用户名: 密码: 验证码:
二甲氧基硫代磷酸酯类农药单克隆抗体研制及单链抗体三维结构模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
依据二甲氧基硫代磷酸酯类有机磷农药的共有结构,设计了含有二甲氧基硫代磷酸酯结构和苯环结构的通用半抗原,即3-[4-(O,O-二甲基硫代磷酰氧基)苯基]-1-丙酸(Hapten1, H1)。采用活泼酯法分别将H1与牛血清白蛋白(BSA)、卵清白蛋白(OVA)偶联合成免疫原和包被原。将制备好的免疫原H1-BSA,免疫6-8周龄雌性BALB/c鼠,每次每只小鼠的免疫原用量100μg。以HI-OVA作为包被原,用非竞争间接酶联免疫分析法(ELISA)检测多次免疫后的小鼠血清效价并选择效价较高的小鼠用于细胞融合。采用PEG介导的细胞融合技术将小鼠脾细胞与小鼠骨髓瘤细胞SP2/0进行融合,建立可稳定分泌抗二甲氧基硫代磷酸酯类有机磷农药抗体的杂交瘤细胞株。经ELISA法筛选及有限稀释法亚克隆,成功建立了两株对甲基对硫磷、甲基毒死蜱、倍硫磷、甲基立枯磷、杀螟硫磷和马拉硫磷六种二甲氧基硫代磷酸酯类有机磷农药具有明显的识别作用的杂交瘤细胞株(D12-B5、E5-H2)。通过体内与体外培养大量制备单克隆抗体,并经盐析、蛋白亲和层析获得纯度较高的抗体。用非竞争间接ELISA法检测效价,非竞争酶免疫实验测定亲和力,竞争间接ELISA法测定抗体的特异性。选效价较高的杂交瘤细胞株D12-B5为研究对象,用小鼠亚型分析试剂盒测定出所分泌的抗体为IgG1、κ型,亲和常数达1.709×109L/mol。以H1-OVA作为包被原,采用竞争间接ELISA法测定出抗体对甲基对硫磷、甲基毒死蜱、倍硫磷、甲基立枯磷、杀螟硫磷和马拉硫磷六种农药的150分别为42.1μg/mL、60.2μg/mL、75μg/mL、13.58μg/mL、117μg/mL和172.9μg/mL。
     为了分析不同结构的异源包被原对抗体检测灵敏度的影响,将与甲基对硫磷、甲基毒死蜱、倍硫磷和杀螟硫磷结构相似的半抗原用活泼酯法与OVA偶联形成不同化学结构的异源包被原。实验结果表明与分析物(农药)的结构相似的异源半抗原并不能提高单克隆抗体对该农药的检测灵敏度,但宽谱性抗体与H7-OVA的组合可使甲基对硫磷和甲基毒死蜱竞争间接ELISA的150值分别可达到0.58μg/mL、0.81μg/mL。
     根据以上异源包被原的分析结果选择H7-OVA作为包被原,采用矩阵滴定法确定抗原抗体的最佳组合,通过对离子强度、pH值等影响因子的研究,确定ELISA的最佳工作参数,建立定量测定的间接竞争ELISA方法。通过ELISA条件优化,确定了甲基对硫磷和甲基立枯磷的ELISA的最佳工作条件,建立了定量测定甲基对硫磷和甲基立枯磷的间接竞争ELISA方法,甲基对硫磷的150和检测限(120)分别为0.165μg/mL、0.0144μg/mL,甲基立枯磷的150和检测限(120)分别为0.95μg/mL、0.033μg/mL。
     在此基础上,选择效价较高的小鼠脾细胞和较高亲和力的杂交瘤细胞株,提取总RNA,用鼠类重链、轻链可变区通用引物,通过反转录PCR,扩增两种细胞可变区基因。通过重叠延伸PCR (SOE-PCR)将可变区基因通过连接肽基因连接起来,构建单链抗体基因,克隆到T载体中,通过PCR和测序进行鉴定。其结果显示从小鼠脾细胞和杂交瘤细胞中成功地扩增到了重链和轻链可变区基因,大小在300 bp左右;采用SOE-PCR获得约750 bp大小的单链抗体基因,并克隆到T载体。经测序证实,轻重链可变区基因均符合小鼠可变区基因的特征,轻重链之间是由45 bp连接肽基因连接。
     在Discovery Studio软件服务器上,利用同源蛋白结构预测的方法模建单链抗体三维结构模型,并验证了三维结构的合理性。从构建的单链抗体(ScFv)三维结构模型中看出,单链抗体的轻、重链的超可变区(CDR)均暴露在抗体结构的表面,并形成桶状结构,这种结构非常有利于抗体与抗原的结合。单链抗体三维模型的模建为进一步分析轻、重链在抗体功能中的作用,为改造抗体、提高抗体活性等方面奠定了基础。
According to the common structure of O,O-dimethyl organophosphorus pesticides, the generic hapten (H1,3-(4-Dimethoxyphosphorothioyloxy phenyl)propanoic acid) was designed with roxyphenylpropionic acid and 0,0-dimethyl phosphorochloridothioate. H1 was covalently attached to BSA as immunogen and to OVA as homologous coating antigen with the active ester method. BALB/c female mice (8 weeks old) were immunized with the H1-BSA conjugate. The dose consisted of 100μg of conjugate intraperitoneally injected. One week after the third booster injection, mice were tail-bled and antisera were tested for anti-hapten antibody titer by a noncompetitive indirect enzyme-linked immunosorbent assay (ELISA) using a homologous coating antigen (H1-OVA). The mice showing higher serum reactivity were selected as the donors of spleen cells for hybridoma production. Two hybridoma cell lines that can secrete broad-specific McAbs were established by cell fusion technique. Purified McAbs were prepared by salt precipitation and protein chromatography. The titer and affinity of McAbs were determined by noncompetitive indirect ELISA, the class and subclass of McAbs were identified by Monoclonal Antibody Isotyping Kit, the specificity of McAbs was determined by competitive indirect ELISA. The McAb affinity of D12-B5 is 1.709×109L/mol. The class and subclass of D12-B5 were IgGl andκ. In the competitive indirect ELISA, the I50 of Parathion-methyl、Chlorpyrifos-methyl、Fenthion、Tolclofos-methyl、Fenitrothion and Malathion was respectively 42.1μg/mL,60.2μg/mL, 75μg/mL,13.58μg/mL,117μg/mL and 172.9μg/mL
     To study the effect of heterologous coating antigens on immunoassay sensitivity, eight haptens designed were four pesticides' derivatives. The result showed that the haptens whose structure were similar to analytes could not improve the sensitivity, exactly the sensitivity of generic-antibody was not associated with the homology of heterologous coating antigen and analyte. Whereas the combination of mAb with coating antigen (H7-OVA) gave the lowest I50 values.
     According to the analysis of heterologous coating antigens, we choosed the H7-OVA as the coating antigen. Under the optimization of the ionic strength and pH, the standard curves were estblished by competitive indirect ELISA. The I50 values of specific to parathion-methyl was 0.165μg/mL, showing the lowest detection limit of 0.0144μg/mL, the I50 value achieved for tolclofos-methyl was 0.95μg/mL, with the lowest detection limit of 0.033μg/mL.
     The total RNA of spleen cells and hybridoma cell was isolated with trizol reagent, and the variable region genes were amplified with variable region primers by RT-PCR (reverse transcriptase-polymerase chain reaction). The variable region genes of heavy chain and light chain were strung together by SOE-PCR (splicing by overlap extension PCR) and the ScFv gene was constructed. After cloned into T vector, the recombinant ScFv gene was identified by PCR and sequencing. The sequencing result shows that the ScFv gene consists of about 750 bp, with more than 300 bp of heavy chain variable region gene and light chain variable region gene, which were linked by a 45 bp peptide.
     On Discovery Studio, with homologous protein-structure-prediction, a three-dimensional model of ScFv was mimiced according to variable region gene. The three-dimension of ScFv antibody provided a method for improving antibody affinity, investigating antibody structure and analyzing function of light, as well as heavy chain in antibody activity.
引文
1. Abad A, Manclus J J, Mojarrad F, et al. Hapten synthesis and production of monoclonal antibodies to DDT and related compounds[J]. J Agric Food Chem,1997,45:3694-3702.
    2. Abad A, Montoya A. Production of monoclonal antibodies for carbaryl from a hapten preserving the carbamate group[J]. J Agric Food Chem,1994,42:1818-1823.
    3. Abad A, Moreno M J, Montoya A. Hapten synthesis and production of monoclonal antibodies to the N-methylcarbamate pesticide methiocarb[J]. J Agric Food Chem,1998,46:2417-2426.
    4. Aherne G W, Hardcastle A, Saleem P, et al.'Enhanced Chemiluminescent Immunoassays for Environmental Monitoring', in Bioluminescence and Chemiluminescence[M]. Current Status, eds. P.E. Stanley, L.J. Kricka, John Wiley and Sons, New York,1990,91-98.
    5. Ahn K C, Watanabet T, Gee S J, et al. Hapten and antibody production for a sensitive immunoassay determining a human urinary metabolite of the pyrethroid insecticide permethrin[J]. J Agric Food Chem,2004,52:4583-4594.
    6. Alcocer M J C, Dillon P P, Miming B M, et al. Use of phosphonic acid as a generic hapten in the production of broad specificity antiorganophosphate pesticide antibody[J]. J Agric Food Chem, 2000,48:2228-2233.
    7. Alcocer M J, Doyen C, Lee H A, et al Functional scFv antibody sequences against the organophosphorus pesticide chlorpyrifos [J]. J Agric Food Chem,2000,48:335-337.
    8. Amanda S, Helen L B, David P M, et al. Mono- and polyclonal antibodies to the organophosphate fenitrothin.2. antibody specificity and assay performance[J]. Agric Food Chem,1992,40:1471-1474.
    9. Banks J N, Chaudhry M Q, Matthews W A, et al. Production and characterisation of polyclonal anbodies to the common moiety of some organophosphorous pesticides and development of a generic type ELISA[J]. Food Agric Immunol,1998,10:349-361.
    10. Beatty J D, Beatty B G, Vlahos W G. Measurement of monoclonal antibody affinity by non-competitive enzyme immunoassay[J]. J Immunol Methods,1987,100:173-179.
    11. Bell C W, Roberts V A, Scholthof K-BG, et al. Recombinant antibodies to diuron A model for the phenylurea combining site[M]. ACS Symposium Series 586, Washington,DC,1995,50-71.
    12. Binz H K, Pliickthun A. Engineered proteins as specific binding reagents[J]. Curr Opin Biotechnol,2005,16:459-469.
    13. Blake D A, Pavlov A R, Yu H, et al. Antibodies and antibody-based assays for hexavalent uranium[J]. Anal Chim Acta,2001,444:3-11.
    14. Bless N M, Smith D, Charlton J, et al. Protective effects of an aptamer inhibitor of neutrophil elastase in lung inflammatory injury[J]. Curr Biol,1997,7:877-880.
    15. Bocher M, Giersch T, Schmid R D. Dextran, a hapten carrier in immunoassays for s-triazines:a comparison with ELISAs based on hapten-protein conjugates[J]. J Immunol Methods, 1992,151:1-8.
    16. Brimfield A A, Lenz D E, Graham C, et al. Mouse monoclonal antibodies against paraoxon: potential reagents for immunoassay with constant immunochemical characteristics[J]. J Agric Food Chem,1985,33:1237-1242.
    17. Brun E M, Marta G G, Rosa P, et al. Enzyme-linked immunosorbent assay for the organophosphorus insecticide fenthion, influence of hapten structure[J]. J Immunol Methods, 2004,295:21-35.
    18. Bucknall S, Silverlight J, Coldham N, et al. Antibodies to the quinolones and fluoroquinolones for the development of generic and specific immunoassays for detection of these residues in animal products[J]. Food Addit Contam,2003,20:221-228.
    19. Buiting A M J, Rooijen V N, Claassen E. Liposomes as antigen carrier and adjuvants in vivo[M]. 44th Forum in Immunology,1992,541-548.
    20. Cai H, Xu C, He P. Colloid au-enhenced DNA immobilization for the electrochemical detection of sequence specific DNA[J]. J Electroanal Chem,2001,510:78-85.
    21. Centeno E R, Johnson W J, Sehon A H. Antibodies to two common pesticides, DDT and malathion[J]. Int Arch Allergy Imm,1970,37:1-13.
    22. Chambers S J., Wyatt G M., Garrett S D, et al. Alteration of the binding characteristics of a recombinant scFv anti-parathion antibody—2.computer modelling of hapten docking and correlation with ELISA binding[J]. Food and Agricultural Immunology,1999,11:219-228.
    23. Charlton K A, Moyle S, Porter A J R, et al. Analysis of the diversity of a sheep antibody repertoire as revealed from a bacteriophage display library[J]. J Immunol,2000,164:6221-6229.
    24. Charlton K, Harris W J, Porter A J. The isolation of super-sensitive anti-hapten antibodies from combinatorial antibody libraries derived from sheep [J]. Biosens Bioelectron,2001,16:639-646.
    25. Chiu Y W, Chen R, Li Q X, et al. Derivation and properties of recombinant Fab antibodies to coplanar polychlorinated biphenyls [J]. J Agric Food Chem,2000,48:2614-2624.
    26. Cho Y A, Kim Y A, Hammock B D, et al. Development of a microtiter plate ELISA for the determination of the organophosphorus insecticide fenthion[J]. J Agric Food Chem,2003,51: 7854-7860.
    27. Cho Y A, Seok J A, Lee H S, et al. Synthesis of haptens of organophosphorus pesticides and development of immunoassays for fenitrothion[J]. Analytica Chimica Acta,2004,522:215-222.
    28. Clackson T, Gusso D, Jones P T. General applications of PCR to gene cloning and manipulation. in PCR, a practical approach[M]. Ch.12 IRL Press, Oxford,1991.
    29. Clark S L, Remcho V T. Aptamers as analytical reagents[J]. Electrophoresis,2002,23:1335-1340.
    30. Dankwardt A. Immunochemical assays in pesticide analysis[J]. Pestic,1995,1:1-27.
    31. Di P C, Willuda J, Kubetzko S, et al. A recombinant immunotoxin manized epithelial cell adhesion molecple-specific single-chain antibody Fragment has potent and selective anti-tumor activity [J]. Cin Cancer Res,2003,9:2837-2848.
    32. Eldefrawi M E, Eldefrawi A T. Immunoanalysis of agrochemicals emerging emerging technologies[A]. American Chemical Society Meeting,1995,1:1197-2091.
    33. Ellinglon A D, Szostak J W. In vitro selection of RNA molecules that bind specific ligands[J]. Nature,1990,346:818-822.
    34. Ercegovich C D, Vallejo R P, Getting R R, et al. Development of a radioimmunoassay for parathion[J]. J Agric Food Chem,1981,29:559-563.
    35. Feng J, Xie Z, Guo N, et al. Design and assembly of anti-CD 16 ScFv antibody with two different linker peptides[J]. J Immunol Methods,2003,282:33-43.
    36. Ferrer I, Lanza F, Tolokan A, et al. Selective trace enrichment of chlorotriazine pesticides from natural waters and sediment samples using terbuthylazine molecularly imprinted polymers[J]. Anal Chem,2000,72:3934-3941.
    37. Ferrieres L, Francez-Charlot A, Gouzy J, et al. FixJ regulated genes evolved through promoter duplication in Sinorhizobium meliloti[J]. Microbiol,2004,150:2335-2345.
    38. Franek M, Diblikova I, Cernoch I, et al. Broad-Specificity immunoassays for sulfonamide detection: immunochemical strategy for generic antibodies and competitors. Anal Chem,2006,78:1559-1567.
    39. Frens G. Controlled nudeation of the regulation of the particle size monodisperse gold suspensions[J]. Nature,1973,241:20-22.
    40. Garrett S D, Appleford D, Wyatt G M, et al. Production of recombinant anti-parathion antibody(scFv); Stability in methanolic food extracts and comparison to an anti-parathion monoclonal antibody[J]. J Agri Food Chem,1997,45:4183-4189.
    41. Garza R J. Expectations from the use of monoclonal antibodies[J]. Salud Publica Mex,1985,27: 260-265.
    42. Gerdes M, Meusel M, Spener F. Development of a displacement immunoassay by exploiting cross-reactivity of a monoclonal antibody[J]. Anal Biochem,1997,252:198-204.
    43. Glass T R, Ohmura N, Morita K, et al. Improving an immunoassay response to related polychlorinated biphenyl analytes by mixing antibodies[J]. Anal Chem,2006,78:7240-7247.
    44. Gooding J W. Monoclonal antibodies:principles and practice [M]. London:Academic Press,1986, 241-253.
    45. Graham B M, Porter A J, Harris W J. Cloning, expression and characterization of a single-chain antibody fragment to the herbicide paraquat[J]. J Chem Technol Biotechnol,1995,63:279-289.
    46. Grant R A, Lin T C, Webster R E, et al. Structure of filamentous bacteriophage:isolation, characterization, and localization of the minor coat proteins and orientation of the DNA[J]. Prog Clin Biol Res,1981,64:413-428.
    47. Gunther G A, Bilitewski U. Characterisation of inhibitors of acetylholinesterase by an automated amperometric flow-injection system[J]. Anal Chim Acta,1995,300:117-125.
    48. Gupta V K, Skaife J J, Dabrorsky T B, et al. Optical amplification of ligand receptor binding using liquid crystals[J]. Science,1998,279:2077-2080.
    49. Gyu H C, Lee D H, Min W K, et al. Cloning, expression, and characterization of single-chain variable fragment antibody against mycotoxin deoxynivalenol in recombinant Escherichia coli[J]. Protein Expr Purif,2004,35:84-92.
    50. Haupt K, Dzgoev A, Mosbach K. Assay system for the herbicide 2,4- dichlorophenoxyacetic acid using a molecularly imprinted polymer as an artificial recognition element[J]. Anal Chem,1998,70: 628-631.
    51. Haupt K, Mayes A G, Mosbach K. Assay using an imprinted polymer based system analogous to competitive fluoroimmonoassays[J]. Anal Chem,1998,70:3936-3939.
    52. He C, Long Y, Pan J, et al. Application of molecularly imprinted polymers to solid-phase extraction of analytes from real samples[J]. J Biochem Biophys Methods,2007,70:133-150.
    53. Hennion M C, Barcelo D. Strengths and limitations of immunoassays for effective and efficient use for pesticide analysis in water samples:a review[J]. Anal Chim Acta,1998,362:3-34.
    54. Henry K R,张卓勇,赵进英,等.环境水中甲基对硫磷、对硫磷和辛硫磷农药残留的SPE-HPLC分析[J].分析测试学报,2002,21:50-53.
    55. Hoogenboom H, Griffiths A, Johnson K. Multi-subunit proteins on the surfaces of filamentous phage:methodologies for displaying antibody (Fab) heavy and light chains [J]. Nucleic Acids Res, 1991,1:4133-4137.
    56. Huang R P. Detection of multiple proteins in an antibody-based protein microarray system[J]. J Immunol Methods,2001,255:1-13.
    57. Huston J S, Levinson D, Mudget-Hunter M, et al. Protein engineering of antibody binding sites: recovery of specific activity in an anti-digoxin single-chain Fv analogue produced in Escherichia coli[J]. Proc Natl Acad Sci USA,1988,85:5897.
    58. Hwa K O S, Patterson P H, Terson T. A more efficient and economical approach for monoclonal antibody production[J]. J Immunol Methods,1997,209:105-108.
    59. Jang M S, Lee S J, Xue X, et al. Production and characterization of monoclonal antibodies to a generic hapten for class-specific determination of organophosphorus pesticides[J]. Bull Korean Chem Soc,2002,23:1116-1120.
    60. Jayasena S. Aptamers:an emerging class of molecules that rival antibodies in diagnostics[J]. Clin Chem,1999,45:1628-1650.
    61. Jenkins A L, Yin R, Jensen J L. Molecularly imprinted polymer sensors for pesticide and insecticide detection in water[J]. Analyst,2001,126:798-802.
    62. Johnson J C, Emon J M V, Pullman D R, et al. Development and evaluation of antisera for detection of the O,O-diethyl phosphorothionate and phosphorothionothiolate organophosphorus pesticides by immunoassay[J]. J Agric Food Chem,1998,46:3116-3123.
    63. Jourdan S W, Scutellaro A M, Fleeker J R, et al. Determination of carbofuran in water and soil by a rapid magnetic particle-based ELISA[J]. J Agric Food Chem,1995,43:2784-2788.
    64. Kalidindi H, Namburi B K V, Beedu S R. Determination of azadirchtin in agriculture matrixes and commercial formulations by enzyme-linked immunosorbent assay[J]. J Aoac Int,2001,84:1001-1010.
    65. Kim Y J, Cho Y A, Lee H S, et al. Investigation of the effect of hapten heterology on immunoassay sensitivity and development of an enzyme linked immunosorbent assay for the organophosphorus insecticide fenthion[J]. Anal Chim Acta,2003a,494:29-40.
    66. Kim Y J, Cho Y A, Lee H S, et al. Synthesis of haptens for immunoassay of organophosphorus pesticides and effect of heterology in hapten spacer arm length on immunoassay sensitivity[J]. Anal Chim Acta,2003b,475:85-96.
    67. Kima M J, Lee H S, Chung D H, et al. Synthesis of haptens of organophosphorus pesticides and development of enzyme-linked immunosorbent assays for parathion-methyl[J]. Anal Chim Acta, 2003,493:47-62.
    68. Kishiro Y, Kagawa M, Naito I Y, et al. Novel method of preparing rat-monoclonal antibody-producing hybridomas by using rat medial iliac lymph node cells[J], Cell Struct Funct,1995,20: 151-156.
    69. Kobayashi T, Wang H Y, Fujii N. Synthesis of castasterone selective polymers prepared by molecularly imprinting[J]. Anal Chim Acta,1998,365:81-88.
    70. Kohler G, Milstein C. Continuous culture of fused cells secreting antibody of predefined specificity[J].Nature,1975,256:495-497.
    71. Korndorfer I P, Schlehuber S, Skerra A. Structural mechanism of specific ligand recognition by a lipocalin tailored for the complexation of digoxigenin[J]. J Mol Biol,2003,330:385-396.
    72. Kramer K, Hock B. Recombinant antibodies for environmental analysis [J]. Anal Bioanal Chem, 2003,377:417-426.
    73. Kramer K. Synthesis of a group-selective antibody library against haptens[J]. J Immuno Methods,2002,266:209-220.
    74. Krebber A, Bornhauser S, Burmester J, et al. Reliable cloning of functional antibody variable domains from hybridomas and spleen cell repertoires employing a reengineered phage display system[J]. J Immunol Methods,1997,201:35-55.
    75. Kreissig S B, Ward V K, Hammock B D, et al.'Sequence analysis of individual chains of antibodies to triazine herbicides.' in Immunoanalysis of Agrochemicals:Emerging Technologies[A] (Nelson J.O., Karu A.E., Wong R.B. eds). ACS Symposium Series,1995,586.
    76. Krizan P. Recent progress in ring imaging cherenkov counters with vacuum-based photon detectors[J]. Nucl Instrum Meth A,2003,502:28-35.
    77. Kurucz I, Titus J A, Jost C R, et al. Correct disulfide pairing and efficient refolding of detergent-solubilized single-chain Fv proteins from bacterial inclusion bodies[J]. Mol Immunol, 1995,32:1443-1452.
    78. Kuruvilla F G, Shamji A F, Sternson S M, et al. Dissecting glucose signalling with diversity-oriented synthesis and small-molecule microarrays[J]. Nature,2002,416:653-657.
    79. Langone J J, Vunakis V H. Radio immunoassay of nicotine, cotidine and gamma-(3-pyridyl)-gamma-oxo-N methylbutyramide[J]. Methods Enzymol,1982,84:628-640.
    80. Lee E K, Kim Y J, Chung T, et al. Monoclonal antibody-based enzyme-linked immunosorbent assays for the detection of the organophosphorus insecticide diazinon[J]. Anal Chim Acta,2005, 530:143-153.
    81. Lee H J, Shan G, Ahn K, et al. Development of an enzyme-linked immunosorbent assay for the pyrethroid cypermethrin[J]. J Agric Food Chem,2004,52:1039-1043.
    82. Lee H J, Shan G, Watanabe T, et al. Enzyme-linked immunosorbent assay for the pyrethroid deltamethrin[J]. J Agric Food Chem,2002,50:5526-5532.
    83. Lee J K, Ahn K C, Stoutamire D W, et al. Development of an enzyme-linked immunosorbent assay for the detection of the organophosphorus insecticide acephate[J]. J Agric Food Chem,2003,51: 3695-3703.
    84. Lee W Y, Lee E K, Kim Y J, et al. Monoclonal antibody-based enzyme-linked immunosorbent assays for the detection of the organophosphorus insecticide isofenphos[J]. Anal Chim Acta, 2006,557:169-178.
    85. Li T, Zhang Q, Liu Y, et al. Production of recombinant scfv antibodies against methamidophos from a phage-display library of a hyperimmunized mouse[J]. J Agric Food Chem,2006,54:9085-9091.
    86. Li Y, Cockburn W, Kilpatrick J, et al. Selection of rabbit single-chain Fv fragment against the herbicide atrazine using a new phage display system[J]. Food Agric Immunol,1999,11:5-17.
    87. Liang Y, Liu X J, Liu Y, et al. Synthesis of three haptens for the class-specific immunoassay of O,O-dimethyl organophosphorus pesticides and effect of hapten heterology on immunoassay sensitivity[J]. Anal Chim Acta,2008,615:174-183.
    88. Longstaff M., Newell C A, Boonstra B, et al. Expression and characterization of single-chain antibody fragments produced in transgenic plants against the organic herbicides atrazine and paraquat[J]. Biochim Biophys Acta,1998,1381:147-160.
    89. Lueking A, Horn M, Eickhof H, et al. Protein microarrays for gene expression and antibody screening[J]. Anal Biochem,1999,270:103-111.
    90. Luo D, Geng M, Noujaim T, et al. An engineered bivalent single-chain antibody fragment that increases antibody binding activity [J]. Biochem,1997,121:831-834.
    91. Luo D, Mah N, Krantz M, et al. VL-linker-VH orientation-dependent expression of single chain Fv-containing an engineered disulfide-stabilized bond in the framework regions[J]. J Biochem (Tokyo),1995,118:825-831.
    92. Luzi E, Minunni M, Tombelli S, et al. New trends in affinity sensing:aptamers for ligand binding[J]. Trends Anal Chem,2003,22:810-818.
    93. Mahony J O, Nolan K, Smyth M R, et al. Molecularly imprinted polymers—potential and challenges in analytical chemistry[J].Anal Chim Acta,2005,534:31-39.
    94. Mak S K, Shan G, Lee H J, et al. Development of a class selective immunoassay for the type Ⅱ pyrethroid insecticides[J]. Anal Chim Acta,2005,534:109-120.
    95. Manclus J J, Montoya A. Development of immunoassays for the analysis of chlorpyrifos and its major metabolite 3,5,6-trichloro-2-pyridinol in the aquatic environment[J]. Anal Chim Aata,1995,311:341-348.
    96. Manunza B, Deiana S, Pintore M, et al. A molecular modeling study of the interaction between beta-cyclodextrin and the organophosphorothioate pesticide parathion[J]. Glycoconj J,1998,15: 293-296.
    97. Mcadam D P, Hill A S, Beasley H L, et al. Mono- and polyclonal antibodies to the organophosphate fenitrothion.1. Approaches to hapten-protein conjugation [J]. J Agric Food Chem, 1992,40:1466-1470.
    98. Miao Y, Yuan C. Const ruction of a glucose biosensor immobilized with glucose oxidase in t he film of polypyrrole nanotubules[J]. Anal Lett,1999,32:1287-1290.
    99. Mikaela N, Roger G, Pilar M. Biological monitoring of 2,4,5-Trichlorophenol (Ⅰ):preparation of antibodies and development of an immunoassay using theoretical models[J]. Chem Res Toxical,2002,15:1360-1370.
    100. Millipore. A short guide developing immunochromatographic test strips[M].2ed edition. Millipire Corparation, Bedford, MA,1999, p.2.
    101. Minunni M, Tombelli S, Mascini M, et al. An optical DNA-based biosensor for the analysis of bioactive constituents with application in drug and herbal drug screening[J]. Talanta,2005,65: 578-585.
    102. Moreno M J, Abad A, Montoya A. Production of monoclonal antibodies to the N-methylcarbamate pesticide propoxur[J]. J Agric Food Chem,2001,49:72-78.
    103. Morozova V S, Levashova A I, Ermin S A. Determination of pesticides by enzyme immunoassay[J]. J Anal Chem,2005,60:202-217.
    104. Nichkova M, Feng J, Sanchez B F, et al. Competitive quenching fluorescence immunoassay for chlorophenols based on laser-induced fluorescence detection in microdroplets[J]. Anal Chem,2003, 75:83-90.
    105. Park H J, Park W C, Jung T, et al. Development of an ELISA for the organophosphorus insecticide isofenphos[J]. Bull Korean Chem Soc,2002,23:599-604.
    106. Patel D J, Suri A K. Structure, recognition and discrimination in RNA aptamer complexes with cofactors, amino acids, drugs and aminoglycoside antibiotics[J]. Rev Mol Biotechnol,2000,74: 39-60.
    107. Persson H, Johan L J, Ohlin M. A focused antibody library for improved hapten recognition[J]. J Mol Biol,2006,357:607-620.
    108. Prasada R T, Kala R, Daniel S. Metal ion-imprinted polymers-novel materials for selective recognition of inorganics[J]. Anal Chim Acta,2006,578:105-116.
    109. Rau D, Kramer K, Hock B. Cloning, functional expression and kinetic characterization of pesticide-selective Fab fragment variants derived by molecular evolution of variable antibody genes[J]. Anal Bioanal Chem,2002,372:261-267.
    110. Schlehuber S, Beste G, Skerra A. A novel type of receptor protein, based on the lipocalin scaffold, with specificity for digoxigenin[J]. J Mol Biol,2000,297:1105-1120.
    111. Schneider P, Hammock B D. Influence of the ELISA formatand the hapten-enzyme conjugate on the sensitivity of animmunoassay for S-triazine herbicides using monoclonal antibodies[J]. J Agric Food Chem,1992,40:525-530.
    112. Shan G, Leeman W R, Stoutamire D W, et al. Enzyme-linked immunosorbent assay for the pyrethroid permethrin[J]. J Agric Food Chem,2000,48:4032-4040.
    113. Shan G, Stoutamire D W, Wengatz I, et al. Development of an immunoassay for the pyrethroid insecticide esfenvalerate[J]. J Agric Food Chem,1999,47:2145-2155.
    114. Shi X, Karkut T, Chamankhah M, et al. Optimal conditions for the expression of a single-chain antibody (ScFv) gene in Pichia pastoris[J]. Protein Express Purifi,2003,28:321-330.
    115. Shu T W, Gui W J, Guo Y R, et al. Preparation of a multi-hapten antigen and broad specificity polyclonal antibodies for a multiple pesticide immunoassay[J]. Anal Chim Acta,2007,587:287-292.
    116. Singh A K, Flouder S A W, Volponi J V. Development of sensors for direct detection of organophosphates. Part Ⅰ:immobilization, characterization and stabilization of acetyl- cholinesterase and organophosphate hydrolase on silica supports[J]. Biosen,1999,14:703-713.
    117. Skerritt J H, Hill A S, Mcadam D P, et al. Analysis of the synthetic pyret hroids, permethrin and 1 (r)-phenothrin in grain using a monoclonal antibody-based test [J]. J Agric Food Chem,1992,40: 1287-1292.
    118. Skladal P. Biosensors based on cholinesterase for detection of pesticides[J]. Food Technol Biotechnol,1996,34:43-49.
    119. Strachan G, Grant S D, Learmonth D, et al. Binding characterization of anti-atrazine monoclonal antibodies and their fragments synthesised in bacteria and plants[J]. Biosens Bioelectron,1998,13: 665-673.
    120. Sudi J, Heescgeb W. Studies on the development of an immuno assay for group-specific detection of the diethyl ester of phosphates, thiophosphates, dithiophosphates and phosphonates[J]. Kieler Milchw Forsch,1988,40:179-203.
    121. Susan K O S, Patterson P H, Terson T. A more efficient and economical approach for monoclonal antibody production [J]. J Immunol Methods,1997,209:105-108.
    122. Szurdoki F, Bekheit H K M, Marco M P, et al. Synthesis of hapten and conjugates for an enzyme immunoassay for analysis of the herbicide bromacil[J]. J Agric Food Chem,1992,40:1459-1465.
    123.Takeuchi T, Fukuma D, Matsui J. Combinatorial molecular imprinting:An. approach to synthetic polymer receptors[J]. Anal Chem,1999,71:285-290.
    124. Tout N L, Yau K, Trevors J T, et al. Synthesis of ligand-specific phage-display ScFv against the herbicide picloram by direct cloning from hyperimmunized mouse[J]. J Agric Food Chem,2001,49: 3628-3637.
    125. Tuerk C, Gold L. Systematic evolution of ligands by exponential enrichment[J]. Science,1990,249: 505-510.
    126. Turner A. Biosensors sense and sensitivity[J]. Science,2000,290:1315-1317.
    127. Ulbricht M. Membrane separations using molecularly imprinted polymers[J]. J Chromatogr B, 2004,804:113-125.
    128. Vuyisich M, Beal P A. Controlling protein activity with ligand-regulated RNA aptamers[J]. Chem Biol,2002,9:907-913.
    129. Ward V K, Schneider P G, Kreissig S B, et al. Cloning, sequencing and expression of the Fab fragment of a monoclonal monoclonal antibody to the herbicide atrazine[J]. Protein Eng,1993,6: 981-988.
    130. Weiss G A, Lowman H B. Anticalins versus antibodies:made-to-order binding proteins for small molecules[J]. Chem Biol,2000,7:177-184.
    131. Wengatz I, Schmid R D, KreiBig S, et al. Determination of the hapten density of immunoconjugates by matrixassisted UV laser desorption/ionization mass spectrometry[J]. Anal Lett,1992,25:1983-1997.
    132. Wengatz I, Stoutamire D W, Gee S J, et al. Development of an enzyme-linked immunosorbent assay for the detection of the pyrethroid insecticide fenpropathrin[J]. J Agric Food Chem,1998,46: 2211-2221.
    133. Wildt R M, Mundy C R, Gorick B D, et al. Antibody arrays for high-throughput screening of antibody-antigen interactions[J]. Nat Biotechnol,2000,18:989-994.
    134. Wing K D, Hammock B D, Wustner D A. Development of an S-bioallethrin specific antibody [J]. J Agric Food Chem,1978,26:1328-1333.
    135. Wing K D, Hammock B D. Stereoselectivity of a radioimmunoassay for the insecticide S-bioallethrin [J]. Experientia,1979,35:1619-1620.
    136. Wittmann C, Hock B. Sensitive s-triazine enzyme immunoas-say for water samples in polystyrene tubes[J]. Food Agric Immunol,1989,1:211-224.
    137. Wust S, Hock B. A sensitive enzyme immunoassay for thedetection of atrazine based upon sheep antibodies[J]. Anal Lett,1992,25:1025-1037.
    138. Yau K, Groves M, Li S, et al. Selection of hapten-specific single-domain antibodies from a non-immunized llama ribosome display library[J]. J Immuno Methods,2003,281:161-175.
    139. Yau K, Tout N L, Lee H, et al. Bacterial expression and characterization of a picloram- specific recombinant Fab fragment for residue analysis[J]. J Agric Food Chem,1998,46:4457-4463.
    140. Yazaki P J, Shively L, Clark C, et al. Mammalian expression and hollow fiber bioreactor production of recombinant anti-CEA diabody and minibody for clinical applications[J]. J Immunol Method,2001,253:195-208.
    141. Yoo J K, Young A C, Hye-Sung L, et al. Investigation of the effect of hapten heterology on immunoassay sensitivity and development of an enzyme-linked immunosorbent assay for the organophosphorus insecticide fenthion[J]. Anal Chim Acta,2003,494:29-40.
    142. You K M, Lee S H, Im A, et al. Aptamers as functional nucleic acids:in vitro selection and biotechnological applications[J]. Biotechnol Bioprocess Eng,2003,8:64-75.
    143. Yuan Q, Hu W, Pestka J J. Expression of a functional antizearalenone single-chain Fv antibody in transgenic Arabidopsis plants[J]. Appl Env Microb,2000,66:3499-3505.
    144. Zhang Q, Li T J, Zhu X X, et al. The determination of N-methylcarbamate insecticide metolcarb by enzyme-linked immunosorbent assay[J]. Chinese J Anal Chem,2006,34:178-182.
    145. Zhang Q, Wang L B, Ki C A, et al. Hapten heterology for a specific and sensitive indirect enzyme-linked immunosorbent assay for organophosphorus insecticide fenthion[J]. Anal Chim Acta,2007,596:303--311.
    146. Zhu Q Z, Haupt K, Knopp D, et al. Molecularly imprinted polymer for metsulfuron methyl and its binding charaterictics for sulfonylurea herbicides[J]. Anal Chim Acta,2002,468:217-227.
    147. Ziegler A, Cowan G H, Torrance L, et al. Expression of functional recombinant antibody molecules in insect cell expression systems [J]. Protein Express Purifi,2000,18:221-228.
    148.贲亚琍,朱德锐,刘德立.农药人工抗原合成方法的设计与优选[J].农药,2008,47(1):10-14.
    149.蔡宁.抗Vitronectin兔单克隆抗体的制备与初步鉴定[D].杭州:浙江大学,2004.
    150.陈帆,陈欢林,何奕.有机磷水解酶传感器及其应用研究进展[J].传感器技术,2004,23:5-9.
    151.陈芳,杨冰仪,龙军标,等.有机磷农药残留检测的研究进展[J].中国卫生检验杂志,2007,2:382-384.
    152.陈庆富,韩剑众.人工模拟抗体及其在兽药残留检测中的应用研究[J].中国兽药杂志2007,41(10):35-38.
    153.陈新建.免疫学技术在植物科学中的应用[M].北京:中国农业出版社,1998.
    154.杜念兴.兽医免疫学[M].北京:中国农业出版社,2000.
    155.费新平,王立世,张水锋,等.毛细管电泳-安培检测法对甲基对硫磷、对硫磷、西维因和速灭威农药残留的测定研究[J].分析测试学报,2004,23:70-73.
    156.高晓辉.蔬菜上农药残留快速检测势在必行[J].农药科学与管理,2000,21:16-20.
    157.郭辉,何成勇,陈靖,等.分光光度计在蔬菜农药残留快速检测上的应用[J].新疆农业科技,2005,1:40.
    158.郭江峰,孙锦荷.固相萃取技术的原理及应用[J].农药科学与管理,1997,64:14.
    159.郭利军,王晶,中元英,等.三种免疫血清制备方法的比较[J].大理学院学报,2004,3:7-8
    160.韩丽君,贾明宏,钱传范,等.甲基对硫磷的酶联免疫吸附分析(ELISA)研究[J].农业环境科学学报,2005,24:187-190.
    161.韩丽君.有机磷农药的酶免疫化学研究[D].北京:中国农业大学,2003.
    162.黄宝美.毛细管电泳法测定青菜中敌百虫的残留量[J].分析试验室,2004,23:1-3.
    163.黄芬,叶绍辉,龚振明.免疫层析快速诊断试纸条的制备及其应用[J].当代畜牧,2006,8:20-22.
    164.黄久红,于芹生,杨建国,等.泰州市叶菜类蔬菜农药残留研究[J].现代预防医学,2007,34:2571-2572.
    165.黄骏雄.固相萃取与液相色谱连用对生物基质的分离技术[J].环境化学,1994,13:181.
    166.金仁耀,桂文君,吴建祥,等.抗毒死蜱单克隆抗体的研制[J].浙江大学学报,2006,32:591-597.
    167.李亮亮,于维军,刘文娥.荧光法快速测定有机磷农药[J].辽宁农业科学,2001,5:44-45.
    168.李顺,纪淑娟,孙焕.酶抑制法快速检测蔬菜中有机磷和氨基甲酸酯类农药残留的研究现状及展望[J].食品与药品,2006,8:29-30.
    169.李文秀,徐可欣.蔬菜农药残留检测的红外光谱法研究[J].光谱学与光谱分析,2004,24:1202-1204.
    170.李颖娇,张荣全,叶非.生物传感器在农药残留分析中的应用[J].农药科学与管理,2003,24:11-13.
    171.李永香,黄勇,李发生,等GC/MS内标法同时测定食品中31种有机磷农残的实验方法研究[J].中国卫生检验杂志,2004,14:6771.
    172.刘长武,王一茹.对硫磷的人工抗原合成与鉴定[J].环境科学学报,1992,12(3):377-381.
    173.刘凤权,许志刚,王金生.定量测定甲胺磷残留的间接竞争ELISA的建立和初步应用[J].农业生物技术学报,1998,6:140-146.
    174.刘刚,黄荣茂,金林红,等.蔬菜中有机磷农药多残留检测方法[J].贵州大学学报(自然科学版),2004,12:68-70.
    175.刘萍,张进忠.有机磷农药残留检测技术研究进展[J].环境污染与防治,2006,1:55-57.
    176.刘永杰,张金振,曹明章,等.酶抑制法快速检测农产品农药残留的研究与应用[J].现代农药,2004,3:25-27.
    177.刘展眉,陈睿,江纪修.有机磷农药的压电检测法的研究[J]华南师范大学学报(自然科学版),1998,3:35-38.
    178.柳洁,何碧英,孙俊红.血中多种有机磷农药和鼠药的固相萃取GC/MS分析方法研究[J].中国卫生检验杂志,2005,15:10251.
    179.栾燕,赵晶,权伍英,等.蔬菜中15种农药残留量的气相色谱法同时测定[J].中国公共卫生,2005,21:3521.
    180.罗坤,金宁一,吴丛梅,等.重组鸡痘病毒与核酸疫苗联合免疫提高机体免疫功能研究[J].中国肿瘤生物治疗杂志,2001,8:37-40.
    181.罗天雄,吴传兵.农药残留控制研究现状与展望[J].现代农业科技,2006,3:37-38.
    182.罗正良,严鹏科SELEX技术及其应用的研究进展[J].甘肃医学,2008,46(33):55-57.
    183.梅平,惠小敏,王雄.农药残留检测中酶联免疫吸附技术的研究进展[J].长江大学学报(自科版),2007,4:37-42.
    184.蒙绮芳.测量农药和乙酰胆碱酯酶抑制物光化学式生物传感器[J].化学传感器,1996,16:192-195.
    185.米歇尔·霍迪,肖恩·霍华德.免疫分析的发展趋势[J].检验医学,2006,21:59-64.
    186.缪煜清,刘仲明,官建国.纳米技术在生物传感器中的应用[J].传感器技术,2002,21:61-64.
    187.帕克C W.生物活性化合物的放射免疫测定法[M].北京:科学出版社,1981,165.
    188.潘康标.蔬菜中7种有机磷农药残留检测[J].现代农药,2003,2:16.
    189.彭涛,杜小燕,李俊锁.分子印迹技术及其在痕量分析中的应用[J].农药学学报,2001,3:1-14.
    190.任丽萍,田芹,刘丰茂,等..用固相萃取和气相色谱技术测定环境水体中痕量农药[J].中国农业大学学报,2004,9:93-96.
    191.孙武勇,林琳,屈凌波,等.钙黄绿素-Pd2+荧光光度法测定甲基对硫磷[J].光谱实验室,2003,20:913-915.
    192.孙远明,赵肃清,张春艳,等.甲胺磷人工抗原的合成和鉴定[J].免疫学杂志,2002,18:163-166.
    193.汤琳,曾光明,黄国和,等.免疫传感器用于环境中痕量有害物质检测的研究进展[J].环境科学,2004,25:170-176.
    194.汤亚飞,王焰新,蔡鹤生,等.有机磷农药的使用与污染[J].武汉化工学院学报,2004,26:11-14.
    195.唐勤学,陶小林,黎司.有机磷农药残留检测技术的研究进展[J].化工时刊,2008,9:68-69.
    196.王恒亮.酶活性抑制测定农药残毒技术研究[J].河南农业科学,1997,1:25-26.
    197.王军.农药残留速测技术研究进展[J].环境污染治理技术与设备,2001,2:17-24.
    198.王素利,任丽萍,刘聪云,等.分散固相萃取净化液相色谱-质谱联用快速检测糙米中的多种残留农药[J].分析试验室,2009,4:15-16.
    199.王向红,崔小军,李昕,等.食品中有机磷农药检测方法研究进展[J].食品研究与开发,2006,27:190-194.
    200.王玉梅,许秉权,李岩.化学发光免疫分析与免疫放射分析检测血清TSH方法比较[J].中国地方病防治杂志,2006,21:359-360.
    201.卫红.气相色谱法测定废水中有机磷农药[J].现代科学仪器,1999,3:34-35.
    202.吴德仁,刘青华,谭海雯,等.广西北海市海产品中有机磷农药残留调查[J].应用预防医学,2007,13:211-212.
    203.吴颂如,万寅生.植物小分子的免疫测定技术[J].植物生理通讯,1989,5:68-72.
    204.吴芸茹.三种有机磷农药残留免疫检测方法的建立与应用.[M].南京:南京农业大学,2008.
    205.谢忠平,崔萍芳,宋霞,等.利用HCV多表位复合抗原制备高效价抗体[J].中国生物制品学杂志,2005,18:313-315.
    206.许翠玲,王改萍,胡胜水.有机磷农药生物电化学传感器的研究进展[J].分析科学学报,2002,18:502-507.
    207.许鹏翔,陈猛,钟树明.植物酶膜萃取-气相色谱分析水体中痕量有机磷农药[J].环境化学,2002,21:201.
    208.杨大进.农药残留生物快速检验方法[J].中国食品卫生杂志,1998,10:38-40.
    209.杨军.我国食物中有机磷农药残留现状及干预措施[J].中国公共卫生,2000,8:756.
    210.杨曼君.农药残留分析中的提取技术[J].农药科学与管理,2000,21:13.
    211.杨曼君.农药残留免疫分析法[J].华南农业大学学报,1996,4:20-22.
    212.杨若明,赵新颖,崔香花,等.酶抑制法快速检定果蔬中的农药残留[J].中央民族大学学报(自然科学版),2009,1:45-46.
    213.杨艳玉,范三红,薛平,等.固相萃取—气相色谱法检测菠菜中的54种有机磷[J].农产品加工(学刊),2008,12:33-35.
    214.杨依军,王勇,杨秀荣,等.免疫分析法在农药残留分析中的应用[J].华北农学报,2001,16:119-124.
    215.殷祥刚,尹丽梅,胥传来.有机磷农药多残留免疫分析方法研究进展[J].食品科学,2008,29:684-688.
    216.袁东星,邓永智,林玉晖.蔬菜中有机磷农药残留的发光菌快速测定[J].环境化学,1997,16(1):77-81.
    217.袁振华.大型水蚤生物测试技术在监测蔬菜中农药残留的应用研究[J].卫生研究,1995,24:109-110.
    218.张洪非,胡清源,唐纲岭,等.气相色谱-质谱法分析烟草中29种有机磷农药残留[J].中国烟草学,2008,1:11-15.
    219.张奇.倍硫磷和速灭威半抗原分子设计及其免疫效果研究[D].南京:南京农业大学,2007.
    220.张乔,李伟格,李泽宫,等.有机磷农药多残留检测方法及其应用[J].环境科学,1988,1:10-11.
    221.张青,周国强.农药对我国农产品污染的现状及控制对策[J].洛阳大学学报,2007,22:46-49.
    222.张文元,杨亚冬.酶联免疫吸附技术用于农药残留分析的研究进展[J].浙江省医学科学院学报,2008,73:28-32.
    223.张雪燕.蔬菜中农药残留量的生物化学检测[J].西南农业学报,1996,9:62-66.
    224.张正尧,苗春雨,鹿尘.周口市蔬菜中有机磷农药残留量调查[J].预防医学情报杂志,2006,22:480-481.
    225.赵建军,余建华,左言军,等.液晶型化学传感器检测有机磷农药化合物的研究[J].防化研究,2004,1:26-29.
    226.赵肃清,孙远明,张春艳,等.用多聚赖氨酸作载体制备抗甲胺磷抗体的研究[J].中国免疫学杂志,2002,18:380.
    227.赵晓萌,于同泉,朱高群,等.气相色谱-质谱法检测蔬菜和水果中35种农药残留[J].色谱,2005,23:3281.
    228.赵云峰.农药残留免疫分析进展[J].国外医学卫生分册,1997,24:116-121.
    229.甄永苏.大鼠单克隆抗体的制备、鉴定、基因克隆、抗原分析以及药物偶联物的抗肿瘤作用研究[D].北京:中国协和医科大学,1996.
    230.郑继平,刘向昕,王令春,等.产肠毒素大肠杆菌混合载体疫苗的免疫原性评价[J].现代免疫学,2004,24:482-485.
    231.郑萍,邹强.一种提高单克隆抗体产量的简易方法[J].免疫学杂志,1999,15:210-211.
    232.中华人民共和国国家标准.食品中有机磷农药残留的测定方法(GB/T 5009.20-2000).
    233.周向阳,林纯忠,胡祥娜,等.近红外光谱法(NIR)快速诊断蔬菜中有机磷农药残留[J].食品科学,2004,25:151-154.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700