37]DasGupta S M, Khan N, Nautiyal C S. Biologic Control Ability of Plant Growth-Promoting Paenibacillus lentimorbus NRRL B-30488 Isolated from Milk[J]. Current Microbiology,2006,53: 502-505.
    [38]李卫芬,陆平,周绪霞.多粘芽孢杆菌β-葡聚糖酶特性及其基因克隆[J].浙江大学学报(农业与生命科学版),2004,30(3):331-335.
    [1]周明国.杀菌剂混用的增效作用与拮抗作用[A].见:周明国主编,中国植物病害化学防治进展(第二卷)[C].北京:中国农业科技出版社,2000,pp8-17.
    [2]张瑞亭,林丙栋,周本新,等.农药的混用与混剂[M].北京:化学工业出版社,1987年p7-47.
    [3]Marchetti O, Moreillon P, Glauser M, et al. Potent synergism of the combination of fluconazole and cyclosporine in Candida albicans[J]. Antimicrobial Agents and Chemotherapy,2000,44:2373-2381.
    [4]Abbott WS. A method of computing the effectiveness of an insecticide[J].Journal of Economic Entomology,1925,18:265-267.
    [5]Gowing DP. Comments on test of herbicide mixtures[J]. Weed Science,1960,8:379-391.
    [6]Kosman E and Cohen Y. Procedure for calculating and differentiating synergism and antagonism in action of fungicide mixtures[J]. Phytopathology,1996,86(11):1263-1272.
    [7]Gisi U. Synergistic interaction of fungicides in mixture[J]. Phytopathology,1986,86(11): 1273-1279.
    [8]Koller W, Wilcox WF. Interactive effects of dodine and the DMI fungicide fenarimol in the control of apple scab[J]. Plant Disease,2000,84(8):863-870.
    [9]Sun YP, Johnson ER. Analysis of joint action of insecticides against houseflies[J]. Journal of economic Entomology,1960,53:887-892.
    [10]赵善欢,主编.植物化学保护(第三版)[M],北京:中国农业出版社,2000年.
    [11]王进强,许文耀,吴刚,等.氢氧化铜·烯酰吗啉混剂对辣椒疫霉菌的毒力[J].福建农林大学学报(自然科学版),2005,34(2):208-210.
    [12]张永军,金凯,罗志兵,等.转基因球孢白僵菌发酵产物对野生菌株的增效作用[J].植物保护学报,2006,33(3):246-250.
    [13]许文耀,吴刚.恶霉灵·溴菌腈混配对香蕉枯萎病菌的抑制效果[J].植物保护学报,2004,31(1):91-95.
    [14]魏列新,梁巧兰,徐秉良,等.福星、世高及其复配剂对黄瓜枯萎病菌的毒力测定[J].甘肃农业大学学报,2007,42(3):71-73.
    [15]丘麒,罗建军,郝卫宁,等.咪鲜胺与异菌脲混用对香蕉冠腐病菌(Fusarium moniliforme)的增效作用[J].安徽农业科学,2007,35(9):2651.
    [16]中华人民共和国农业行业标准NY/T 1154.7-2006.农药室内生物测定试验准则-杀虫剂第7部分:混配的联合作用测定.中国农业出版社,2006年.
    [17]中华人民共和国农业行业标准NY/T 1156.1-2006.农药室内生物测定试验准则-杀菌剂第1部 分:抑制病原真菌孢子萌发试验(凹玻片法).中国农业出版社,2006年.
    [18]中华人民共和国农业行业标准NY/T 1156.2-2006.农药室内生物测定试验准则-杀菌剂第2部分:抑制病原真菌菌丝生长试验(平皿法).中国农业出版社,2006年.
    [19]韩新才,张宁,肖国蓉,等.农抗120和百菌清对辣椒炭疽病菌联合毒力的测定[J].华中农业大学学报,2005,24(2):157-160.
    [20]程玉峰,高智谋,时娟,等.甲霜灵·霜霉威复配剂对棉疫病菌的联合毒力[J].植物保护,2007,33(1): 41-43.
    [21]Tammes PML. Isoboles, a graphic representation of synergism in pesticides[J]. Plant Pathology, 1964,70:63-80.
    [22]Akobundu IO, Aweet RD, Duke WB. A method of evaluation herbicide combinations and determining herbicide synergism [J].Weed Science,1975,23(1):20-25.
    [23]袁树忠,张宏生,宋翠玲.氯嘧磺隆对精禾草克、精稳杀得防除马唐、蟋蟀草的拮抗作用[J].植物保护学报,1996,23(4):355-358.
    [24]台文俊,徐小燕,刘燕君,等.等效线法评价氟唑磺隆与苯磺隆相互作用关系[J].农药,2008,47(2):136-137.
    [25]中华人民共和国农业行业标准NY/T 1155.7-2006.农药室内生物测定试验准则-除草剂第7部分:混配的联合作用测定.中国农业出版社,2006年.
    [26]尹国香,刘传德,孙亮.代森锰锌与异菌脲混用防治西洋参黑斑病药效研究[J].农药,1997,36(9):41-42.
    [27]李素英,刘冬青,牛赡光.生物防治菌与多菌灵混用防治棉花黄萎病的效应研究[J].中国生态农业学报,2004,12(1):114-116.
    [28]Locke JC, Marois JJ, Papavizas GC. Biological control of Fusarium wilt of greenhouse-grown chrysanthemums[J]. Plant Disease,1985,69:167-169.
    [29]燕嗣皇,陆德清,杨雨环.三种杀菌剂对木霉和整齐小菌核及土壤主要微生物类群的影响[J].中国生物防治,1996,12(1):29-32.
    [30]吴石平,燕嗣皇,陆德清,等.木霉菌与三唑酮配合对西瓜生长的影响和对枯萎病的防效[J].西南农业学报,2002,15(2):65-68
    [31]Abd-El Moity TH, Papavizas GC, Shatla NN. Induction of new isolates of Trichoderma harzianum tolerant to fungicides and their experimental use for control of white rot on onion[J]. Phytopathology,1982,72:396-400.
    [32]田连生,冯树波.耐药性木霉菌株的筛选及其对灰霉病的防治[J].生物技术,2005,15(5):26-28.
    [33]Postma J, Luttikholt AJG. Benomyl-resistant Fusarium isolates un ecological studies on the biological control of Fusarium wilt in carnation[J]. Nethland Journal of Plant Pathology.,1993,99: 175-188.
    [34]田连生.紫外光诱导哈茨木霉产生对多菌灵抗药性的菌株[J].农业环境科学学报,2007,26(1):318-321.
    [35]刘淑芳,檀根甲,李娜,等.苹果采后炭疽病高效拮抗菌的筛选与应用[J].安徽农业大学学报,2007,34(1):111-116.
    [36]刘冰,宗兆锋,王记侠.重寄生链霉菌F46与生防放线菌SC11融合菌株的筛选[J].西北农林科技大学学报(自然科学版),2006,34(3):93-97.
    [37]庄敬华,高增贵,陈捷,等.5种杀菌剂对木霉菌及尖孢镰刀菌的毒力测定[J].植物保护,2005,31(3):84-86.
    [38]庄敬华,杨长城,高增贵,等.几种常用土壤杀菌剂对木霉菌防治甜瓜枯萎病效果的影响[J].中国蔬菜,2005,(8):15-17.
    [39]吴石平,陆德清,刘世怡,等.三唑酮对豌豆根际木霉定殖和尖孢镰刀菌厚垣孢子萌发的影响[J].云南农业大学学报,2000,15(3):247-249.
    [40]燕嗣皇,吴石平,陆德清,等.三唑酮对西瓜根际木霉菌与尖孢镰刀菌竞争定殖的影响[J].植物病理学报,2001,31(3):265-270.
    [41]燕嗣皇,陆德清,杨雨环.三唑酮对木霉防治辣椒白绢病的协同作用[J].西南农业学报,1998,11(4):101-105
    [42]牛赡光,张淑静,王太明,等.化学农药对棉花黄萎病菌和生防菌的选择毒性[J].中国生物防治,2006,22(1)49-53
    [43]Ordentlich A, Nachmias A, Chet I. Integrated control of Verticillium dahliae in potato by Trichoderma harzianum and captan[J]. Crop Protection,1990,9(5):363-366.
    [44]Tronsmo A. Biological and integrated controls of Botrytis cinerea on apple with Trichoderma harzianum[J].Biological Control,1991,1(1):59-62.
    [45]Howell CR. Effect of seed quality and combination fungicide-Trichoderma spp. seed treatments on pre- and postemergence damping-off in cotton [J]. Biological Control,2007,97(1):66-71.
    [46]Lima G, De Curis F, Piedimonte D, et al. Integration of biocontrol yeast and thiabendazole protects stored apples from fungicide sensitive and resistant isolates of Botrytis cinerea[J]. Postharvest Biology and Technology,2006,40:301-307.
    [47]Tian SP, Yao HJ, Qin GZ, et al. Sensitivity of four yeasts to fungicides and CO2 concentration and their antagonistic ability in combination with fungicide to pathogenic fungal in vitro[J]. Agricultural Science in China,2004,3(3):205-215.
    [48]鹿秀云,李社增,高胜国.5种化学杀菌剂对枯草芽孢杆菌NCD-2菌体及芽抱的影响[J].植物病理学报,2005,35(6)(ZK):173-175.
    [49]牛赡光,江树人,唐文华.多菌灵残留动态与荧光菌P32在棉花根部的定殖及防治黄萎病的关系[J].棉花学报,2000,12(1):22-26.
    [50]牛赡光,江树人.多菌灵对荧光假单胞杆菌的正向调控作用及其应用[J].植物保护学报,1999,26(2):170-176.
    [51]Duffy B. Combination of pencycuron and Pseudomonas fluorescens strain 2-79 for integrated control of rhizoctonia root rot and take-all of spring wheat[J]. Crop Protection,2000,19:21-25.
    [52]Zhou T, Northover J, Schneider K E. Interacrions brewen Pseudomonas syringe MA-4 and cyprodinil in the control of blue mild and gray mold of apples[J]. Canadian Journal of Plant Pathology,2002,24:154-161.
    [53]陈志谊,刘永锋,陆凡.井冈霉素和Bs-916协同控病作用及增效机理[J].植物保护学报,2003,30,(4):429-434.
    [54]Spadaro D, Gullino ML. Improving the efficacy of biocontrol agents against soilborne pathogens [J]. Crop Protection,2005,24:601-613.
    [55]Kloepper JW, Leong J, Teintze M, et al. Enhance plant growth by siderophores produced by plant growth-promoting rhizobacteria[J]. Nature,1980,286:885-886.
    [56]Weller DM. Biological control of soil-borne plant pathogens in the rhizosphere with bacteria [J]. Annual Review Phytopathology,1988,26:397-407.
    [1]徐作,李林,魏道君,等.大棚辣椒疫病菌的分离培养及药剂防治[J].植物保护,1999,(2):29-31.
    [2]丁建成,戚仁德,顾江涛,等.辣椒疫病发生原因与防治对策.安徽农业科学[J],2001,29(5):651-652.
    [3]Biles CL, Lindsey DL, Liddell CM. Control of phytophthora root rot of chili peppers by irrigation practices and fungicides[J].Crop Protection,1992,11:225-228.
    [4]李阜棣,喻子牛,何绍江,主编.农业微生物学实验技术[M].北京:中国农业出版社,1996年28-72.
    [5]郑小波.疫霉菌及其研究技术[M].北京:中国农业出版社,1997:86-87.
    [6]毛爱军,胡洽,耿三省.辣椒疫病菌接种鉴定技术研究[J].北京农业科学,1998,16(2):21-25.
    [7]郭坚华,王平菊,李瑾,等.抑菌圈一定殖力双重测定法筛选青枯生防细菌[J].植物病理学报,1996,26(1):49-54.
    [8]Sid A, Ezziyyani M, Egea-Gilabert C, et al. Selecting bacterial strains for use in the biocontrol of diseases caused by Phytophthora capsici and Alternaria alternata in sweet pepper plants [J]. Biologia Plantarum,2003,47(4):569-574.
    [9]Rajkumar M, Lee WH, Lee KJ. Screening of bacterial antagonists for biological control of Phytophthora blight of pepper [J]. Journal of Basic Microbiology,2005,45(1):55-63.
    [10]郭坚华.辣椒青枯病的生物防治[D].南京农业大学博士论文,1998.
    [11]陈志谊,苗东华.拮抗细菌的定殖、浓度和喷施期与水稻纹枯病的关系[J].江苏农业学报,1998,14(1):31-38.
    [12]Kloepper JW, Kuc JA. Plant growth-promoting rhizobacteria and plant growth under gnotobiotic conditions [J]. Phytopathology,1981,71(6):642-644.
    [13]杜立新,冯书亮,曹克强,等.枯草芽抱杆菌BS-208和BS-209菌株在番茄叶面及土壤中定殖能力的研究[J].河北农业大学学报,2004,27(6):78-83.
    [14]胡小加,黄沁洁,张银波,等.恶臭假单胞菌P861(Gus)在油菜根部定殖的生态研究[J].植物营养与肥料学报,1999,5(4):359-363.
    [15]常志州,马艳,黄红英.辅以拮抗菌的有机肥对辣椒疫病生防效果的研究[J].土壤肥料,2005,(2):28-30.
    [1]Rajkumar M, Lee WH, Lee KJ. Screening of bacterial antagonists for biological control of Phytophthora blight of pepper [J]. Journal of Basic Microbiology,2005,45(1):55-63.
    [2]Elizabeth A, Emmert B, Handelsman J. Biocontrol of plant desease:a (Gram-) positive perspective [J]. FEMS Microbiology Letters,1999,171:1-9.
    [3]Barea JM, Pozo MJ, Azcon B, et al. Microbial co-operation in the rhizosphere [J].Journal of Experimental Botany,2005,56(417):1761-1778.
    [4]Ryder MH, Yan Z, Terrace TE, et al. Use of strains of Bacillus isolated in China to suppress take-all and Rhizoctonia root rot and promote seedling growth of glasshouse-grown wheat in Australian soils [J]. Soil Biology and Biochemstry,1999,31:19-29.
    [5]Smith KP, Havey MJ, Handelsman J. Suppression of cottony leak of cucumber with Bacillus cereus strain UW85 [J]. Plant Disease,1993,77:139-142.
    [6]范青,田世平,李永兴,等.枯草芽孢杆菌(B-912):对桃和油桃褐腐病的抑制效果[J].植物学报,2000,42(11):1137-1143.
    [7]赵白鹤,孔建,王文夕,等.枯草芽孢杆菌B2903对苹果轮纹病的抑制作用及其对病害的控制 效果[J].植物病理学报,1996,17(3):213-214.
    [8]Lee JY, Hwang BK. Diversity of antifungal actinomycetes in various vegetative soils of Korea [J]. Canadian Journal of Microbiology,2002,48(15):407-417.
    [9]Kim BS, and Hwang BK. Production, pruification and antifungal activity of antibiotic substances produced by Pseudomonas aeruginosa strain B5 [J]. Journal of Microbiology and Biotechnology, 1993,3:12-18.
    [10]李湘民,胡白石,许志刚,等.拮抗细菌菌株Pseudomonas fluorescens 7-14在水稻植株上的时间、空间定殖型[J].植物病理学报,2003,33(5):468-473.
    [11]Iavicoli A, Boutet E, Buchala A, et al. Induced systemic resistance in Arbidopsis thaliana in response to root inoculation with Pseudomonas fluorescens CHAO [J]. Molecular Plant-Microbe Interaction,2003,16:851-858.
    [12]王智文,袁士涛,何亮,等.多粘类芽孢杆菌Cp-S316抗真菌活性物质的提取及其部分性质研究[J].农业环境科学学报,2007,26(4):1464-1468.
    [13]徐玲,王伟,魏鸿刚,等.多粘类芽孢杆菌HY96-2对番茄青枯病的防治作用[J].中国生物防治,2006,22(3):216-220.
    [14]童蕴慧,纪兆林,徐敬友,等.灰葡萄孢拮抗细菌的种类鉴定及生长条件研究[J].扬州大学学报(农业与生命科学版),2002,23(2):67-70.
    [15]袁树忠,周明国.辣椒疫病生物防治菌株的筛选与定殖[J].扬州大学学报(农业与自然科学版),2006,27(4):93-97.
    [16]Holt JG, Gibbons NE. Bergey's Mannual of Determinative Bacteriology (9th Edition) [M]. Baltimore:The Williams and Wickins Company,1994.
    [17]东秀珠,蔡妙英,等.常见细菌系统鉴定手册[M].科学出版社,2001年.
    [18]J.萨姆布鲁克,D.W.拉塞尔,著(黄培堂等译).分子克隆实验指南(第三版)[M].科学出版社,2002年.
    [19]Ash C, Priest FG, Collins MD. Molecular identification of ribosomal-RNA group 3 bacilli using a PCR probe test-proposal for the creation of a new genus Paenibacillus[J].Antonie van Leeuwenhoek Int. J. Gen. Mol. Microbiol.1993,64:253-260.
    [20]Patrick RM, Ellen JB. Bacillus and Recently Derived Genera[J].Manual of Clinical Microbiology. 1999,357-366.
    [21]何亮,宋新华,王智文,等.1株植物病原真菌拮抗细菌的鉴定[J].西北农林科技大学学报(自然科学版),2007,35(2):120-124.
    [22]王光华,周克琴,金剑,等.生防微生物BRF-1对大豆根腐病的拮抗作用[J].大豆科学,2004,23(3):188-191.
    [23]陈雪丽,郝再彬,王光华,等.多粘类芽孢杆菌BRF-1抗菌蛋白的分离纯化[J].中国生物防治, 2007,23(2):156-15.
    [24]童蕴慧,郭桂萍,徐敬友,等.拮抗细菌对番茄植株抗灰霉病的诱导[J].中国生物防治,2004,20(3):187-189.
    [25]宋永燕,李平,李姝晋,等.生防细菌LM-3对水稻的促生性和诱导抗性研究[J].西南农业学报,2006,19(3):438-441.
    [26]周华强,周颖,罗飞,郑爱萍,等.新型微生物源生防乳剂对稻瘟病的防效[J].安徽农业科学,2007,35(13):3893-3894.
    [1]王智文,刘训理,何亮,等.Cp-S316菌株发酵培养基的优化及其对烟草赤星病菌的抑制作用[J].农业环境科学学报,2007,26(2):723-728.
    [2]童蕴慧,,纪兆林,徐敬友,等.灰葡萄孢拮抗细菌营养与发酵配方的研究[J].扬州大学学报(农业与生命科学版),2002,23(4):79-83.
    [3]李畅方,罗时华,何强,等.康地蕾得防治番茄青枯病药效试验[J].广东农业科学,2003,6:38-39.
    [4]袁树忠,周明国.辣椒疫霉生防菌B100的筛选与定殖.扬州大学学报(农业与生命科学版),2006,32(4):93-97.
    [5]魏鸿刚,邓嘉璐,李元广,等.青枯病生防菌的筛选、鉴定及其活性物质特性[J].中国生物防治,2007,23(3):237-24.
    [6]宋永燕,李平,李姝晋,等.生防细菌LM-3对水稻的促生性和诱导抗性研究[J].西南农业学报,2006,19(3):438-441.
    [7]Kavitha S, Senthilkumar S, Gnanamanickam S, et al. Isolation and partial characterization of antifungal protein from Bacillus polymyxa strain VLB16[J]. Process Biochemistry,2005,40: 3236-3243.
    [8]Senthilkumar M, Govindasamy V, Annapurna K. Role of Antibiosis in Suppression of Charcoal Rot Disease by Soybean Endophyte Paenibacillus sp. HKA-15 [J]. Current Microbiology,2007.55: 25-29.
    [9]Hong TY, Meng M. Biochemical characterization and antifungal activity of an endo-1,3-β-glucanase of Paenibacillus sp. isolated from garden soil [J]. Applied Microbiological Biotechnology,2003,61:472-478.
    [1]Kohl J, Fokkema NJ. Stratrgies for biological control Necrotrophic fungal foliar pathogens. In: Boland GJ and Kuykendall LD (ed). Plant-Microbe Interaction and Biological Control[M]. New York:Marcel Dekker, Inc.1998, pp49-88.
    [2]齐绍武,官春云,刘春林.甘蓝型油菜品系一些酶的活性与抗菌核病的关系[J].作物学报,2004,30(3):270-273.
    [3]杨辉,沈火林,朱鑫,等.防御酶活性、木质素和总酚含量与辣椒抗黄瓜花叶病毒的关系[J].中国农学通报,2006,22(5):369-373.
    [4]李靖,利容千,袁言静.黄瓜感染霜霉病菌叶片中一些酶活性的变化[J].植物病理学报,1991,21(4):277-282.
    [5]黄凤莲,刘寿明,曾端香,等.湘研辣椒品种抗疫病筛选及抗性机制研究[J].湖南农业大学学报,1999,25(4):303-307.
    [6]沈其益,阎隆飞.棉花感染枯萎病菌后过氧化物酶同工酶的变化[J].植物学报,1978,20(2):108-112.
    [7]张建军,李祥,侯明生.小麦品种对梭条斑花叶病毒病抗病特性的研究,(Ⅱ)抗病性与植株内多酚氧化酶活性、过氧化物酶活性及其同工酶酶谱的关系[J].华中农业大学学报,1996,15(5):420-425.
    [8]谢世勇,卢同,李本金,等.苯丙氨酸解氨酶、过氧化物酶与甘薯抗青枯病的关系[J].福建农业学报,2003,18(4):236-238.
    [9]童蕴慧,郭桂萍,徐敬友,等.拮抗细菌诱导番茄植株抗灰霉病机理研究[J].植物病理学报,2004,34(6):507-511.
    [10]梁建根,张炳欣,陈振宇,等.促生菌CH1诱导黄瓜对猝倒病抗性的研究[J].园艺学报,2006,33(2):283-288.
    [11]梁军锋,薛泉宏,牛子磊,等.7株放线菌在辣椒根部定殖对辣椒叶片PAL与PPO活性的影响[J].西北植物学报,2005,25(10):2118-2123.
    [12]胡艳霞,孙振钧,孙永明,等.蚯蚓粪对黄瓜炭疽病的系统诱导作用[J].应用生态学报,2004,15(8):1358-1362.
    [13]袁树忠,周明国.辣椒疫霉生防菌B100的筛选与定殖[J].扬州大学学报(农业与生命科学版),2006,32(4):93-97.
    [14]陈志谊,许志刚,陆凡,等.拮抗细菌B-916对水稻植株的抗性诱导作用[J].西南农业学报,2001,14(2):44-48.
    [15]Dean RA, Kue JA. Rapid lignification in response to wounding and infestion as a mechanism for induced systemidc protetion in cucumber[J]. Physiological and Molecular Plant Pathology.1984, 31:69-81.
    [16]高必达,陈捷.生理植物病理学[M].北京:科学出版社,2006,pp188-231.
    [17]Paulitz TC, Belanger RR. Biological control of greenhouse system [J]. Annual Review of Phytopathology,2001,39:103-133.
    [18]Whipps JM. Microbial interactions and biocontrol in the rhizosphere [J]. Journal of Experimental Botany,2001,52:487-511.
    [19]黄有凯,罗曼,蒋立科,等.哈茨木霉对水稻过氧化物酶及多酚氧化酶活性的影响[J].微生物学通报,2003,30(5):1-4.
    [20]M'Piga P, Belanger RR, Paulitz TC, et al. Increased resistance to Fusarium oxysporum f. sp. Radicis-lycopersici in tomato plant treated with the endophytic bacterium Pseudomonas fluorescens strain 63-28 [J]. Physiological and Molecular Plant Pathology,1997,50:301-320.
    [21]Chen C, Belanger RR, Benhamou N, et al. Defense enzymes induced in cucumber roots by treatment with plant growth-promoting rhizobacteria (PGPR) and Pythium aphanidermatum [J]. Physiological and Molecular Plant Pathology,2000,56:13-23.
    [22]Howell CR, Hanson LE, Stipanovic RD, et al. Induction of terpenoid synthesis in cotton roots and control of Rhizoctonia solani by seed treatment with Trichoderma virens[J]. Phytopathology, 2000,90:248-252.
    [23]庄敬华,高增贵,杨长城,等.绿色木霉菌T23对黄瓜枯萎病防治效果及其几种防御酶活性的影响[J].植物病理学报,2005,35(2):179-183.
    [24]黄艳青,庄敬华,高增贵,等.木霉菌诱导甜瓜抗枯萎病相关防御反应酶系的研究[J].沈阳农业大学学报,2005,36(5):546-549.
    [25]毛爱军,王永健,冯兰香,等.水杨酸诱导辣椒抗疫病生化机制的研究[J].中国农学通报,2005,21(5):219-223.
    [1]徐作,李林,魏道君,等.大棚辣椒疫病菌的分离培养及药剂防治[J].植物保护,1999,(2):29-31.
    [2]Majkumar M, Lee WH, Lee KJ. Screening of bacterial antagonists for biological control of Phytophthora blight of pepper[J].Journal of Basic Microbiology.2005,45(1):55-63.
    [3]陈志谊,任海英,刘永锋,等.戊唑醇和枯草芽胞杆菌协同作用防治蚕豆枯萎病及增效机理初探[J].农药学学报,2002,4(4):40-44.
    [4]Russell PE. Fungicide resistance:occurrence and management [J]. Journal of Agricultural Science, 1995,124:317-323.
    [5]Chalutz E, Droby S. Biological control of postharvest disease [A]. In Plant-Microbe interactions and biological control [C]. Edited by G J Boland and L. D Kuykendall. Marcel Dekker,Inc., New York. ppl57-170.
    [6]陈志谊,刘永锋,陆凡.井冈霉素和Bs-916协同控病作用及增效机理[J].植物保护学报,2003,30(4):429-434.
    [7]Zhou T, Northover J, Schneider K E. Interacrions brewen Pseudomonas syringe MA-4 and cyprodinil in the control of blue mild and gray mold of apples[J]. Canadian Journal of Plant Pathology,2002,24:154-161.
    [8]Kharbanda PD, Yang J, Tewari JP. Integrated control of blackleg of canola using Tilt and a bio-control agent [A]. In:Advances in Biological Control of Plant Disease [C]. Edited by Tang WH, Cook RJ, Rovira A. Beijing:Chinese Agricultural University Press,1996, p335.
    [9]袁树忠,周明国.辣椒疫病生物防治菌株的筛选与定殖[J].扬州大学学报(农业与自然科学版),2006,27(4):93-97.
    [10]郑小波.疫霉菌及其研究技术[M].北京:中国农业出版社,1997:86-87.
    [11]毛爱军,耿三省.培养基种类对繁殖辣椒疫病菌的影响[J].北京农业科学1999,17(5):22-25.
    [12]毛爱军,胡洽,耿三省.辣椒疫病菌接种鉴定技术研究[J].北京农业科学,1998,16(2):21-25.
    [13]农业部农药检定所.GB/T17980.32-2000,农药试验药效准则(一)杀菌剂防治辣椒疫病.中国标准出版社,2000,p132-135.
    [14]Gowing DP. Comments on test of herbicide mixtures[J]. Weed Science,1960,8:379-391.
    [15]Kosman E, Cohen Y. Procedure for calculating and differentiating synergism and antagonism in action of fungicide mixtures [J]. Phytopathology,1996,86(11):1263-1272.
    [16]Gisi U. Synergistic interaction of fungicides in mixture[J]. Phytopathology,1986,86(11): 1273-1279.
    [17]Koller W, Wilcox WF. interactive effects of dodine and the DMI fungicide fenarimol in the control of apple scab[J]. Plant Disease,2000,84(8):863-870.
    [18]周明国.杀菌剂混用的增效作用与拮抗作用[A].见:周明国主编,中国植物病害化学防治进展(第二卷)[C].中国农业科技出版社,2000,pp8-17.
    [19]Akobundu IO, Aweet RD, Duke WB. A method of evaluation herbicide combinations and determining herbicide synergism [J]. Weed Science,1975,23(1):20-25.
    [20]庄敬华,高增贵,陈捷,等.5种杀菌剂对木霉菌及尖孢镰刀菌的毒力测定[J].植物保护,2005,31(3):84-86.
    [21]马志强,马慧霞,张小风,等.木霉菌和杀菌剂对植物病原菌的联合作用初探[A].科技创新与绿色植保—中国植物保护学会2006学术年会论文集,2006年,783-784.
    [22]牛赡光,张淑静,王太明,等.化学农药对棉花黄萎病菌和生防菌的选择毒性[J].中国生物防治,2006,22(1):49-53.
    [23]燕嗣皇,吴石平,陆德清,等.三唑酮对木霉根际竞争定殖的影响[J].植物病理学报,2000,30(3):266-270.
    [24]燕嗣皇,吴石平,陆德清,等.三唑酮对西瓜根际木霉菌与尖孢镰刀菌竞争定殖的影响[J].植物病理学报,2001,31(3):265-270.
    [25]鹿秀云,李社增,高胜国.5种化学杀菌剂对枯草芽孢杆菌NCD-2菌体及芽抱的影响[J].植物病理学报,2005,35(6)(ZK):173-175.
    [26]牛赡光,江树人,唐文华.多菌灵残留动态与荧光菌P32在棉花根部的定殖及防治黄萎病的关系[J].棉花学报,2000,12(1):22-26.
    [27]牛赡光,江树人.多菌灵对荧光假单胞杆菌的正向调控作用及其应用[J].植物保护学报,1999,26(2):170-176.
    [1]陈志谊,刘永锋,陆凡.井冈霉素和Bs-916协同控病作用及增效机理[J].植物保护学报,2003,30(4):429-434.
    [2]张炳欣,张平,陈晓斌.影响引入微生物根部定殖的因素[J].应用生态学报,2000,11(6):951-953.
    [3]Liljeroth E, Burgers SLCE, van Veen JA. Changes in bacterial populations along roots of wheat (Triticum aestivum L.) seedlings[J]. Biol. Fertil. Soils,1991,10:276-280.
    [4]Anderson AJ, Habibzadegah-Tari P, Tepper CS. Molecular studies on the role of a root surface agglutinin in adherence and colonization by Pseudomonas putida[J].Applied Environmental Microbiology,1988,54:375-380.
    [5]Smith KP, Handelsmand J, Goodman RM. Genetic basis in plants for interactions with disease-suppressive bacteria[J]. Proceedings of the National Academy of Sciences,1999,96: 4786-4790.
    [6]van Elsas JD, van Overbeek LS, Feldmann AM, et al. Survival of genetically engineered Pseudomonas fluorescens in soil incompetition with the parents train[J]. FEMS Microbiological Ecology,1991,85:53-64.
    [7]张彦,张惠文,苏振成,等.长期重金属胁迫对农田土壤微生物生物量、活性和种群的影响[J].应用生态学报,2007,18(7):1491-1497.
    [8]崔淑华,王开运,洪营,等.戊唑醇对土壤微生物数量和呼吸强度的影响[J].农业环境科学学报,2005,24(5):865-869.
    [9]朱鲁生,张玉凤,樊德方.辛硫磷甲氰菊酯及其混剂对土壤微生物的影响研究[J].农业环境保护,1999,18(1):25-27.
    [10]曹慧,崔中利,周育,等.甲基对硫磷对红壤地区土壤微生物数量的影响[J].土壤,2004,36(6):654-657.
    [11]邓晓,李勤奋,倪春燕,等.乐果对土壤微生物种群的影响.生态环境[J].2007,16(2):416-420.
    [12]李霞,潘开,高平,等.农药对土壤微生物和酶活性的影响[J].安徽农业科学,2007,35(21):6510-6512.
    [13]王秀丽,徐建民,姚槐应,等.重金属铜、锌、镉、铅复合污染对土壤环境微生物群落的影响[J].环境科学学报,2003,23(1):22-27.
    [14]Bisessar S. Effect of heavy metals on microorganisms in soils near a secondary lead smelter [J]. Water, air and soil pollution,1982,17:305-308.
    [15]Claudia G, Mark K. Identification of the copper regulon in saccharomyces cerevisiae by DNA microarrays [J]. Journal of Biological Chemistry,2000,275(41);32310-32316.
    [16]Hao ZQ, Chen SL. Cloning, espresson and characterizeation of cadmium and manganese uptake genes from Lactobacillus plantarum [J]. Applied and Environmental Microgiology,1999,65(11); 4746-4752.
    [17]Perry J, Carol A. Role of a candida albicans P1-type ATPase in resistance to copper and silver ion toxicity[J]. Journal of Bacteriology,2000,182(17);4899-4905.
    [18]张孝飞,林玉锁,石利利,等.江苏高邮市农田土壤环境质量状况研究[J].环境科学学报,2006,26(4):684-693.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700