用户名: 密码: 验证码:
大豆疫霉根腐病抗性评价、基因定位及抗性相关基因的筛选
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大豆疫霉引起的大豆疫霉根腐病是严重影响大豆生产的毁灭性病害之一,能在大豆的任何生育期进行侵染并造成危害,广泛分布于世界各大豆产区。目前该病已经在我国一些大豆主要产区发生和为害,并在局部地区造成较大产量损失,对我国的大豆生产造成很大的危害。
     应用抗、耐病品种是控制大豆疫霉根腐病的最经济有效的方法。掌握一个地区生理小种的类型,是选用抗源并进行有针对性、有成效地选育抗病品种的科学依据。抗病育种的关键是合理利用抗源,不断筛选和发掘新的抗源。拓宽基因资源、减轻新生理小种对生产造成的压力,是推进抗病育种进程的保证。大豆对疫霉根腐病的抗性由两类基因所决定。一类是由单基因或寡基因(Rps)控制的质量性状抗病性(即符合基因对基因假说),可以抵御病害的扩展,迄今已经在4个大豆连锁群的8个位点上鉴定并命名了14个抗病基因,然而大豆疫霉变异迅速,新的小种不断出现,现可以侵染所有含已知抗病基因的品种。另外一类抗性是由多基因控制的数量性状抗病性,可以减少病害造成的损失,减轻和减缓新生理小种产生的压力。因此在寻找新的完全抗性基因外,还应关注对具有部分抗性资源的筛选,获得具有较高部分抗性的品种。
     本研究主要针对在南京农业大学江浦试验站分离得到的菌株进行毒性鉴定,对新的生理小种进行抗源筛选,对抗性基因进行SSR分子标记,确定抗性基因所处的连锁群并进行精确定位;利用大豆芯片筛选大豆疫霉根腐病抗病相关基因,初步了解大豆抗大豆疫霉根腐病的分子机制。主要研究结果如下:
     1、大豆疫霉的分离及毒性鉴定2005、2006年夏在南京农业大学江浦农场试验田发生了比较严重的大豆根腐病,采用特异性PCR检测到发病组织中有大豆疫霉,经室内诱捕和分离,从发病田块的土壤和发病植株上共分离到4个大豆疫霉菌株PNJ1、PNJ2、PNJ3和PNJ4。用含有不同抗病基因的14个鉴别寄主测定这4个大豆疫霉菌株的毒力公式,PNJ1和PNJ2的毒力公式相同,为1d,2,3b,3c,4,6,7; PNJ3为1a,1b,1c,1d,1k,2,3b,3c,5,7; PNJ4为1a,1b,1c,1d,1k,2,3b,3c,4,6,与国际上已经报道的大豆疫霉菌株的毒力公式不同,为新的生理小种
     2、抗源筛选(1)完全抗性的筛选:采用下胚轴创伤接种方法鉴定611份大豆种质对3个具有不同毒力公式的大豆疫霉菌株PNJ1、PNJ3和PNJ4的完全抗性,结果表明这些种质对3个菌株共产生8种反应类型。其中,106份大豆种质对3个菌株都表现为抗病,占鉴定总数的17.3%;253份对3个菌株都表现为感病,占鉴定总数的41.4%。总体上,黄淮海地区的抗性种质最多,依次是南方地区和东北地区。按省份归类,抗3个菌株资源较多的省份依次为江苏、河南、山东、安徽。(2)部分抗性的筛选:在对PNJ1等3个菌株表现感病的大豆种质中选择农艺性状好的123份种质,采用根部创伤接种方法来鉴定其对大豆疫霉菌株PNJ1的部分抗性,筛选到47份具有较高部分抗性的大豆种质,占鉴定品种的38.2%。
     3、完全杭性的遗传分析及基因定位根据大豆品种鲁豆4号与苏88-M21对9个大豆疫霉菌株的反应类型,经基因推导发现这2个品种可能含有新的抗病基因。利用大豆疫霉菌株对鲁豆4号×诱处4号的F2:3群体和苏88-M21×新沂小黑豆的RIL群体进行抗性分析,表明鲁豆4号对大豆疫霉菌株Pm28和苏88-M21对大豆疫霉菌株Pm14的完全抗性是由1对显性主基因控制的,这2个基因暂定名为RpsLu4和RpsSu。采用集团分离分析方法(BSA),将2个抗性基因RpsLu4和RpsSu分别定位在N和O连锁群。
     4、部分抗性的遗传分析及基因定位利用“苏88-M21×新沂小黑豆”衍生的176个重组自交系(NJRISX)及其亲本为材料,以病斑长度为指标,采用主基因+多基因混合遗传模型分离分析法和WinQTL Cartographer Version 2.5软件的复合区间作图法(CIM)和多区间作图法(MIM)对部分抗性进行遗传分析和QTL定位。结果表明:苏88-M21对大豆疫霉P6497的部分抗性是由2对互补的主基因加多基因控制的,主基因遗传率为74.13%,多基因遗传率为23.79%;在QTL分析中,利用CIM检测到2个部分抗性QTL(qPR-15-1和qPR-10-2),分别位于E、O连锁群上,表型贡献率分别为13.95%,8.25%。利用MIM检测到3个QTL(qPR-15-1、qPR-10-2和qPR-6-3),分别位于C2、E和O连锁群上,表型贡献率为4.30%-15.90%。利用2种方法检测到的2个QTL(qPR-15-1和qPR-10-2)区间相同。
     5、抗性相关基因的筛选与分析利用大豆基因组寡聚核苷酸芯片,分析大豆抗病品种苏88-M21在大豆疫霉侵染幼龄大豆下胚轴后基因的表达情况,获得了688个差异表达明显的探针,代表了665个受大豆疫霉诱导的差异表达基因,主要包括病程相关蛋白、防卫反应基因、转录因子、信号转导因子等。在接种大豆疫霉后上调表达的基因主要是与抗病相关的基因,包括PR5蛋白、过氧化物酶、谷胱甘肽转移酶等;下调表达的基因有与细胞壁形成相关的基因,包括富含脯氨酸的细胞壁蛋白、木葡聚糖转葡糖苷酶等。本研究选择9个与抗病相关的大豆基因和1个大豆疫霉基因进行实时定量RT-PCR分析,以验证基因芯片的结果,结果表明这10个基因在大豆接种大豆疫霉后不同时间的表达情况与基因芯片的结果基本一致,说明基因芯片的数据是可靠的。
Phytophthora root rot caused by Phytophthora sojae Kaufmann &. Gerdemann (P. sojae), is one of the most devastating diseases of soybean throughout soybean-growing regions all over the world. P. sojae can infect soybean plants throughout the growing season under saturated soil conditions. In China, P. sojae mainly exists in three soybean ecological regions including the Northeast region, the Huang-Huai-Hai region and the Southern region, and induces loss in yield and seed quality in main soybean production regions.
     Utilization of resistance varieties is the most economical and environmentally safe method for controlling this disease. The scientific basis of effectively selecting resistance varieties is to know the type of physiological race. The keys of breeding for resistance are rational using of resistance, screening and searching new sources of resistance. Broadening the genetic resources, reducing the pressure of new pathogenic P. sojae races is the guarantee of resistance breeding process. The genetics of resistance to P. sojae is complex. The major sources of resistance are a series of single dominant host resistance genes (Rps genes). There were 14 Rps genes mapped to four molecular linkage groups at 8 different loci that provide race-specific resistance. Molecular markers linked to these of the known phytophthora resistance genes have been reported. However, continuous and enhanced uses of stable Rps genes in soybean cultivars against P. sojae races has created selection pressures for the evolution of new pathogenic P. sojae races that can overcome resistance conferred by these genes. In addition to the Rps genes, soybean has partial resistance, which has been shown to limit the lesion growth rate of pathogen in host tissue. The resistance is a relatively high heritable, quantitative trait, and controlled by several genes. Therefore, we should pay attention to the screening of the partial resistance to P. sojae, except for the complete resistance.
     The main goals of this study were:(1) to isolate and identify P. sojae in Nanjing; (2) to investigate the distribution of Phytophthora resistant sources, identify new sources of complete resistance and partial resistant resources to P. sojae; (3) to discover genetic mechanism of reisistance to P. sojae and map reisistant gene; (4) to understand the resistant mechanism to P. sojae in soybean.
     1. Identification and race of Phytophthora sojae. Soybean root rot caused severely losses in Jiangpu Farm, Nanjing Agricultural University during the growing season of 2005 and 2006. P. sojae was detected by a rapid and specific PCR in diseased tissues. Four isolates (PNJ1, PNJ2, PNJ3 and PNJ4) were isolated from diseased tissues of soybean and soil samples, and identified as Phytophthora sojae Kanfman & Gerdemann. By using the method of hypocotyls inoculation on 14 differential hosts, PNJ1, PNJ2, PNJ3 and PNJ4 were identified as new races, and their virulence formula is 1d,2,3b,3c,4,6,7; 1d,2,3b,3c,4,6,7; 1a,1b,1c,1d,1k,2,3b,3c,5,7; and 1a,1b,1c,1d,1k,2,3b,3c,4,6, respectively. This research may provide useful information for breeding and using resistant varieties in Jiangsu area.
     2. Resistance identifity.611 soybean germplasm candidate resources from three ecological zones were evaluated for their responses to 3 P. sojae strains PNJ1, PNJ3 and PNJ4 using the hypocotyl inoculation technique.611 soybean germplasm resources elicited 8 different reaction types with 3 strains. Of all resources,106 were resistant and 253 were susceptible to the 3 strains. Among 611 soybean germplasms, the germplasm from Huang-Huai-Hai region were highly resistant to 3 P. sojae, while soybean germplasm from Southern region were lower and the Northeast region were the lowest. The percentage of germplasm with resistance to 3 P. sojae was the highest from the province of Jiangsu, and relativity high from Henan, Shandong and Anhui. The 123 soybean germplasm lines, which exhibited good agronomic characters and were identified as susceptible to three P. sojae isolates in the hypocotyl inoculation test, were evaluated for partial resistance to PNJ1 using the slant board assay. The results showed that 47 cultivars (38.2%) were high level of partial resistance to PNJ1 of P.sojae.
     3. Inheritance analysis and gene mapping of complete resistance. Chinese soybean cultivar (line) Ludou4 and Su88-M21 had the different reaction to the 9 P. sojae isolates and might contain novel resistance loci or alleles. Two soybean populations, the F2:3 population derived from Ludou4 (resistant)×Youchu4 (susceptible) and the F2:7:11 RIL derived from Su88-M21 (resistant)×Xinyixiaoheidou (susceptible), were identified the genes for resistance to P. sojae and mapped these genes to linkage groups. The results showed that the complete resistances in Ludou4 to strain Pm28 and Su88-M21 to strain Pm14 were controlled by a single dominant gene (Rps), and the two resistance genes were temporarily designated RpsLu4 and RpsSu. RpsLu4 was located on molecular linkage group N and closely linked with Satt631 and Sat_186. RpsSu was a novel phytophthora resistance gene to be first found on molecular linkage group O, and flanked by Satt358 and Sat_242 with genetic distances 3.5 cM and 7.4 cM.
     4. Inheritance analysis and gene mapping of partial resistance. The partial resistance of the RIL population NJRISX derived from Su88-M21×Xinyixiaoheidou was used to study the inheritance of partial resistance. Genetic analysis was performed under major gene plus polygene mixed inheritance model in the P1, P2, F2:7:11 of the cross "Su88-M21×Xinyixiaoheidou". QTL mapping for partial resistance in soybean was carried out by the methods of composite interval mapping (CIM) and multiple interval mapping (MIM) of software WinQTL Cartographer Version 2.5. The results showed that the partial resistance of Su88-M21 to P. sojae P6497 was controlled by two major genes plus polygenes in the RIL population with the major gene heritability being 74.13%, and polygene heritability being 23.79%. With CIM, two QTLs (qPR-15-1 and qPR-10-2) associated with partial resistance were identified on MLG E, MLG O, explaining 13.95%,8.25% of the phenotypic variation, respectively. With MIM, three QTLs (qPR-15-1, qPR-10-2 and qPR-6-3), explaining 4.30%~5.90% of the total phenotypic variation were detected on three linkage groups, of which two QTLs (qPR-15-1 and qPR-10-2) were located on the same regions of linkage group E and O as that under CIM.
     5. Analysis of resistance related gene to P. sojae in soybean. The expression of genes in hypocotyls inoculated P. sojae of soybean was studied by using soybean genome chip (Genechip(?) SoyGenome Array, Affymetrix). A totally of 688 probe sets, on behalf of 665 transcripts were identified with differential expressions at different times post inoculation, including pathogen related proteins, defense genes, transcription factors, signal transduction cell structure etc. The upregulated genes with similarity to PR5 protein, peroxidases, glutathione transferase fell into the functional category of defense. Downregulated genes include those with similarity to cell-wall-associated protein, such as proline-rich protein, and xyloglucan endotransglycosylase. To confirm gene chip hybridization result,9 resistant related genes of soybean and 1 gene of P. sojae were selected for real time RT-PCR analysis. The similar results were obtained between gene chip and real time RT-PCR.
引文
1. 陈长卿,康振生,王晓杰,等.大豆疫霉的分子检测[J].西北农林科技大学学报(自然科学版),2005,33(3):73-77
    2. 陈庆河,翁启勇,王源超,等.福建省大豆疫病病原鉴定及其核糖体DNA-ITS序列分析[J].植物病理学报,2004,34(2):112-116
    3. 陈晓玲,朱振东,杜青,等.大豆品种(系)抗疫霉根腐病基因的连锁SSR标记分析[J].植物病理学报,2008,38(1):75-82
    4. 陈晓玲,朱振东,王晓鸣,等.大豆品种(系)抗疫霉根腐病基因推导[J].中国农业科学,2008,41(4):1227-1234
    5. 崔佳欣,孟军,朱荣胜.大豆表达序列标签(ESTs)研究进展[J].东北农业大学学报,2009,40(2): 123-126
    6. 丁俊杰,马淑梅,严森.防治大豆疫霉病田间药剂筛选试验[J].黑龙江农业科学,2001,4:1-4
    7. 窦坦德,李宝笃,沈崇尧.快速检测大豆疫霉菌的酶联免疫吸附技术[J].植物检疫,1997,11(3):138-142
    8. 方宣钧,吴为人,唐纪良.作物DNA标记辅助育种[M].北京科学出版社,2001
    9. 盖钧镒,章元明,王健康.植物数量性状遗传体系[M].北京科学出版社,2003
    10.韩晓增,何志鸿,张增敏.大豆主要病虫害防治技术[J].大豆通报,1998,6:5-6
    11.韩英鹏,李文滨,Kang F Y,等.耐大豆疫霉根腐病QTL定位的研究[J].大豆科学,2006,25(1):23-27
    12.胡喜平,丁俊杰,马淑梅,等.大豆疫霉病抗性遗传规律的研究及抗源创新[J].中国油料作物学报,2004,26(1):78-80
    13.黄振刚,靳相成,马玉华,等.呼伦贝尔盟大豆疫病病原菌鉴定[J].内蒙古农业科技,1999,4: 21
    14.霍云龙,朱振东,李向华,等.抗大豆疫霉根腐病野生大豆资源的初步筛选[J].植物遗传资源学报,2005,6(2):182-185
    15.靳立梅,徐鹏飞,吴俊江,等.野生大豆种质资源对大豆疫霉根腐病抗性评价[J].大豆科学,2007,26(3):300-304
    16.李宝英,马淑梅,张举梅.聚氨基葡萄糖防治大豆根腐病的初步研究[J].大豆科学,1997,16(3):269-273
    17.李宝英,马淑梅.大豆疫霉根腐病的发生与防治研究[J].中国油料作物学报,1999,21(4):47-50
    18.李长松,路兴波,刘同金,等.大豆疫霉根腐病菌生理小种的鉴定及品种抗病性筛选[J].中国油料作物学报,2001,23(2):60-62
    19.李长松.大豆根腐病研究的概况[J].中国油料,1993,1:77-81
    20.李修平,韩英鹏,丁俊杰,等.与耐大豆疫霉根腐病相关的QTL分析[J].大豆科学,2008,27(4):572-575
    21.吕慧颖,孔凡江,许修宏.东北三省大豆种质资源对大豆疫霉根腐病的抗性表现[J].中国油料作物学报,2001,23(4):16-18
    22.吕慧颖,许修宏,杨庆凯.大豆疫霉根腐病菌生理学特性的初步研究[J].中国油料作物学报,2000,22(3):75-76
    23.马汇泉.大豆根腐病病原种类鉴定及其生物学研究[J].黑龙江八一农垦大学学报,1988,2:115-121
    24.马淑梅,丁俊杰,郑天琪,等.黑龙江省大豆疫霉根腐病生理小种鉴定结果[J].大豆科学,2005,24(4):260-264
    25.马淑梅,李宝英,丁俊杰.大豆疫霉根腐病抗病资源筛选及抗性遗传研究[J].大豆科学,2001,20(3):197-199
    26.马淑梅,李宝英.大豆疫霉根腐病菌生理小种鉴定结果初报[J].大豆科学,1999,18(2):151-153
    27.马淑梅.大豆疫霉根腐病3号生理小种抗性遗传及抗病种质创新[J].黑龙江大学自然科学学报,2008,25(3):347-350
    28.彭金火.大豆疫霉的土壤诱集检测[J].植物检疫,1998,12(4):198-203
    29.曲娟娟.大豆疫霉根腐病抗病基因的RAPD标记研究[D].东北农业大学硕士论文,2001
    30.饶志明,董海涛,庄杰云,等.水稻抗稻瘟病近等基因系的cDNA微阵列分析[J].遗传学报,2002,29(10):887-893
    31.沈崇尧,苏彦纯.中国大豆疫病的发现及初步研究[J].植物病理学报,1991,21(4):298
    32.苏彦纯,沈崇尧.大豆疫霉病菌在中国的发现及其生物学特性的研究[J].植物病理学报,1993,23(4):341-347
    33.孙石,赵晋铭,武晓玲,等.大豆品种RGA分析与疫霉根腐病抗性鉴定[J].作物学报,2008,34(10):1704-1711
    34.孙石,赵晋铭,武晓玲,等.黄淮海地区大豆种质对疫霉根腐病的抗性分析[J].大豆科学,2008,27(3):465-470
    35.孙石.大豆疫霉根腐病抗性的遗传分析及基因定位的初步研究[D].南京农业大学博士论文,2008
    36.王华,高峰,吴彩兰,等.新疆大豆疫霉生物学特性及生理小种鉴定[J].新疆农业科学,2008,45(1): 126-129
    37.王华,李国英,战勇,等.新疆大豆根腐病疫病鉴定初报[J].新疆农业科学,2006,43(2):106-108
    38.王健康,盖钧镒.利用杂种F2世代鉴定数量性状主基因-多基因混合遗传模型并估计其遗传效应[J].遗传学报,1997,24(5):432-440
    39.王立安,张文利,王源超,等.大豆疫霉的ITS分子检测[J].南京农业大学学报,2004,27(3):38-41
    40.王晓鸣,Schmitthenner A F,马书君.黑龙江省大豆疫霉根腐病的调查[J].植物保护,1998,24(3):9-11
    41.王晓鸣,朱振东,王化波,等.中国大豆疫霉根腐病和大豆种质抗病性研究[J].中国植物病理学报,2001,31(4):324-329
    42.王源超,郑小波,王立安,等.大豆疫霉检测试剂盒及检测技术。中国专利信息网发明专利中请号:03131531.3
    43.王子迎,王源超,张正光,等.土壤中大豆疫霉菌诱捕方法的改进[J].植物病理学报,2005,35(6):557-559
    44.王子迎,王源超,张正光,等.中国和美国大豆疫霉群体遗传结构的ISSR分析[J].生物多样性,2007,15(3):215-223
    45.王佐魁,陈中宽,闰任沛,等.呼盟农区大豆新病害-大豆疫病[J].内蒙古农业科技,2000,3:43-44
    46.文景芝,陈宏宇.大豆疫霉病菌致病性分化研究[J].中国油料作物学报,2002,24(1):63-66
    47.文景芝,张晓玲,辛敏.用多克隆抗体检测纯培养和植物体内的大豆疫霉菌[J].东北农业大学学报,2002,33(3):209-212
    48.肖迪,葛红霞,肖威.大豆疫霉根腐病的几种实验室检验方法[J].大豆通报,2006,83:36-39
    49.肖淑琴,胡远富,薛春生,等.大豆疫霉根腐病分子生物学研究进展[J].大豆科学,2005,24(2):139-143
    50.徐刚,姚银安.水杨酸、茉莉酸和乙烯介导的防卫信号途径相互作用的研究进展[J].生物学杂志,2006,26(1):48-51
    51.徐静静,王晓鸣,武小菲,等.基于细胞色素氧化酶基因和激发素基因的大豆疫霉菌特异性PCR引物[J].植物保护,2008,34(5):22-27
    52.许修宏,吕慧颖,曲娟娟,等.大豆疫霉根腐病病菌生理小种鉴定及毒性分析[J].植物保护学报,2003,30(2):125-128
    53.许修宏.大豆疫霉根腐病菌生理小种鉴定及抗源筛选研究[D].东北农业大学博士学位论文,2000
    54.许志茹,李玉花.基因芯片技术在植物研究中的应用[J].生物技术,2004,14(6):70-72
    55.杨秀芬,杨怀文,简恒.嗜线虫致病杆菌代谢物拮抗大豆疫霉[J].大豆科学,2002,21(1):52-55
    56.张淑珍,吴俊江,徐鹏飞,等.黑龙江省大豆疫霉根腐病病菌毒力类型及15号小种的首次报道[J].中国油料作物学报,2008,30(2):229-234
    57.张淑珍,徐鹏飞,吴俊江,等.大豆疫霉根腐病菌诱导下SSH文库构建及初步分析[J].大豆科学,2008,27(3):543-545
    58.张淑珍,徐鹏飞,武小霞,等.大豆疫霉根腐病菌毒素的提取及生物活性测定[J].中国农学通报,2005,21(3):252-254
    59.赵奂,赵晓刚,何奕昆,等.表达序列标签及基因芯片技术在植物抗性基因研究中的应用[J].生 物信息学,2004,2:9-121
    60.郑小波.疫霉菌及其研究技术[M].中国农业出版社,1997
    61.朱家红,彭世清.茉莉酸及其信号传导研究进展[J].西北植物学报,2006,26(10):2166-2172
    62.朱振东,霍云龙,王晓鸣,等.大豆疫霉根腐病抗源筛选[J].植物遗传资源学报,2006,7(1):24-30
    63.朱振东,王化波,王晓鸣,等.黑龙江省主要栽培大豆品种(系)对大豆疫霉根腐病的多抗性评价[J].植物遗传资源学报,2004,5(1):22-25
    64.朱振东,王化波,王晓鸣,等.中国大豆疫霉菌分布及毒力多样性研究[J].中国农业科学,2003,36(7):793-799
    65.朱振东,王晓鸣,常汝镇,等.黑龙江省大豆疫霉菌生理小种鉴定及大豆种质的抗性评价[J].中国农业科学,2000,33(1):62-67
    66.朱振东,王晓鸣,田玉兰,等.防治大豆疫霉根腐病的药剂筛选[J].农药学学报,1999,1(3):39-44
    67.朱振东,王晓鸣,王化波,等.蒙城大豆疫霉菌的鉴定及其生理小种[J].植物病理学报,2001,31(3):236-240
    68.朱振东,王晓鸣.一种适用于大豆疫霉菌研究的培养基[J].植物病理学报,1998,28(3):214
    69.朱振东.大豆疫霉根腐病的发展和防治研究进展[J].植保技术与推广,2002,22(7):40-42
    70.左豫虎,薛春生.环境条件对大豆幼苗疫病发生的影响[J].华北农学报,2002,17(4):93-95
    71. Abney T S, Melgar J C, Richards T L, et al. New races of Phytophthora sojae with Rpsl-d virulence [J]. Plant Disease,1997,81(6):653-655
    72. Allen R L, Bittner-Eddy P D, Grenville-Briggs L J, et al. Host-parasite coevolutionary conflict between Arabidopsis and downy mildew [J]. Science,2004,306:1957-1960
    73. Anderson T R, Buzzell R I. Inheritance and linkage of the Rps7 gene for resistance to phytophthora rot of soybean [J]. Plant Disease,1992,76(9):958-959
    74. Armstrong M R, Whisson S C, Pritchard L, et al. An ancestral oomycete locus contains late blight avirulence gene Avr3a, encoding a protein that is recognized in the host cytoplasm [J]. Proceeding of the National Academy of Sciences of the United States of America,2005,102:7766-7771
    75. Athow K L, Laviolette F, Mueller E H, et al. A new major gene for reisistance to Phytophthora megasperma var. sojae in soybean [J]. Phytophthology,1980,70:997-980
    76. Athow K. L. Fungal diseases. Soybeans:Improvement, Production and Uses. J. R. Wilcox, ed. American Society of Agronomy, Madison, W I,1987
    77. Baker C J, Oralandi E W. Active oxygen in plant pathogenesis [J]. Annual Review Phytopathology, 1995,33:299-321
    78. Bernard R L, Smith P E, Kaufmann M J, et al. Inheritance of resistance to phytophthora root and stem rot in soybean [J]. Agronomy Journal,1957,49:391
    79. Bhattacharyya M K, Gonzales R A, Kraft M, et al. A copia-like retrotransposon Tgmr closely linked to the Rps-1k allele that confers race-specific resistance of soybean to Phytophthora sojae [J]. Plant Molecular Biology,1997,34:255-264
    80. Bhattacharyya M K, Narayanan N N, Gao H, et al. Identification of a large cluster of coiled coil-nucleotide binding site-leucine rich repeat-type genes from the Rpsl region containing phytophthora resistance genes in soybean [J]. Journal of Theoretical and Applied Genetics,2005, 111:75-86
    81. Brazier C M. Observations on the sexual mechanism in Phytophthora palmivora and related species [J]. Transactions of the British Mycological Society,1972,58:237-251
    82. Brown-Guedira G L, Thompson J A, Nelson R L, et al. Evaluation of genetic diversity of soybean introductions and North American ancestors using RAPD and SSR markers [J].Crop Science,2000, 40:815-823
    83. Burnham K D, Dorrance A E, Francis D M, et al. Rps8, a new locus in soybean for resistance to Phytophthora sojae [J]. Crop Science,2003,43:101-105
    84. Burnham K D, Dorrance A E, VanToai T T. Quantitative trait loci for partial resistance to Phytophthora sojae in soybean [J]. Crop Science,2003,43(5):1610-1617
    85. Burnham K D, Francis D, Dorrance M, et al. Genetic diversity patterns among phytophthora resistant soybean plant introductions based SSR markers [J]. Crop Science,2002,42:338-343
    86. Buzzele R I, Anderson T R. Plant loss response of soybean cultivars to Phytophthora megasperma f. sp. glycinea under field conditions [J]. Plant Disease,1982,66:1146-1148
    87. Byrum J R, Kimbirauskas P M, Shoemaker R C, et al. Identification of a RAPD marker linked to the Rps4 gene in soybean [Glycine max (L.)Merr.] [J]. Soybean Genetics Newsletter,1993,20: 112-117
    88. Carnder M E, Hymowitz T, Xu S J, et al. Physical map location of the Rpsl-k allele in soybean [J]. Crop Science,2001,41:1435-1438
    89. Churchill G A, Doerge R W. Emprial threshold values for quantitative trait mapping [J]. Genetics, 1994,39:1464-1490
    90. Close T J, Wanamaker S, Caldo R A, et al. A new resource for cereal genomics:22 K Barley Genechip comes of age [J]. Plant Physiology,2004,1134:960-968
    91. Cregan P B, Jarvik T, Bush A L, et al. An integrated genetic linkage map of soybean genome [J]. Crop Science,1999,39:1464-1490
    92. Demirbas A, Rector B G, Lohnes D G, et al. Simple sequence repeat markers linked to the soybean Rps genes for phytophthora resistance [J]. Crop Science,2001,41:1220-1227
    93. Despres C, DeLong C, Glaze S, et al. The Arabidopsis NPR1/NIM1 protein enhances the DNA binding activity of a subgroup of the TGA family of bZIP transcription factors [J]. Plant Cell,2000, 12(2):279-290
    94. Devoto A, TurnerJ G. Regulation of jasmonate-mediated plant responses in Arabdopsis [J]. Annals of Botany,2003,92:329-337
    95. Diers B W, Mansur L, Imsande J, et al. Mapping phytophthora resistance loci in soybean with restriction fragment length polymorphism markers [J]. Crop Science,1992,32:377-383
    96. Doerge R W, Churchill G A. Permutation tests for multiple loci affecting a quantitative character [J]. Genetics,1996,142(1):285-294
    97. Dorrance A E, Mcclure S A, and DeSilva A. Pathogenic diversity of Phytophthora sojae in Ohio soybean fields [J]. Plant Disease,2003,87:139-146
    98. Dorrance A E, Schmitthenner A F. New sources of resistance to Phytophthora sojae in the soybean plant introductions [J]. Plant Disease,2000,84:1303-1308
    99. Doyle J J, Doyle J L. Isolation of plant DNA from fresh tissue [J]. Focus,1990,12:13-15
    100. Drenth A, Whisson S C, Maclean D J, et al. The evolution of races of Phytophthora sojae in Australia [J]. Phytopathology,1996,86:163-169
    101. Durrant W E, Dong X. Systemic acquired resistance [J]. Annual Review Phytopathology,2004,42: 185-209
    102. Flor H H. Current status of the gene for gene concept [J]. Annual Review of Phytopathology,1971, 7:295-296
    103. Forster H, Tyler B M, Coffey M D. Phytophthora sojae races have arisen by clonal evolution and by rare outcrosses [J]. Molecular Plant-Microbe Interactions,1994,7:780-791
    104. Fujimoto S Y, Ohta M, Usui A, et al. Arabidopsis ethylene-responsive element binding factors act as transcriptional activators or repressors of GCC box-mediated gene expression [J]. Plant Cell, 2000,12:393-404
    105. Gai J Y, Wang J K. Identification and estimation of QTL model and effects [J]. Journal of Theoretical and Applied Genetics,1998,97:1162-1168
    106. Gao H, Narayanan N N, Ellison L, et al. Two classes of highly similar coiled coil-nucleotide binding-leucine rich repeat genes isolated from the Rps1-k locus encode phytophthora resistance in soybean [J]. Molecular Plant-Microbe Interactions,2005,18(11):1035-1045
    107. Glover K D, Scott R A. Heritability and phenotypic variation of tolerance to phytophthora root rot of soybean [J]. Crop Science,1998,38:1495-1500
    108. Gordon S G, Martin S K, Dorrance A E. Rps8 maps to a resistance gene rich region on soybean molecular linkage group F [J]. Crop Science,2006,46:168-173
    109. Govers F, Gijzen M. Phytophthora genomics:the plant destroyers' genoome decoded [J]. Molecular Plant-Microbe Interactions,2006,19,1295-1301
    110. Grotewold E, Chamberlin M, Snook M, et al. Engineering secondary metabolism in maize cells by ectopic expression of transcription factors [J]. Plant Cell,1998(10):121-140
    111. Haas J H, Buzzell R I. New races 5 and 6 of Phytophthora megasperma var. sojae and different reactions of soybean cultivars for races 1 to 6 [J]. Phytopathology,1976,66:1361-1362
    112. Hansen E M, Maxwell D P. Species of the Phytophthora megasperma complex [J]. Mycologia, 1991,83(3):376-381
    113. Hanson W D. Minimumfamily sizes for the planning of genetic experiments [J]. Agronomy Journal, 1959,51:711-715
    114. Hayes A J, Guorong M, Glenn R B, et al. Molecular Marker mapping of Rsv4, a gene conferring resistance to all known strains of soybean mosaic virus [J]. Crop Science,2000,40:1434-1437
    115. Hegstad J M, Kyle D E, Nickell C D. Pod inoculation technique with Phytophthora to evaluate soybean populations for Rps alleles in field plantings [J]. Crop Science,1996,36 (6):1706-1708
    116. Hegstad J M, Nickell C D, Vodkin L O. Identifying resistance to Phytophthora sojae in selected soybean accessions using RFLP techniques [J]. Crop Science,1998,38:50-55
    117. Henry R N, Kirkpatrick T L. Two new races of Phytophthora sojae, causal agent of phytophthora root and stem rot of soybean, identified from Arkansas soybean fields [J]. Plant Disease,1995,79: 1074
    118. Hildebrand A A. A root and stalk rot of soybean caused by Phytophthora megasperma Drechsler var.sojae [J]. Canadian Journal of Botany,1959,37:927-937
    119. Jee H, Kim W, Cho W. Occurance of phytophthora root rot on soybean(Glycine max) and indentification of the causal fungus [J]. RAD Journal of Crop Protection.1998,40(1):16-22
    120. Jensen M K, Rung J H, Gregersen P L, et al. The HvNAC6 transcription factor:a positive regulator of penetration resistance in barley and Arabidopsis [J]. Plant Molecular Biology,2007,65:137-150
    121. Kalde M, Barth M, Somssich I E, et al. Members of the Arabidopsis WRKY group III transcription factors are part of different plant defense signaling pathways. Moecularl Plant-Microbe Interaction [J],2003,16(4):295-305
    122. Kamoun S. Nonhost resistance to Phytophthora:novel prospects for a classical problem [J]. Current Opinion in Chemical Biology,2001,4:295-300
    123. Kaufmann M J, Gerdemann J W. Root and stem rot of soybeans caused by Phytophthora f. sp. sojae [J]. Phytopathology,1958,48:201-208
    124. Keeling B L. Four new Physiologic race of Phytophthora megasperma f. sp. glycinea [J]. Plant Disease,1982,66:334-335
    125. Keeling B L. Phytophthora root and stem rot:Isolation, testing procedures, and seven new physiologic races [C]. World Soybean Research Conference Ⅱ. F. T. Corbin, ed. West view Press, Boulder, Colo,1980
    126. Keim P, Olson T C, Shoemaker R C.A rapid protocol for isolating soybean DNA [J]. Soybean Genetics Newsletter,1988,15:150-152
    127. Kevin L C, Wang H L, Ecker I R. Ethylene Biosynthesis and Signaling Networks [J]. Plant Cell, 2002,14:131-151
    128. Kilen T C, Hartwig E E, Keeling B L. Inheritance of a second major gene for resistance to phytophthora root rot in soybean [J]. Crop Science,1974,14:260-262
    129. Kong P, Hong C X, Steven N, et al. A species-specific polymerase chain reaction assay for rapid detection of Phytophthora nicotianae in irrigation water [J]. The American Phytopathological Society.2003,93(7):822-831
    130. Kuan T L, Erwin D C. Formae speciales differentiation of Phytophthora megasperma isolates from soybean and alfalfa [J]. Phytopathology,1980,70:333-338
    131. Kurle J E, Araby E M. Changing composition of Phytophthora sojae in Minnesota soils [J]. Phytopathology,2001,91:51
    132. Kyle D E, Nickell C D, Nelson R L, et al. Response of soybean accessions from provinces in southern China to Phytophthora sojae [J]. Plant Disease,1998,82:555-559
    133. Kyle D E, Nickell C D. Genetic analysis of tolerance to Phytophthora sojae in the soybean culture Jack [J]. Soybean Genetics Newsletter,1998,25:124-125
    134. Lam-Son P T, Kazuo N, Yoh S, et al. Isolation and functional analysis of Arabidopsis stress inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 promoter [J]. Plant Cell,2004,16(9):2481-2498
    135. Laviolette F A, Athow K L. Physiologic races of Phytophthora megasperma f. sp. glycinea in Indiana,1973-1979 [J]. Plant Disease,1981,65:884-885
    136. Laviolette F A, Athow K L. Three new races of Phytophthora megasperma f. sp. glycinea [J]. Phytopathology,1977,67:267-268
    137. Laviolette F A, Athow K L. Two new physiologic races of Phytophthora megasperma f. sp. glycinea [J]. Plant Disease,1983,67:497-498
    138. Layton A C, Athow K L, Laviotette F A. New physiologic race of Phytophthora megasperma f.sp.glycinea [J]. Plant Disease,1986,70:333-338
    139. Lee S C, Choi H W, Hwang I S, et al. Functional roles of the pepper pathogen-induced bZIP transcription factor, CAbZIPl, in enhanced resistance to pathogen infection and environmental stresses [J]. Plant Journal,2004,40(1):75-87
    140. Leitz R A, Harttnan G L, Pederson W L, et al. Races of Phytophthora sojae on soybean in Illinois [J]. Plant Disease,2000,84:487
    141. Li C S, Li L, Qi J S, et al. Identification of physiological races of Phytophthora sojae in Heilongjiang Province. Proceedings:The Frist Asian Conference on Plant Pathology[C]. China Agricultural Science and Technology Press,2000:79
    142. Li S, Hartman G L. Molecular detection of Fusarium solani f. sp. glycines in soybean roots and soil [J]. Plant Pathology,2003,52:74-83
    143. Linda L. Inoculation of soybean seedlings with zoospores of Phytophthora megasperma var. sojae for pathogenicity and race determination [J]. Phytopathology,1978,68:1769-1773
    144. Lohnes D G, Nickell C D, Schmitthenner A F. Origin of soybean alleles for phytophthora resistance in China [J]. Crop Science,1996,36:1689-1692
    145. Malvick D K, Grunden E. Traits of soybean-infecting Phytophthora populations from Illinois agricultural fields [J]. Plant Disease,2004,88:1139-1145
    146. Mare C, Mazzucotelli E, Crosatti C, et al. Hv-WRKY38:a new transcription factor involved in cold-and drought-response in barley. Plant Molecular Biology [J],2004,55(3):399-416
    147. McBlain B A, Hacker J K, Zimmerly M M, et al. Tolerance to phytophthora rot in soybean:Ⅱ. Evaluation of three tolerance screening methods [J]. Crop Science,1991,39:1687-1691
    148. McBlain B A, Schmitthenner A F. Evaluation of recurrent selection for phytophthora tolerance in soybean. Ohio Agricultural Research and Extension Center Bull. Ohio Agricultural Research and Development Center, Wooster,1991
    149. McBlain B A, Zimmerly M M, Schmitthenner A F, et al. Tolerance to phytophthora rot in soybean: I. studies of the cross 'Ripley'×'Harper'[J]. Crop Science,1991,31,1405-1411
    150. Meng X Q, Shoemaker R C, Yang X B. Analysis of pathogenicity and genetic variation among Phytophthora sojae isolates using RAPD [J]. Mycological Research,1999,103(2):173-178
    151. Michelmore R W, Paran I, Kesseli R V. Identification of markers linked to disease resistance genes by bulked segregant analysis:A rapid method to detect markers in specific genomic region by using segregating population [J]. Proceeding of the National Academy of Sciences of the United States of America,1991,88:9828-9832
    152. Mideros S, Nita M, Dorrance A E. Characterization of components of partial resistance, Rps2, and root resistance to Phytophthora sojae in soybean [J]. Phytopathology,2007,95:655-662
    153. Morgan F L, Hartwig E E. Physiologic specialization in P. me. var. sojae [J]. Phytopathology,1965, 55:1277-1279
    154. Morrison R H. Inoculation of detached cotyledons for screening soybeans against two races of Phytophthora megasperma var. sojae [J]. Crop Science,1978,18:1089-1091
    155. Mueller E H, Athow K L, Laviolette F A. Inheritance of resistance to four physiologic races of Phytophthora megasperma var. sojae [J]. Phytopathology,1978,68:1318-1332
    156. Narayanan N N, Grosic S, Tasma I M, et al. Identification of candidate signaling genes including regulators of chromosome condensation 1 protein family differentially expressed in the soybean-Phytophthora sojae interaction [J]. Journal of Theoretical and Applied Genetics,2009, 118:399-412
    157. Niu X T, Yang X B, Lundeen N, et al. Changes in Phytophthota sojae races in Iowa soybean fields [J]. Phytophthology,2003,93:266
    158. Osburn R M, Milner J L, Oplinger E S, et al. Effect of Bacillus cereus UW85 on the yieid of soybean at two field sites in Wisconsin [J]. Plant Disease,1995,79:551-556
    159. Pazdernik D L, Hartman G L, Huang Y H, et al. A greenhouse technique for assessing phytophthora root rot resistance in Glycine max and G. Soja [J]. Plant Disease,1997,81(10): 1112-1114
    160. Polzin K M, Lohnes D G, Anderson T R, et al. Evaluation of four Japanese soybean cultivars for Rps alleles conferring resistance to Phytophthora megasperma f. sp. glycine [J]. Canadian Journal Plant Science,1992,72:217-220
    161. Pontier D, Balague C, Roby D. The hypersensitive response:a programmed cell death associated with plant resistance [J]. Molecular biology and genetics,1998,321:721-734
    162. Riechmann J L, Heard J, Martin G, et al. Arabidopsis transcription factors:genome-wide comparative analysis among eukaryotes [J]. Science,2000,290:2105-2110
    163. Ryley M J, Obst N R, Irwin J A G, et al. Changes in the racial composition of Phytophthora sojae in Australia between 1979 and 1996 [J]. Plant Disease,1998,82:1048-1054
    164. Schmitthenner A F, Bhat R G. Useful methods for studying Phytophthora in the laboratory [J]. Ohio Agricultural Research and Development Centter. Special. Circular,1994,143:7-8
    165. Schmitthenner A F, Hobe M, Bhat R G. Phytophthora sojae races in Ohio over a 10-year interval [J]. Plant Disease,1994,78:269-276
    166. Schmitthenner A F, Sinclair J B, Backman P A. Compendium of Soybean Diseases [M]. Third Edition. St. Paul, MN:APS Press. The American Phytopathological Society,1989
    167. Schmitthenner A F. Evidence for a new race of Phytophthora megasperma var. sojae pathogenic to soybean [J]. Plant Disease,1972,56:536-539
    168. Schmitthenner A F. Problems and progress in control phytophthora root rot of soybean [J]. Plant Disease,1985,69(4):362-368
    169. Schmitthenner A, Van Doren D M. Integrated control of root rot of soybean caused by Phytophthora megasperma f. sp. glycinea. Ecology and Management of Soilborne Plant Pathogens. The American Phytopathological Society,1985
    170. Schwenk F W, Sim T. Race 4 of P. sojae from soybean proposed [J]. Plant Disease Reporter,1974, 58:352-354
    171. Shan W, Cao M, Leung, D, et al. The Avrlb locus of Phytophthora sojae encodes an elicitor and regulator required for avirulence on soybean plants carrying resistance gene Rps1b [J]. Molecular Plant-Microbe Interactions,2004,17,394-403
    172. Skotland C B A. Phytophthora damping-off disease of soybean [J]. Plant Disease Reporter,1995, 39:682-683
    173. Song Q J, Marek L F, Shoemaker R C, et al. A new integrated genetic linkage map of the soybean [J]. Journal of Theoretical and Applied Genetics,2004,109:122-128
    174. Tao Y, Xie Z, Chen W, et al. Quantitative nature of Arabidopsis responses during compatible and incompatible interactions with the bacterial pathogen Pseudomonas syringee [J]. Plant Cell,2003, 15:317-330
    175. Torto-Alalibo T A, Tripathy S, Smith B M, et al. Expressed sequence tags from Phytophthora sojae reveal genes specific to development and infection [J]. Molecular Plant-Microbe Interactions,2007, 20(7):781-793
    176. Turner J G, Ellis C, Devoto A. The jasmonate signal pathway [J]. Plant Cell,2002,14:153-164
    177. Tyler B M, Tripathy S, Zhang X, et al. Phytophthora genome sequences uncover evolutionary origins and mechanisms of pathogenesis [J]. Science,2006,313:1261-1266
    178. Tyler, B M. Phytophthora sojae:root rot pathogen of soybean and model oomycete [J]. Molecular Plant Pathology,2007,8:1-8
    179. Ulker B, Somssich I E. WRKY transcription factors:from DNA binding towards biological function [J]. Current Opinion in Plant Biology,2004,7(5):491-498
    180. Vega-Sanchez M E, Redinbaugh M G, Costanzo S, et al. Spatial and temporal expression analysis of defense-related genes in soybean cultivars with different levels of partial resistance to Phytophthora sojae [J]. Physiology Molecular Plant Pathology,2005,66:175-182.
    181. Wagner R E, Wickinson T H. A new physiologic race of Phytophthora sojae on soybean [J]. Plant Disease,1992,76:212
    182. Walker A K, Schmitthenner A F. Heritability of tolerance to rot in soybean [J]. Crop Science,1984, 24:490-491
    183. Wang Y C, Zhang W L, Wang Y, et al. Rapid and sensitive detection of Phytophthora sojae in soil and infected soybeans by species-specific polymerase chain reaction assays [J]. The American Phytopathological Society,2006,96(2):1315-1321
    184. Waterhouse G M. Key to the species of Phytophthora de Bary. Commonw. Mycol. Inst., Mycological Paper,1963,92:1-22
    185. Weng C G, Yu K. F, Anderson T, et al. A quantitative trait locus influencing tolerance to phytophthora root rot in the soybean cultivar 'Conrad'[J]. Euphytica,2007,158:81-86
    186. Weng C, Yu K, Anderson T R, et al. Mapping genes conferring resistance to phytophthora root rot of soybean, Rps1a and Rps7 [J].The Journal of Heredity,2001,92:442-446
    187. Whisson S C, Drenth A, Maclean D J, et al. Evidence for outcrossing in Phytophthora sojae and linkage of DNA marker to two avirulence genes [J]. Current Genetics,1994,27:77-82
    188. Whisson S C, Drenth A, Maclean D J, et al. Phytophthora sojae avirulence genes, RAPD, and RFLP markers used to construct a detailed genetic linkage map [J]. Molecular Plant Pathology, 1995,8:988-995
    189. White D M, Partridge J E, Williams J H. Race of Phytophthora megasperma f. sp. glycinea on soybean in eastern Nebraska [J]. Plant Disease,1983,67:1281-1284
    190. Wrather J A, Anderson T R, Arsyad D M, et al. Soybean disease loss estimates for the top ten soybean-producing countries in 1994 [J]. Plant Disease,1997,81:107-110
    191. Wrather J A, Chamber, A Y, Fox J A, et al. Soybean disease loss estimates for the southern United States,1974 to 1994 [J]. Plant Disease,1995,79:1076-1079
    192. Wrather J A, Stienstra W C, Koenning S R. Soybean disease loss estimates for United States from 1996 to 1998 [J].Canadian Journal Plant Pathology,2001,23:122-131
    193. Wrather J A, Stienstra W C, Koenning S R. Soybean disease loss estimates for the top ten soybean-producing countries in 1998 [J]. Canadian Journal Plant Pathology,2001,23:115-121
    194. Xie Z, Zhang Z L, Zou X, et al. Annotations and functional analyses of the rice WRKY gene superfamily reveal positive and negative regulators of abscisic acid signaling in aleurone cells [J]. Plant Physiology,2005,137(1):176-189
    195. Yang X B, Ruff R L, Meng X Q, et al. Races of Phytophthora sojae in Iowa soybean fields [J]. Plant Disease,1996,80:1418-1420
    196. Zabeau M, Vos P. Selective restriction fragment amplification:a general method for DNA fingerprinting. European Patent Application No.0534858 A 1. European Patent Office, Paris.1993
    197. Zhou L C, Mideros S X, Bao L, et al. Infection and genotype remodel the entire soybean transcriptome [J]. BMC Genomics,2009,10(49):1471-2164
    198. Zietkiewicz E, Rafalski A, Labuda D. Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification [J].Genomics,1994,20(2):176-183
    199. Zou J J, Singh R J, Lee J, et al. Assignment of molecular linkage groups to soybean chromosomes by primary trisomics [J]. Journal of Theoretical and Applied Genetics,2003,107:745-750

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700