用户名: 密码: 验证码:
烟草靶斑病菌遗传分化、侵染特性及致病机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
烟草靶斑病(tobacco target spot)是近年来我国新报道的一种烟草叶部病害,危害严重,该病害对烟草的产量和品质有显著的影响,但是国内缺乏文献记载。鉴于此,本文针对烟草靶斑病菌(Rhizoctonia solani Kiihn)的遗传分化、侵染特性和致病机理进行了系统研究,研究结果如下:
     1.首次明确了我国烟草靶斑病菌的菌丝融合群为AG-3,以及病菌的致病类型,即强致病类型、中等致病类型和弱致病类型。对采自辽宁各地区的58个烟草靶斑病菌菌株进行了融合群测定,确定在我国引起烟草靶斑病的立枯丝核菌属于AG-3融合群;并对病菌的核糖体DNA内转录间隔区(ITS)序列进行了分析,通过GenBank进行序列同源性比对,结果表明,病菌的rDNA ITS序列长度为653bp,其与引起番茄叶部病害的立枯丝核菌(AG-3融合群)的ITS序列的同源性高达100%,从分子水平上也证明了烟草靶斑病菌属于AG-3融合群,从形态学和分子水平上对烟草靶斑病菌进行了准确的分类鉴定;并从中选出16个有代表性的烟草靶斑病菌菌株进行了致病力测定,根据供试菌株在烟草品种NC89、K326、云烟85和G80的抗感反应,可将这16个菌株划分为3个致病类型,即强致病类型、中等致病类型和弱致病类型,表明我国烟草靶斑病菌的致病力存在明显分化,但致病类型的分布与菌株的地理来源无明显的相关性。
     2.应用RAPD和ISSR两种分子标记方法对我国烟草靶斑病菌进行遗传多样性分析,从分子水平探索烟草靶斑病菌的遗传演变和进化,并系统分析了RAPD和ISSR分组与菌株的地理来源和致病性的相互关系。利用优化的反应体系,筛选出9条RAPD引物和7条ISSR引物分别对供试的16个烟草靶斑病菌菌株进行扩增,分别扩增出111和83条带,多态条带比率分别为64.86%和68.67%;RAPD标记的菌株间的相似系数范围分别为0.63-0.93,在相似系数0.74处被划分成3个类群,ISSR标记的菌株间的相似系数范围分别为0.61-0.94,在相似系数0.75处被划分为3个类群。RAPD和ISSR分析结果均表明,我国烟草靶斑病菌群体具有丰富的遗传多样性和明显的遗传分化现象,遗传聚类组群与烟草靶斑病菌菌株的地理来源具有一定的相关性,而与菌株的致病性无明显的相关性。并利用RAPD和ISSR方法对烟草靶斑病菌菌株和引起其它病害的立枯丝核菌菌株进行了遗传多样性分析,结果表明,烟草靶斑病菌菌株间的亲缘关系最近,而与引起其它病害的立枯丝核菌菌株的亲缘关系较远,它们之间存在较大的遗传差异。
     3.研究了烟草靶斑病菌的侵染特性,并首次明确了烟草靶斑病菌与重要病菌如水稻纹枯病菌和玉米纹枯病菌的交互致病性。研究结果表明,烟草靶斑病菌以菌丝体或菌丝体随病残体在土壤中越冬,或菌丝体在病残体中越冬;病菌可通过烟草叶片气孔和伤口侵入,伤口更有利于病菌侵入;病菌可侵染烟草苗期和成株期的茎部,引起烟草立枯病和茎基腐病,病菌也可以侵染烟草叶片的主脉和侧脉。对病菌的侵染过程进行观察,发现病菌在接种24h时开始侵入烟草叶片组织,接种24~48h内菌丝迅速在细胞间和细胞内扩展,受侵细胞被破坏,最终死亡。确定了病菌适宜的侵染条件,最适温度为25~30℃;保湿和接种时间越长越有利于发病;12h光照12h黑暗和连续黑暗的条件对病菌的侵染有利,而连续光照对其有明显的抑制作用。对20个烟草品种的抗性研究发现,VRG2最为抗病,发病率为25%。寄主范围测定结果表明,烟草靶斑病菌可侵染烟草、番茄、茄子、辣椒、黄瓜、冬瓜和苋色藜,其中茄子的发病率最高为97.5%。交互致病性测定结果表明,烟草靶斑病菌不能侵染水稻、玉米和白菜,但水稻纹枯病菌、玉米纹枯病菌、白菜丝核菌叶腐病菌、烟草立枯病菌和烟草茎基腐病菌均能侵染烟草叶片。通过田间试验,对该病害进行损失估计,统计结果表明产量损失率和产值损失率与病级均呈显著的正相关,病级越高,产量和产值损失越大,并建立了关系模型。选用10种药剂对烟草靶斑病菌进行室内抑菌试验,建立了各药剂的毒力回归方程并计算出EC50,结果表明,烯唑醇、菌核净、嘧肽菌净、退菌特和代森锰锌对该病菌具有较强的抑制作用,可作为防治该病害的首选药剂。
     4.明确了烟草靶斑病菌产生的毒素的基本性质及其致病机理。试验通过活性炭吸附、甲醇洗脱、旋转蒸发浓缩的方法,从烟草靶斑病菌的Richard培养滤液中获得了黄褐色粗毒素,该毒素能够使烟草叶片产生与靶斑病类似的病斑,而且还能抑制种子萌发和胚根生长,导致幼苗萎蔫。明确了病菌产毒的最佳培养条件,即pH值6~7的Richard培养液,温度25℃,黑暗每12h振荡1次条件下培养15~20d。对毒素的基本性质进行研究,结果表明该毒素具有热稳定性、光稳定性和耐储藏性,它是一类易溶于水的非蛋白类的极性物质。研究探讨了毒素对烟苗叶片组织中的抗性相关生理生化指标的影响,结果表明,毒素可激活烟草叶片中POD、PPO、CAT和PAL活性,而抑制SOD活性,受害叶片的叶绿素和可溶性糖含量显著下降,而可溶性蛋白、丙二醛和游离脯氨酸含量明显升高,组织浸出液的相对电导率也显著升高,这些指标的变化表明了毒素对烟草有明显的毒害作用,同时也表明了毒素可引起烟草体内的防御反应,以抵抗毒素造成的伤害。不同致病力烟草靶斑病菌菌株的产毒素能力也不同,强致病力菌株YC-9的产毒能力比弱致病力菌株LF-1强。
     5.明确了烟草靶斑病菌产生的细胞壁降解酶的致病机理,强致病力菌株的产酶能力显著高于弱致病力菌株。烟草靶斑病菌在人工Marcus培养液中能产生果胶酶(PG、PMG、PGTE、PMTE)和纤维素酶(Cx、β-葡萄糖苷酶),其中PG活性最高。明确了最佳产酶条件,Cx和β-葡萄糖苷酶的最适培养时间为10d,而PG、PMG、PGTE和PMTE为12d;培养最适温度为25℃;Cx、β-葡萄糖苷酶、PG和PMG的最适pH值为5,而PGTE和PMTE的最适pH值为6;静置培养和连续黑暗条件利于酶的产生。烟草叶片不同病斑部位酶活性不同,其中病健交界处细胞壁降解酶活性最高。烟草靶斑病菌与烟草互作过程中细胞壁降解酶活性测定结果表明,病菌侵染叶片后,PG、PMG. PMTE、PGTE、Cx、β-葡萄糖苷酶活性均显著升高,其中Cx和β-葡萄糖苷酶活性最高,其次为PG和PMG,而PMTE和PGTE活性很低。病菌产生的细胞壁降解酶液能够使烟草叶片产生病斑,混合酶对叶片的损伤作用明显高于单一酶,果胶酶的损伤作用高于纤维素酶。对不同致病力烟草靶斑病菌菌株的产酶能力进行比较,结果表明强致病力菌株YC-9的产酶能力显著高于弱致病力菌株LF-1。
     6.通过同源获取基因中间片段和RACE方法克隆得到一个与烟草靶斑病菌致病性相关的基因,即病菌的内切多聚半乳糖醛酸酶(endo-PG)基因。病菌endo-PG基因的cDNA全长序列为1399 bp, CDS区长1086 bp,编码361个氨基酸。
Tobacco target spot is a newly-found and seriously harmful leaf disease of tobacco in China in recent years, and quality and yield of tobacco leaves are seriously affected, which runs short of references. Given that, the genetic differentiation, infection characteristics and pathogenic mechanism of Rhizoctonia solani were systematically studied. The results were as follows:
     1. Anastomosis group of R. solani isolates from tobacco target spot was first defined to AG-3, and the isolates could be classified into three pathogenic types, including strong pathogenic type, moderate pathogenic type and weak pathogenic type. Fifty-eight isolates were isolated from tobacco target spot disease samples which were collected from Liaoning tobacco productive areas. The test of anastomosis groups (AGs) indicated that all the isolates belong to AG-3. The rDNA ITS sequence of the R. solani strain YC-9 was PCR amplified and sequenced. And then, the ITS sequence was compared and analyzed with the nucleic acid sequences of GenBank database. The result showed that the ITS sequence was 653bp in length, and the homology of ITS sequence of YC-9 and that of the R. solani(AG-3) isolate from tomato foliar blight was 100 percent. The analysis result of rDNA ITS sequence was consistent with that of morphology. Select 16 representative isolates for the analysis of pathogenic type. The result showed that there were significantly different in pathogenicity among isolates by inoculation of the four tobacco varieties, including NC89, K326, Yunyan 85 and G80. They could be classified into three pathogenic types. The result suggested that the R. solani isolates of tobacco target spot had clear pathogenicity differentiation and there was no significant correlation between the distributions of the pathogenic types and geographic locations of R. solani isolates.
     2. Genetic diversity of 16 R. solani isolates of tobacco target spot was analyzed by RAPD and ISSR. Heredity variation and evolution of the pathogen were explored on molecular level. The correlation of RAPD or ISSR grouping and geographic location or pathogenicity of the isolates was systematically analyzed.9 RAPD primers and 7 ISSR primers were screened to amplify 16 isolates using optimal reaction system. The results showed that the 9 RAPD primers and 7 ISSR primers obtained 111 and 83 scored bands respectively, and the ratio of polymorphic bands was 64.86% and 68.67% respectively. Similarity coefficient of RAPD among the isolates was from 0.63 to 0.93, and when similarity coefficient was 0.74, the isolates were divided into three groups. Similarity coefficient of ISSR among the isolates was from 0.61 to 0.94, and when similarity coefficient was 0.75, the isolates were divided into three groups. The analysis results of RAPD and ISSR all suggested that there were rich genetic diversity and remarkable genetic differentiation among 16 R. solani isolates of tobacco target spot, and genetic cluster groups had certain correlation with geographic location, but no significant correlation with pathogenicity of the isolates. Genetic diversity of 16 R. solani isolates of tobacco target spot and R. solani isolates of other plant diseases was analyzed by RAPD and ISSR. The results indicated that there was closest genetic relationship among 16 R. solani isolates of tobacco target spot, but they showed remote affinity to R. solani isolates of other plant diseases, and there were greater genetic differences between them.
     3. Study on the infection characteristics of R. solani of tobacco target spot, and first define the relationship of interactive pathogenicity between R. solani isolate of tobacco target spot and R. solani isolates of corn sheath blight and rice sheath blight. The results showed that mycelium of R. solani or mycelium with host residue overwintered in the soil, or mycelium in host residue overwintered. R. solani invaded through the stoma and wound of tobacco leaves, and wound was beneficial to the invasion. R. solani could infect tobacco stems of seedling and adult plant stage, and main and lateral veins of tobacco leaves. The study of infection process indicated that R. solani invaded tobacco leaves after inoculation for 24h, hyphae of R. solani expanded rapidly between and within cells after inoculation for 24-48h, and infected cells were damaged and died finally. Optimum infection conditions of R. solani were determined, the optimum temperature was 25-30℃, the longer moist and inoculation time, the more benefit to the infection of R. solani,12h illumination 12h darkness and continuous darkness were good for the infection, but continuous illumination had significant inhibition. The twenty tested tobacco varieties had different resistance to R. solani, VRG2 had stronger disease resistance and the morbidity was 25 percent. The test result of the host range of R. solani demonstrated that R. solani could infect tobacco, tomato, eggplant and capsicum, cucumber, wax gourd and chenopodium amaranticolor, and eggplant had the highest disease rate (97.5 percent). The test result of interactive pathogenicity demonstrated that R. solani of tobacco target spot could not infect rice, corn and cabbage, but R. solani of rice sheath blight, corn sheath blight and cabbage Rhizoctonia leaf rot could infect tobacco leaves. Field experiment was conducted to investigate damage assessment of the disease, and the statistical result showed that there was significantly positive relationship between the loss rate of yield and value and the disease degree. The higher the disease degree, the greater the yield and value loss, and the relational mode was established. The fungistatic actions of ten fungicides to R. solani were determined. The toxicity regression equations of the fungicides were established and EC50 was computed. The results showed that Diniconazole, dimethachlon, Mitaijunjing, Tuzet and Mancozeb could strongly inhibit the colony growth, so they could be used to control the disease.
     4. The study defined the basic feature and pathogenic mechanism of toxin of R. solani. The tan crude toxin was obtained from Richard culture filtrate of R. solani by the methods of activated carbon adsorption, methanol elution and rotating evaporation. The biological activity assay of the crude toxin showed that it could induce the characteristic symptom of tobacco target spot, inhibit seed germination and radicle growth, and make seeding wilting. The optimum conditions of producing toxin were as follows:Richard culture filtrate, pH value 6 to 7,25℃,15 to 20 days under dark and vibration 2 times every day. The test result of basic feature of toxin showed that toxin was of thermostability, photostability and reservation, and it was a kind of nonprotein polar substance. Toxin had effect on physiological and biochemical indexes related with resistance of tobacco leaves. The results demonstrated that toxin activated POD, PPO, CAT and PAL, but inhibited activity of SOD. The contents of chlorophyll and soluble sugar of injured tobacco leaves declined remarkably, but the contents of soluble protein, MDA and free proline increased significantly, and the relative conductivity of the leaching solution of leaf tissue also had a sharp increase. The changes of those indexes illustrated that toxin had poisonous effect on tobacco. Meanwhile, it also showed that toxin could trigger defensive reactions of tobacco. R. solani isolates of different pathogenicity also had different abilities of producing toxin. The ability of strong pathogenic isolate YC-9 was stronger than weak pathogenic isolate LF-1.
     5. The study defined pathogenic mechanism of cell wall degrading enzyme of R. solani, and the ability of producing enzyme of strong pathogenic isolate was significantly stronger than weak pathogenic isolate. R. solani could produce pectinase (PG, PMG, PGTE and PMTE) and cellulase (Cx andβ-glucosidase) in Marcus culture solution, and the activity of PG was the highest. The optimum conditions of producing enzyme were determined. The optimum culture time of Cx andβ-glucosidase was 10d, and that of PG, PMG, PGTE and PMTE was 12d; the optimum culture temperature was 25℃; the optimum pH of Cx,β-glucosidase, PG and PMG was 5, and that of PGTE and PMTE was 6; and static culture and continuous darkness were good for the production of enzyme. The enzyme activities of different disease spot parts were also different, and the activities of enzymes in the junction parts of disease and health were the highest. Activity of cell wall degrading enzyme was determined during interaction process of R. solani and tobacco. The result showed that the activities of PG, PMG, PGTE, PMTE, Cx andβ-glucosidase of tobacco leaves infected by R. solani increased markedly. Among these enzymes, the activities of Cx andβ-glucosidase were the highest, followed by PG and PMG, but the activities of PMTE and PGTE were the lowest. Cell wall degrading enzyme of R. solani could make tobacco leaf produce disease spot, the damage effect of mixed enzymes was notably higher than single enzyme, and the damage effect of pectinase was higher than cellulase. Moreover, the abilities of producing enzyme of isolates of different pathogenicity were compared. The result showed that the ability of strong pathogenic isolate YC-9 was stronger than weak pathogenic isolate LF-1.
     6. A homologous cDNA fragment encoding the endo-polygalacturonase gene from R. solani was obtained. The method of RACE was used to clone and generate full-length cDNA. The cDNA full length of endo-PG gene of R. solani was 1399 bp. The length of CDS was 1086 bp and it encoded 361 amino acids.
引文
1.陈兵,王坤元,董国强,等.1992.水稻纹枯病菌致病性与酶活力的关系.浙江农业学报,4(1):8-14.
    2.陈捷,高洪敏,纪明山,等.1998.玉米茎腐病菌产生的细胞壁降解酶的致病作用.植物病理学报,28(3):221-226.
    3.陈捷,唐朝荣,高增贵,等.2000.玉米纹枯病病菌侵染过程研究.沈阳农业大学学报,31(5):503-506.
    4.陈捷,唐朝荣,邹庆道,等.1999.玉米纹枯病菌致病因子的研究.沈阳农业大学学报,30(3):189-194.
    5.陈龙,王家良,杨贤松.2007.ISSR分子标记及其在植物分子生物学中的应用.种子,26(10):49-52.
    6.陈若雷,宋道军,余增亮.2000.RAPD分子标记及其在作物遗传育种中的应用.生物学杂志,17(4):32-34.
    7.陈尚武,张大鹏,张维一.1998.匍枝根霉和半裸镰刀菌侵染甜瓜果实产生的胞壁降解酶与侵染方式.植物病理学报,28(1):55-60.
    8.陈世云,薛青同,沈谢刚,等.1992.小麦纹枯病的流行特点及防治.中国农学通报,8(1):37-38.
    9.陈延熙,张敦华,段霞渝,等.1985.关于Rhizoctonia solani菌丝融合群分类和有性世代的研究.植物病理学报,15(3):139-143.
    10.董金皋,樊慕贞,韩建民,等.1999.芸苔链格孢菌毒素对白菜细胞膜透性、SOD酶和POD酶活性的影响.植物病理学报,29(2):138-141.
    11.董金皋,李树正.1997.植物病原菌毒素研究进展:第1卷.北京:中国科学技术出版社.
    12.杜金池,张义章.1978.Rhizoctonia solani Kuhn之菌丝融合群及其对水稻之病原性.水稻病虫害,12:263-285.
    13.方中达.1998.植病研究方法(第三版).北京:中国农业出版社.
    14.傅关英,陈金荣.2000.几种杀菌剂防治稻曲病药效试验.农药,39(12):33.
    15.高必达,陈捷.2006.生理植物病理学.北京:科学出版社.
    16.高增贵,陈捷,高洪敏,等.2000.玉米茎腐病菌产生的细胞壁降解酶种类及其活性分析.植物病理学报,30(2):148-152.
    17.葛颂,洪德.1993.遗传多样性及其检测方法.生物多样性研究的原理与方法.北京:中国科学技术出版社,123-140.
    18.何正文,刘运生,陈立华,等.1998.正交设计直观分析法优化PCR条件.湖南医科大学学报,23(4):403-404.
    19.霍纳新.1999.小麦纹枯病病原菌遗传多样性分析和小麦品种资源抗病性鉴定.中国农业科学院硕士学位论文.
    20.蒋传葵,金承德,昊仁龙,等.1982.工具酶的活力测定.上海:科学技术出版社.
    21.金梅松,Korpradiskul V.1998.利用同工酶分析丝核菌菌丝融合群IA亚群(Rhizocyonia solani AG1-IA)的遗传多样性.菌物系统,17(4):331-338.
    22.康霄文,龙晓波,彭绍裘,等.1992.水稻纹枯病菌毒素的初步研究.沈阳农业大学学报,23(1):19-22.
    23.李宝聚,陈立芹.2003.温湿度调控对番茄灰霉病菌产生的细胞壁降解酶的影响.植物病理学报,33(3):209-212.
    24.李保聚,李凤云.1998.黄瓜不同抗性品种感染黑星病菌后过氧化物酶和多酚氧化酶的变化.中国农业科学,31(1):86-88.
    25.李宝聚,周长力,赵奎华,等.2000.黄瓜黑星病菌致病机理的研究Ⅱ.细胞壁降解酶及其在病菌中的作用.植物病理学报,30(1):13-18.
    26.李宝聚,周长力,赵奎华,等.2001.黄瓜黑星病菌致病机理的研究Ⅲ.细胞壁降解酶和毒素对寄主超微结构的影响及其协同作用.植物病理学报,31(1):63-69.
    27.李海波,吴学谦,王立武,等.2008.青藏高原黄绿蜜环菌纯培养菌种的分离培养及分子鉴定.菌物学报,27(6):873-883.
    28.李华荣.1988.丝核菌(Rhizoctonia)属真菌的分类学进展.国外农学一植物保护,4:9-13.
    29.李华荣,林桂芸,吴帮承,等.1993.小麦纹枯病病情消长与气象因子研究.西南农业大学学报,15(3):247-251.
    30.李建国,黄旭明,黄辉白.2003.裂果易发性不同的荔枝品种果皮中细胞壁代谢酶活性的比较.植物生理与分子生物学报,29(2):141-146.
    31.李梅云,高家合,张有平,等.2004.烟草赤星病菌GL-6产毒条件研究初报.云南农业大学学报,19(1):68-70.
    32.李颖章.2000.黄萎病菌毒素诱导棉花愈伤组织中POD、SOD活性和PR蛋白的变化.中国农业大学学报,5(3):73-79.
    33.刘德海,杨玉华,安明理,等.2002.纤维素酶酶活的测定方法.中国饲料,(17):27-28.
    34.刘力,葛起新.1988.立枯丝核菌蛋白质电泳图谱研究.真菌学报,7(3):175-182.
    35.刘雪梅,肖建国.1999.小麦纹枯病菌侵染过程的组织病理学研究.菌物系统,18(3):288-293.
    36.刘亚光,王继才,杨庆凯.1999.大豆灰斑病菌(Cercospora sojina Hara)毒素的初步研究.大豆科学,18(4):306-311.
    37.鲁绍琴,杨斌,付惠,等.2006.泽兰尾孢菌的产毒培养与毒素提取.西南林学院学报,26(2):40-43.
    38.陆仕华,魏春妹,徐素珍.1988.禾镰刀菌株产毒一脱氧雪腐镰刀菌烯醇的液体培养条件.上海农业学报,4(2):57-64.
    39.吕国强,郭继红.1995.小麦纹枯病药剂防治技术试验研究.河南农业科学,(2):13-15.
    40.罗孟军,朱天辉.2001.植物病原真菌毒素.四川林业科技,3:45-49.
    41.马春红,瞿彩霞,王立安,等.2005.玉米小斑病菌T小种培养滤液对玉米抗病性的诱导.中国农业科学,38(8):1578-1584.
    42.潘以楼.1990.烯哇醇拌种对大小麦纹枯病防效.农药,29(1):56-57.
    43.史建荣.1989.粉锈宁、利克菌等农药拌种防治小麦纹枯病试验初报.江苏农业科学,8:15-16.
    44.史建荣,王裕中,陈怀谷,等.2000.戊哇醇种子处理防治小麦纹枯病.植物保护学报,27(3):231-237.
    45.史建荣,王裕中,方中达.1992.三唑类杀菌剂控制小麦纹枯病的机理研究一对小麦苗期生长和病菌附着的影响.江苏农业学报,8(1):3542.
    47.宋凤鸣,郑重,葛秀春.1996.活性氧及膜脂过氧化在植物一病原物互作中的作用.植物生理学通讯,32(5):377-385.
    48.孙广宇,宗兆锋.2002.植物病理学实验技术.北京:中国农业出版社,142-144.
    49.台莲梅,许艳丽.2004.大豆根腐病菌(Fusarium oxysporum)生长及产生毒素的条件筛选.中国油料作物学报,26(4):71-73.
    50.唐莉.2001.玉米纹枯病田间发生动态、阶段抗性的生化因素及种质资源抗性评价的研究.四川农业大学硕士学位论文.
    51.陶家凤.1992.立枯丝核菌对水稻侵染过程的研究.四川农业大学学报,10(3):471-477.
    52.陶家凤,张敏,文成敬,等.1994.西南地区立枯丝核菌菌丝融合群及其生态学研究.四川农业大学学报.12(3):364-369.
    53.万佐玺,朱晶晶,强胜.2001.链格孢菌毒素对紫金泽兰的致病机理.植物资源与环境学报,10(3):47-50.
    54.王保通.1996.雪霉叶枯病菌毒素对小麦叶片PAL活性的影响.西北农业大学学报,24(1):37-40.
    55.王朝海,周建华,王宗明,等.2000.玉米纹枯病发生规律及防治技术.山地农业生物学报,19(5):349-354.
    56.王广金.1999.抗感小麦品种对赤霉病菌毒素的反应.植物病理学报,29(4):320-325.
    57.王琳,刘国生,王林嵩,等.1998.DNS法测定纤维素酶活力最适条件研究.河南师范大学学报,26(3):65-69.
    58.王彦华,侯喜林,徐明宇.2004.正交设计优化不结球白菜ISSR反应体系研究.西北植物学报,24(5):899-902.
    59.王玉山.1996.中国北方水稻病虫草害防治.北京:中国农业出版社,31-34.
    60.王裕中.2001.小麦纹枯病的发生与防治.植保技术推广,21(8):39-41.
    61.王裕中,史建荣,杨新宁.1992.纹霉净种子处理控制小麦纹枯病的效果.江苏农业科学,(4):30-32.
    62.王裕中,吴志凤,史建荣.1994.江苏省小麦纹枯病发生规律与病害消长因素分析.植物保护学报,21(2):109-114.
    63.王左斌,吴元华,赵秀香,等.2007.嘧肽菌净对烟草靶斑病的抑菌作用及田间药效试验.烟草科技,9:61-64.
    64.魏先锋.1989.小麦纹枯病药剂防治试验初报.江苏农业科学,4:24-25.
    65.吴仕梅.2002.小麦纹枯病菌与寄主互作及粉锈宁对病菌影响的超微结构与细胞化学研究.山东农业大学硕士研究生论文.
    66.吴询耻.1992.我国小麦纹枯病发生及防治研究现状.山东农业科学,2:29-30.
    67.吴元华,王左斌,刘志恒,等.2006.我国烟草新病害一靶斑病.中国烟草学报,12(6):22.
    68.谢运海,夏德安,姜静.2005.利用正交设计优化水曲柳ISSR-PCR反应体系.分子植物育种,3(3):445-450.
    69.徐昌杰,陈昆松,张上隆.1997.蔗糖酶对柑桔外切纤维素酶和外切多聚半乳糖醛酸酶活性测定的干扰及排除.植物生理学通讯,33(1):43-46.
    70.徐建华.1995.黄瓜不同抗病品种感染镰刀菌枯萎病菌后几种酶活性的变化.植物病理学,25(3):239-242.
    71.徐敬友,张华东,张红,等.2004.立枯丝核菌毒素的产生及与致病力的关系.扬州大学学报,25(2):61-64.
    72.于莉.2000.黑斑毒素的提取及对向日葵超微结构和防御酶系的影响.植物病理学报,30(1):96.
    73.袁晓华,杨中汉.1982.植物生理生化实验.北京:高等教育出版社.
    74.袁勇芳,李思光,许杨,等.2000.RAPD技术重复性的影响因素.江西科学,18(2):120-124.
    75.张春山,孙秀华,孙亚杰.1992.玉米纹枯病调查研究.植物保护,18(5):27-28.
    76.张红.2004.立枯丝核菌胞壁降解酶及其在致病中的作用.扬州:扬州大学农学院.
    77.张洪生,朱立宏.1989.水稻抗纹枯病研究现状及展望.水稻文摘,9(6):1-3.
    78.张娟,张道远,尹林克.2003.刚毛桂基因维提取和RAPD反应条件探索.西北植物学报,23(2):253-256.
    79.张启发,段国录,杨官品.1992.中国大麦叶绿体DNA和核糖体RNA基因限制片段长度多型性.遗传学报,19(2):131-139.
    80.张淑珍.2001.植物病原菌研究进展.黑龙江农业科学,(2):42-43.
    81.张维铭.2003.现代分子生物学实验手册.科学出版社,249-253.
    82.张晓天,张志光.1986.立枯丝核菌Rhizoctonia solani Kiihn的研究.湖南师范大学自然科学学报,9(1):76-82.
    83.章元寿,王建新.1998.棉花黄萎病菌毒素产生条件研究.南京农业大学学报,11(3):57-61.
    84.赵桂东,李清铣.1993.江苏大麦纹枯病酯酶同工酶的测定.真菌学报,12(2):163-170.
    85.赵洪义,郭凤芝.1998.小麦纹枯病发生规律和防治技术.河南农业科学,(1):12-14.
    86.赵谦,杜虹,庄东红.2007.ISSR分子标记及其在植物研究中的应用.分子植物育种,6(5):123-129.
    87.周而勋,曹菊香,杨媚.2002.水稻纹枯病组织病理学的研究进展.仲恺农业技术学院学报,15(2):61-65.
    88.邹亚飞,简桂良.2003.棉花黄萎病菌致病型的AFLP分析.植物病理学,33(2):135-140.
    89. Aimomin S., Saleem M., Almutawa Q., et al.1998. Detection of a specifically amplified DNA fragment in Brucella abortus by arbitrarily primed polymerase chain reaction. World Journal of Microbiology&Biotechnology, (14):415-420.
    90. Alaei H., de Backer M., Nuytinck J., et al.2009. Phylogenetic relationships of Puccinia horiana and other rust pathogens of Chrysanthemum morifolium based on rDNA ITS sequence analysis. Mycological Research,113(6/7):668-683.
    91. Aoki H., Sassa T., Tamura T.1963. Phytotoxic metabolites of Rhizoctonia solani. Nature, 200:575-579.
    92. Ashby R. L.1994. Biological and chemical control of target spot of float-grown tobacco seedings. Phytopathology,83:1392.
    93. Barnes G. N.1983. Control of eyespot with formulations of prochloraze and carbendazim, Med Fee. Land-bouww, Rijksuniv Gent,48(3):559-564.
    94. Bateman D. F. Alteration of cell wall components during pathogenesis by Rhizoctonia solani. In The Dynamic Role of Molecular Constituent in Plant Parasite Interactions, Mirocha, CJ and Uritani I ed, Bruce Publishing Co., St, Paul,8-79.
    95. Betancourt O., Ciampi L.2000. Contribution to the study and control of Rhizoctonia solani. Ⅰ. Extraction and bioassay of phenylacetic acid phytotoxicity produced in vitro by R. solani AG-3. Fitopatologia,35(2):119-125.
    96. Bounou S.,Jabaji-Hare S. H., Hogue R., et al.1999. Polymerase chain reaction-based assay for specific detection of Rhizoctonia solani AG-3 isolates. Mycol. Res.,103(1):1-8.
    97. Bradford M. M.1979. Anal.Biochem,72:248-254.
    98. Bussolati C., Vodovotz Y., Nathan C.1991. Macrophage deactivation by interleukin-10. The Journal of Experimental Medicine,174:1549-1555.
    99. Ceresini P. C., Shew H. D., Cubeta M. A.1999. RFLP analysis of the PCR amplified ribosomal DNA regions ITS and IGS indicated that isolates of Rhizoctonia solani from potato and tobacco represent distinct groups within the anastomosis group 3. Phytopathology,89:S12.
    100. Ceresini P. C., Shew H. D., Vilgalys R. J., et al.2002. Genetic diversity of Rhizoctonia solani AG-3 from potato and tobacco in North Carolina. Mycologia,94(3):437-449.
    101. Cheng F. S., Brown S. K., Weeden N. F.1997. A DNA extraction protocol from various tissues in woody species. HortScience,32(2):921-922.
    102. Clare B. G., Flentje N. T., Atkinson M. R.1967. Electrophoretic patterns of oxidoreductases and other proteins as criteria in fungal taxonomy. Aust. J. Biol. Sci.,21:275-295.
    103. Costa A. S.1948. Mancha aureolada erequeima do fumo causades por Corticium solani. Biologico.,14:113-114.
    104. Couch J. A.1990. Isolation of DNA from plant high polyphenolic. Plant Molecular Biology Reproter,8:8-12.
    105. Crooks P. R., Grierson D.1983. Ultrastructure of tomato fruit ripening and the role of polygalacturonase isoenzymes in cell wall degradation. Plant Physiol.,72:1088-1093.
    106. Cubeta M. A., Echandi E., Abernethy T., et al.1991. Characterization of anastomosis groups of binucleate Rhizoctonia species using restriction analysis of an amplified ribosomal RNA gene. Phytopathology,81(11):1395-1400.
    107.Culley T. M., Wolfe A. D.2001. Population genetic structure of the clistogamous plant species Viola pubescens Aiton (Violaceae), asindicated by allozy me and ISSR molecular markers. Heredity,86(5):545-556.
    108.Damaji M., Jabaji-Hare SH., Charest PM.1993. Isozyme variation and genetic relatedness in binucleate Rhizoctonia species. Phytopathology,83:864-871.
    109. Davis J. R.1983. Sensitivity of sharp eyespot on wheat and Rhizoctonia cerealis to fungicide. Test of agrochemicals and cultivars of aab.,102(4):54-55.
    110. Duggar B. M.1915. Rhizoctonia crocorum (pers) DC and R. solani Kuhn (Corticium Vagum B. & C.) with Notes on Other Species. Annual Molecular Botany Garden,2:403-458.
    111. Duncan S., Barton J. E.1993. Analysis of variation in isolates of Rhizoctonia solani by random amplified polymorphic DNA assay. Mycological-Research,97(9):1075-1082.
    112.Endo S.1931. Studies on Sclerotium diseases of the rice plant. V. Ability of overwintering of certain important fungi causing Sclerotium disease of the rice plant and their resistance to dry conditions. Forschungen aus dem Gebiet der Pflanzenkrankheiten,1:149-167.
    113. Fang G., Hammar S., Grumet R.1992. A quick and inexpensive method for removing polysaccharides from plant genomic DNA. Biofeedback and self-Regulation,13:52-57.
    114.Fraissinet T. L., Reymond C. P., and Fevre M.1995. Characterization of a multigene family encoding an endopolygalacturonase in Sclerotinia sclerotiorum. Current Genetics,29:96-100.
    115. Garcia M. F. L., Pietro A.D.I., Roncero M. LG.1997. Purification and characterization of a novel exopolygafacturonase from Fusariron oxysporsan f.sp. lycopersici. Microbiology Letters, 154(1):37-43.
    116. Geml J., Laursen G. A., Timling I., et al.2009. Molecular phylogenetic biodiversity assessment of arctic and boreal ectomycorrhizal Lactarius Pers. (Russulales; Basidiomycota) in Alaska, based on soil and sporo-carp DNA. Molecular Ecology,18(10):2213-2227.
    117.Grodzicker T., Williams J., Sharp P., et al.1974. Physical mapping of temperature-sensitive mutation of adenoviruses. Cold Spring Harbor Symp Quant Biol.,39:439-448.
    118.Hobson G.1965. The firmness of tomato fruit in relation to polygalacturonase activity. Horticultural Sciences,40:66-72.
    119. Jabaji H. SH., Meller Y., Gill S.1990. Investigation of genetic relatedness among anastomosis groups of Rhizoctonia solani using cloned DNA probes. Canadian Journal of Plant pathology, 12(4):393-404.
    120. Jayasinghe C. K., Wijayaratne S. C. P., Fernando T. H. P. S.2004. Characterization of cell wall degrading enzymes of Thanatephorus cucumeris. Mycopathologia,157:73-79.
    121.Kaya Z.1995. Utility of Random Amplified Polymorphic DNA (RAPD) Mapping for Mapping Turkish Red Pine (Pinus brutia Ten). Silvae Genetica,44:110-116.
    122.Kolattukudy P. E., Koller W.1983. Fungal penetration of the first line defensive barriers of plants. Biochemical Plant Pathology,79-100.
    123. Koller W.1991. The plant cuticle:a barrier to be overcome by fungal plant pathogens. The Fungal Spore in Disease Initiation in Plants and Animals,219-246.
    124. Kuninaga S.1986. Grouping of Rhizoctonia solani Kiihn with physicochemical properties. Plant Prot. Jpn.,40:35-40.
    125.Lakpale N., Rajiv K., Khare N., et al.1996. Studies on toxin produced by Rhizoctonia solani causing sheath blight of rice. Indian Journal of Mycology and Plant Pathology,26(3):263-265.
    126.Laroche J. P., Jabaji-Hare S. H., Charest P. M.1992. Differentiation of two anastomosis groups of Rhizoctonia solani by isozyme analysis. Phytopathology,82:1387-1393.
    127. Lilja A., Hietala A. M., Karjalainen R.1996. Identify of a uninucleate Rhizoctonia sp. By pathogenicity, hyphal anastomosis and RAPD analysis. Plant Pathology,45:997-1006.
    128. Liu Z. L., Domier L. L., Sinclair J. B.1993. ISG-specific ribosomal DNA polymorphism of the Rhizoctonia solani species complex. Mycologia,85(5):795-800.
    129. Liu Z.L., Nickrent D. L., Sinclair J. B.1990. Genetic relationships among isolates of Rhizoctonia solani species complex. Mycologia,85:795-800.
    130. Liu Z. L., Sinclair J. B.1992. Genetic diversity of Rhizoctonia solani anastomosis group2. Phytopathology,82:778-787.
    131. MacNish G. C., Sweetingham M. W.1993. Evidence of stability of pectic zymogram groups within Rhizoctonia solani AG8. Mycol. Res.,97:1056-1058.
    132. Mandava N. B., Orellana R. G., Warthen D. J., et al.1980. Phytotoxins in Rhizoctonia solani: isolation and biological activity of m-hydroxy and m-methoxyphenylacetic acids. Journal of Agricultural and Food Chemistry,28(1):71-75.
    133. Marcus L., Barash I., Sneh B., et al.1986. Purification and characterization of pectolytic enzymes produced by virulent and hypovirulent isolates of Rhizoctonia solani Kiihn. Physiol. and Mol. Plant Pathology,29:325-326.
    134. Marsh U. H. W.1984. Evaluation of fungicides for the control of sharp eyespot infection of wheat. Test of agrochemicals and cultivars of aab.,104(5):46-47.
    135. Marshall D. S., Rush M. C.1980. Infection cushion formation on rice sheaths by Rhizoctonia solani. Phytopathology,70(10):947-950.
    136. Martel M. B., Letoublon R., and Fevre M.1996. Purification of endopolygala-cturonase from Sclerotinia sclerotiorum:Multiplicity of the complex enzyme system,33:243-248.
    137. McGregor C. E., Lambert C. A., Greyling M. M., et al.2000. A comparative assessment of DNA fingerprinting techniques (RAPD, ISSR, AFLP and SSR) in tetraploid potato (Solanum tuberosum L.) germplasm. Euphytica,113(2):135-144.
    138. Meyer J. C., Van Wyk R. J., and Phillips A. J. L.1990. Rhizoctonia leaf spot of tobacco in South Africa. Plant Pathology,39(1):206-207.
    139. Miller J. D.1983. Production of deoxynivalenol and related compounds in liquid culture by Fusarium graminearum. Can. J. Micrbiol.,29:1171-1178.
    140.Milner Y., Avigard G.1967. A cooper reagent for determination of hexuronic acid and certain ketohexoses. Carbohydr. Res.,4:359-363.
    141.Moyo S., Gashe B. A., and Collison E. K. S.2003. Mpuchane Optimising growth conditions for the pectinolytic activity of Kluyveromyces wickerhamii by using response surface methodology. International Journal of Food Microbiology,85:87-100.
    142. Neate S. M., Cruikahank R. H., Rovira A. D.1988. Pectic enzyme patterns of Rhizoctonia solani isolates from agricultural soils in South Australia. Transactions of the British Mycological Society,90:37-42.
    143.Nelson N.1944. A photometric adaptation of the Somogyi method for the determination of glucose. Journal of Biological Chemistry,153:375-380.
    144. O'Brien P. A.1994. Molecular markers in Australia isolates of Rhizoctonia solani. Mycol. Res., 98(6):665-671.
    145.Ogoshi A.1984. Studies on the taxonomy of the genus Rhizoctonia. Annual Phytopathology Society Japan,50:307-309.
    146.Ogoshi A.1987. Ecology and Pathogenicity of Anastomsis and Intraspecific groups of Rhizoctonia solani kiihn. AnnlRev. Phytopathol.,25:125-143.
    147. Ou S. H.1985. Rice disease (secondary edition). Commowealth Mycological Institute, Kew Surrey,379.
    148. Palo M. A.1926. Rhizoctonia disease of rice. I. A study of the disease and of the influence of certain conditions upon the viability of the sclerotial bodies of the causal fungus. Philippine Agriculturist,15:361-375.
    149.Pardo A. G., Forchiassin F.1999. Influence of temperature and pH on cellulase activity and stability in Nectria catalinensis. Revista Argentina de Microbiology,31(1):31-35.
    150. Park M, Bertus L. S.1932. Sclerotial diseases of rice in Ceylon. I. Rhizoctonia solani kuhn. Ceylon J. of Sci.,11:319-331.
    151. Parmeter J. R., Sherowood R. T., and Platt W. D.1969. Anastomosis grouping among isolates of Thanatephorus cucumeris. Phytopathology,59:1270-1278.
    152. Parmeter J. R., Whitney H. S., et al.1967. Affinities of Rhizoctonia species that resemble mycelium of Thanatephorus cucumeris. Phytopathology,57:218-223.
    153.Pascual C. B., Toda T., Raymondo A. D., et al.2000. Characterization by conventional techniques and PCR of Rhizoctonia solani isolates causing banded leaf sheath blight in maize. Plant Pathology,49:108-118.
    154.Pietro A. D. I., Roncero M. I. G.1997. Purification and characterization of an exo-polygalacturonase from the tomato vascular wilt pathogen Fusarium oxysporum f.sp. lycopersici. FEMS Microbiology Letters,145(2):295-299.
    155. Ramalingam P.1986. Involvement of Rhizoctonia solani toxins in phenylalanine ammonia lyase and tyrosine ammonia lyase activities of rice tissues. Current Science India,55(3):157-159.
    156. Reynolds M., Weinhold A. R., Morris T. J.1983. Comparison of anastomosis groups of Rhizoctonia solani by polyacrylamide gel electrophoresis of soluble proteins. Phytopathol., 73:903-906.
    157.Rohlf F. J.1998. Ntsyspc numerical taxonomy and multivariate analysis system, version 2.02. New York:Exeter Software.
    158. Ronald P., de Vries, and Jaap V.2001. Aspergillus enzymes involved in degrada-tion of plant cell wall polysaccharides. Microbiology and MolecularBiology Reviews,65:497-522.
    159. Sha W., Li J., Cao T., et al.2004. Establishment of RAPD reaction system on the moss. Bulletin of Botanical Research,24(4):482-485.
    160.Sharma R. Singh U. S.2003. Vegetative compatibility in Rhizoctonia solani using three way culture methods. J. Mycol. Pl. Pathol.,33:65-68.
    161. Shew H. D., Main C. E.1990. Infection and development of target spot of flue-cured tobacco caused by Thanatephorus cucumeris. Plant Dis.,74:1009-1013.
    162. Shew H. D., Main C. E.1985. Rhizoctonia leaf spot of flue-cured tobacco in North Carolina. Plant Dis.,69:901-903.
    163.Somogyi M.1952. Notes on sugar determination. Journal of Biological Chemistry,195:19-23.
    164. Sriram S., Raguchander T., Babu S., et al.2000. Inactivation of phytotoxin produced by the rice sheath blight pathogen Rhizoctonia solani. Canadian Journal of Microbiology,6(6):520-524.
    165. Sriram S., Raguchander T., Vidhyasekaran P., et al.1997. Genetic relatedness with special reference to virulence among the isolates of Rhizoctonia solani causing sheath blight in rice. Zeitschrift fur Pflanzenkrankheiten and Pflanzenschutz,104(3):260-271.
    166. Stevens J. J., Jones R. K., Shew H. D., et al.1993. Characterization of populations of Rhizoctonia solani AG-3 from potato and tobacco. Phytopathology,83:854-858.
    167. Sweetingham M. W., Cruickshnak R. H., Wong D. H.1986. Pectic zymograms and pathogenicity of the Ceratobasidiaceae. Trans. Brit. Mycol. Soc.,86:305-311.
    168. Sweetingham M. W.1990. Coping with brown spot and root rots of lupines. J. Agric. Western Australia,31:5-31.
    169. Swinburne T. R. Corden M. E.1969. A comparison of the polygalacturonases produced in vivo and in vitm by Penicillium expansum Thom. J. Gen. Microbiol.,55(1):75-87.
    170. Tedersoo L., Suvi T., Jairus T., et al.2009. Revisiting ectomycorrhizal fungi of the genus Alnus: differential host specificity, diversity and determinants of the fungal community. The New Phytologist,182(3):727-735.
    171. Ten Have A., Mulder W., Visser J., et al.1998. The endo-polygalacturonase gene Bcpgl is required for full virulence of Botrytis cinerea. Molecular Plant-Microbe Interactions, 11:1009-1016.
    172. Thompson J. N., Burdon J. J.1992. Gene-for-gene coevolution between plant and parasites. Nature,360(12):121-125.
    173.Touzani A., Doneche B.1996. Production and properties of the cellulosic complex of Botrytis cinerea. Canadian Journal of Botany,74(3):486-491.
    174.Tsumura Y., Ohba K., Strauss S. H.1996. Diversity and inheritance of inter simple sequence repeat polymorphisms in Douglasfir (Pseudotsuga menziesii) and sugi (Cryptomeria japonica). Theor. Appl. Genet.,92:40-45.
    175. Vargas G. E.1973. Infection by basidiospores of Thanatephorus cucumeris, causing a leaf disease in tobacco. Turrialba,23(3):357-359.
    176. Vidhyasekaran P., Ponmalar T. R., Samiyappan R., et al.1997. Host-specific toxin production by Rhizoctonia solani, the rice sheath blight pathogen. Phytopathology,87(12):1258-1263.
    177. Vidhyasekaran P., Ponmalar T. R., Samiyappan R., et al.1998. Rice sheath blight produces host-specific toxin. Rice-Biotechnology-Quarterly,35:21.
    178. Vilgalys R., Gonzalez R.1990. Ribosomal DNA restriction fragment length polymorphisms in Rhizoctonia solani. Phytopathology,80(2):151-158.
    179. Wei J. Z.1994. Genetic variability in Russian wildrye (Psathyrostachys juncea) assessed by RAPD. Genetic Resources and Crop Evolution,44:117-125.
    180. Welsh J., Mcclelland M.1990. Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res.,18:7213-7219.
    181. White T. J., Bruns T., Lee S., et al.1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. New York:Academic Press Inc.
    182. Williams J. G. K., Kubelik A. R., Livak K. J., et al.1990. DNA Polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Research,18:6531-6535.
    183. Wubben J. P., Mulder W., Ten Have A., et al.1999. Cloning and partial characterization of endopolygalacturonase genes from Botrytis cinerea. Applied and Environmental Microbiology, 65:1596-1602.
    184.Zabeau M., Vos P.1992. Selective restriction fragment amplification a general method for DNA finger printing. European Patent Application.
    185.Zietkiewicz E., Rafalski A., Labuda D.1994. Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics,20:176-183.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700