用户名: 密码: 验证码:
冲裁上料机器人设计与视觉伺服系统的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
冲压生产是当代机械加工和制造过程中一种重要的成型制造技术,具有速度快、效率高、材料利用率高、节约能源、污染少等优点,广泛应用于工业生产诸多领域中。随着先进制造技术的发展,冲压生产技术正在向精密化、高速化、自动化、柔性化的方向发展,采用自动化技术、机器人技术、伺服技术等先进制造技术手段,构成自动化冲压生产技术的重要发展方向。
     视觉伺服系统一般由摄像机、图像预处理、图像理解、伺服控制器等部分组成,将视觉伺服系统同机器人相结合,使机器人具有同外部环境进行智能交互的能力,是当今机器人发展的一个主要方向。
     本文以三自由度RRR关节型冲裁上料机器人(简称SR09)为原型,就其概念设计、运动学、动力学及视觉伺服系统和伺服控制器的设计进行了深入地研究,主要内容及成果如下:
     第一章首先就冲压机器人对冲压生产自动化的影响、作用及意义进行了说明;对冲压机器人的种类与结构形式、与压力机的同步与协调方式及冲压自动化生产线全线的同步与协调方式等一系列问题进行分析和归纳。该章还讨论了机器人概念设计的方法对机器人这样的现代复杂的机电一体化系统的重要意义,分析了视觉伺服系统及其相关的图象处理、神经网络、模糊控制、机器人多传感器信息融合等技术的发展现状;论述了研究与开发冲压机器人及新一代的具有自治能力的智能冲压机器人对冲压生产自动化,提高企业的制造水平与能力,提高企业快速响应市场的能力的重要意义。
     第二章介绍了UML建模语言的基本构成及作用,总结了使用UML建模语言进行系统概念设计的优越性。基于信息系统的建模理论,应用面向对象的软件工程方法,建立了基于UML的现代机械系统用例驱动的设计过程模型。总结分析了用例驱动方法进行机电系统概念设计的步骤及目标,并用这种方法进行了冲裁上料机器人SR09的概念设计,对设计的结果进行了运动学动力学的仿真。
     第三章以串联关节式机器人(简称操作臂)为基础,构成操作臂的杆件被看作刚体,建立了SR09的连杆坐标系统和Denavit-Hartenbcrg描述体系及运动转换矩阵,给出了视觉系统坐标系,机器人本体坐标系及端拾器坐标系三者之间的关系,推导了SR09操作臂的运动学与动力学方程,并给出了方程的封闭正反解,开发了一种简洁实用基于牛顿欧拉方程的动力学算法,进行了动力学分析与仿真。
     第四章是关于机器人轨迹生成与最佳工作位置计算,这里轨迹是指位置、速度,加速度在关节空间或笛卡尔空间的时间历程。内容包括了常用的轨迹生成方法,对SR09的直线、弧线组成的综合轨迹进行了有圆滑过渡与无圆滑过渡的对比仿真试验研究,提出了一种基于SR09的最佳工作位置的优化算法。
     第五章讨论了视觉系统的构成与线性摄像机的模型及摄像机标定主要方法,给山了SR09的视觉系统的标定方式及相应的内、外参数矩阵。机器人的视觉系统主要由图像获取、图像处理两大部分构成。图像获取主要通过数码扫描仪、相机等数字化设备获取目标图像,图像处理主要经过数字滤波消除噪声,通过二值化算法,使彩色及各种灰度图像成为便于处理的黑白图像,经过边缘检测得到物体轮廓构造,通过图像分割得到所需的目标的图像坐标。该章提出了基于BP神经网络的工件识别算法,试验表明该算法能较好地解决SR09视觉系统进行工件识别的技术问题。
     第六章研究eye-in-hand方式下单目、双目机械手视觉伺服控制及基于位置的模糊PID控制,给出了单目Eye-in-Hand配置和双目立体配置下的视觉伺服控制模块的基本原理。主要内容包括:分析研究了单目Eye-in-Hand配置下的图像雅可比矩阵和基于PD(比例微分)的机械手控制算法,以及基于双目立体视觉的机械手视觉伺服控制,分别给出了SR09针对5个与8个工件特征点及直线与圆弧轨迹跟踪在Eye-in-Hand配置下的仿真实验。为提高机器人的自主性与适应性,从改善其工作性能,该章采用分段控制的模糊PID控制器,使得模糊控制参数和规则在控制过程中根据误差及变化率自动地调整、修改,从而使系统的控制性能不断改善,达到最佳的控制效果。SR09对斜平面内圆弧轨迹追踪仿真试验结果表明模糊PID控制效果较好。
     第七章是关于机器人多信息融合技术及控制。目前信息融合的方式主要有加权平均法,D-S证据法,产生式规则法,模糊理论与神经网络法。SR09机器人工作在物料抓取、搬运、物料放置的工作循环中,频繁与周围环境发生接触,保证机器人端拾器能够按规定的轨迹运动同时使其与环境的接触力在可接受的范围内十分重要。在没有力传感器的情况下,通过检测关节电机电流的变化了解关节力矩的变化,从而了解作用于操作臂末端的环境作用力的变化情况,产生接近觉,是控制机械臂精确安全定位,节省制造成本的一个好办法。该章讨论了视觉信息、力信息融合时,在无力传感器情况下基于关节电机电流反馈的力/位混合控制策略,实现了无力传感器情况下的机器人的接近觉反应,利用P.I.Corke博士的机器人工具箱构成了基于SR09的位置力矩控制仿真平台,进行了仿真试验。
     第八章对全文作出总结,计划将进一步考虑SR09的弹性动力学及参数辩识问题,以使SR09向高速化与轻量化发展;同时,对SR09端拾器轨迹转折处的关节角轨迹的圆滑过渡曲线进行优化设计,以及视觉系统及物料识别的实时性问题将作进一步研究。
Press manufacturing is an important metal forming technique in modern machining and fabrication process. Being of the advantages of rapid, efficient, material and energy economy and less pollution, press manufacturing technique is widely used in many industry fields and is developing towards precision, high-speed, automation and flexibility with the progress of Advanced Manufacturing Technology. It has been a significant trend for modern press manufacturing pro-cess to be automatic and flexible in forms of automatic press manufacturing unit or automatic production line employing automation, robot and servo technology.
     It is an important developing direction that the robot is accompanied by vi-sion so that it can interact intelligently with its working environment. Generally, the system of visual servoing can be divided into following subsystems:camera, image preprocessing, image understanding, visual servoing controller of robot. To improve the accuracy and range of application, camera calibration, feature detection and designing of visual servoing controller are deeply researched.
     Based on a visual servoing of stamping material feeding robot SR09, this dissertation researched a series of issues of robot including conceptual design of robot, kinematics, dynamics, visual servoing system as well as design of controller. The main points and fruits are following:
     The first chapter mainly dealt with the current trend in stamping robot and the technique of visual servoing. This chapter began with the trend in press process, then discuss of the impact of robot on press process. Also the category and configuration, coordination with press, and its synchronization and coordi-nation with whole automatic press production line are explored, analyzed and summarized. In addition, a survey of visual servoing and its related technologies are presented. It is concluded that it is highly significant to research and de-velop new generation of intelligently autonomous robot for automation of press process, enhancement of capability and level of manufacturing, enhancement of rapid response to market.
     In chapter two, after the components and advantages of the uniform mod-eling language (UML) being researched and analyzed, a model of modern design process based on UML (uniform modeling language) is proposed, subsequently the procedure and object of conceptual design of mechatronic system were ex-pounded. In the ending of chapter two, the conceptual design of SR09 was carried based on uniform modeling language (UML) by means of case driven methodol-ogy, and the results of simulation of kinematics and dynamics of robot SR09 was given.
     Chapter three based on the articulate robot (manipulator for short), view-ing the links which composes the manipulator as rigid body, applying principle of rigid body mechanics, expatiates the basic motion description and computa-tion of kinematics and dynamics of robot SR09. In this chapter, motion frame of links and Denavit-Hartenbcrg notation as well as motion transform matrix of SR09 are established; the transformation among vision frame, base frame of robot SR09 and workpiece frame also discussed. Moreover, equation of kinematics and dynamics of manipulator of SR09 are deduced and closed form solution to these equations is given; a simple and specific dynamical algorithm based on Newton Euler equation using MapleTM is proposed too.
     In chapter four, article concerns with methods of computing a trajectory in multidimensional space which describes the desired motion of a manipulator. Here, trajectory refers to a time history of position, velocity, and acceleration in joint space or Cartesian space. The contents includes several typical method of trajectory generation in joint angles such as Cubic polynomials, Cubic polyno-mials for a path with via points, higher order polynomials, linear function with parabolic blends, B-spline. In Cartesian space scheme. Chapter four also relates the mostly used trajectory in stamping robot, and a optimal algorithm comput-ing the work position of robot with minimum joint angles in non-singularity work space. A comparative Simulation is presented to verify a integrated trajectory that is composed several straight line and a circle in ADAMSTM at the end of chapter, and the simulation results shows that robot SR09 works well with the trajectory.
     Chapter five discusses the structure of vison system, pin-hole camera prin-ciple, camera calibration. Machine vision system mainly consists of acquisition of image, and process of image. Image process aim at canceling noise by digital filtering, converting color or grey image into binary image, getting the contours of workpieces through edge detecting, computing the pixel coordinates by seg-menting image. The camera calibration of SR09 is given and an algorithm of object workpiece recognizing based on BP neural network is advanced, and the algorithm verified by test.
     Chapter six discusses the monocular and binocular visual servoing systems and position based fuzzy PID controller. In this chapter, the principle, configura-tion of monocular and binocular with eye-in-hand are researched; including image Jacobian matrix, combination of multi-feature points Jacobian matrix, control al-gorithm of manipulator based on PD (Proportional derivative) control, binocular stereo visual servoing control system and related simulations.
     Because the visual servoing robot takes the vision system as the motion sens-ing unit, undergone all kinds of disturbance, characterized with hyper non-linear and time varying, the precision of robot controller is deadly affected by the en-vironment. In order to improve the autonomy and adaptability of robot and to enhance its performance, in this chapter, a fuzzy PID controller is designed for SR09. making the control parameters be modified with error and derivative of the error and the control performance be improved continuously. The tracking simulation of a circle on a slant plane verified the controller working well.
     Chapter seven is related to information fusion of robot. Information fusion is a process to use a numbers of synergistic sensors and combine these sensors effectively to form sensing system of high performance to acquire a consistent description of the sensed system. For the time being, the main methods to fu-sion information are weighted mean, Shafer-Dempster evidence inference, product ruler, fuzzy theory and neural network.
     Stamping robot contacts the environment frequently when they works in a loop of grabbing objet, transporting the object and laying down the object. It is imperative that the normal force between the end-effector and environment be maintained in a certain controlled range. When the force sensor is absence, it is possible to know the force exerting on environment by measuring the current that flow through coil of the joint motor. Therefore, a sense of access is obtained. This is a good method to control the robot to position precisely with low cost. In this chapter the principle of hybird control of force and position was analyzed with no force sensor just by measuring the current of joint motor. By means of Robotics TOOLBOX for MATLAB developed by Doctor P. I. coke,a simulation system is build up and the simulation carried out.
     Chapter eight is the conclusion. In this chapter some conclusions are made and a plan is advanced for future works.
引文
[1]王啸宇,张国权,锻压机械,1998,机械工业出版社,北京.
    [2]Waldemar Hellwig(张俊译),向高性能迈进,制造技术与机床,1999,104.
    [3]Mechanical Presses, High Potential of Forming Engeneering,1999, JAPAN FORMING MACHINERY ASSOCIATION.
    [4]方建军,何广平,智能机器人,2004,化学工业出版社,北京.
    [5]陈恳,杨向东,刘莉,杨东超,机器人技术与应用,2006年9月,第一版,清华大学出版社,北京.
    [6]日本机器人技术学会编,机器人技术手册,1996,科学出版社,北京.
    [7]渡边茂,工业机器人技术,1989,华东化工学院出版社,上海.
    [8]Wakefield Brian D., Robot Loaded Stamping Presses Keep Pace with Pro-duction, Production, January 1977.
    [9]Robots Prove Ideal for Press Loading/Unloading, Robotics Today, Winter 1979-80.
    [10]Thomas O. Blunt, Low Technology Robot Press Loading, Proceedings of Robot V Conference, October 1980.
    [11]大久保亨一,Ry Robot System for Secondary Presswork in Small-Lot Man-ufacturing, Robot,24.
    [12]大森修,Outline and Its Application of Ry Robot System for Secondary Presswork, Robot,27.
    [13]铃木末男,Peripheral Equipment for Ry Robot Systems, Robot,28.
    [14]大森修,Peripheral Devices (Inverting Units) of the Ry Robot Systems, Robot,29.
    [15]斋藤一一喜,铃木末男,Application of Ry Robot System in the Press Process, Robot,28.
    [16J小悟郎,宫孝士,An Application of Transfer Mechanism between Press Machines, Robot, October,1981,32.
    [17]大森修,Automation in Some Multi-Process Operations, Robot, December, 1983,33.
    [18]藤井胜治,Synchromatic Fully Automated Press Line, Robot,27.
    [19]片冈正太郎,吉尺哲郎,若尾宏和,Material Handling System of Pipe-Pieces for Pressing, Robot,22.
    [20]小松制作所,新制品介绍,Transfer Robot System for Small Presses.
    [21]海老名,宏昌,Automation System for Stamping Press Process with Rf Robot Feed, Robot, October,1981,32.
    [22]阿部真利,New Model'Transfer'and Its Application, Robot, luly,1981,31.
    [23]邱继红,冲压自动化及机器人冲压自动化生产线系统研究,博士学位论文,2000,中国科学院沈阳自动化研究所,沈阳.
    [24]成虹,冲压机械化与自动化,1990,江苏科学技术出版社,南京.
    [25]昊振彪等,微机控制冲压机械手的研制,机器人,1993,15,4.
    [26]大陆第一条自动化冲压生产线诞生,(台湾)机械工业杂志,1996年6月号.
    [27]http://www.mysteel.com/equ/xqsd/2008/07/01/103638,00,00,1825608.html
    [28]Alan Chaytor,Unicoinc, A Comparison of Electrical Versus Mechanical Feeds for Transfer Presses, Sheet Metal Industries, September,1988.
    [29]Masahiro Ogawa, The Work Handling Robot System for Press Machine, Proceedings of The 24th International Symposium on Industrial Robots, 1994.
    [30]Robot System Improves Inter-Press Materials Handling, Sheet Metal In-dustries, Dec.1994,71,12.
    [31]Kozuka G., Senba T., Eguchi L., An Automation of Large Tandem Press Process by the Computer Controlled Robot, Proceedings of The 7th Inter-national Symposium Industrial Robots, Tokyo, Japan,1977,409-415.
    [32]Omnilink System 5000 Press Control Operating Manual,2000, LINK ELECTRIC & SAFETY CONTROL CQMPANY, U. S. A.
    [33]System Solutions for Automation in Press Shops, Kuka Schweissan-Lagers Gmbh.
    [34]冲压生产线技术更新,力士乐信息季刊,1999,4.
    [35]French M J., Conceptual Design for Engineers,1999,3rd edition, Spring-Vcrlag.
    [36]梁俊彦,Li/MnO2扣式电池高速自动生产线技术系统研究,硕士学位论文,2008年,天津工业大学,天津.
    [37]Pahl G, Beitz W, Engineering Design,1984/1996, The Design Council, London.
    [38]邹慧君等.机电一体化系统概念设计的基本原理,机械设计与研究,1999,15,3,14-17.
    [39]邹慧君等,机构学10年来主要研究成果和发展展望,机械工程学报,2003,39,12,22-30.
    [40]邹慧君等,机械产品概念设计及其方法综述,机械设计与研究,1998,14,2,4-8.
    [41]李瑞琴,机电一体化系统创新设计,2005年4月,科学出版社,北京.
    [42]Nam Pyo Suh, Axiomatic Design:Advanced and Application,2001, Oxford University Press, New York.
    [43]宋慧军,林志航,公理化设计支持的概念设计产品模型,计算机辅助设计与图形学学报,2002,14,7,623-636.
    [44]Semyon D, Savransky, Engineering of Creativity:Imroduction to Triz Methodology of Inventive Problem Solving,2000, CRC Press, Boca Ra-ton,Florida.
    [45]Roth K., Konstruieren Mit Konstruktions Katalogen,1994, Springer-Verlag.
    [46]Findeisen D., Methodisches Auswahlen Bewahrter Losungskomnente An-wendungsbeispiel:Verdrangereinheiten Fur Hydmstatische Antriebe, Kon-struktion,1995,47,3,79-86.
    [47]姚致扬等,机械传动原理方案设计目录结构模式的研究,中国机械工程,1998,9,6,53-55.
    [48]檀润华,路甬祥,产生多个方案的键合图法,机械设计,1998,15,1,14-16.
    [49]邹慧君,机械系统设计原理,2003,科学出版社,北京.
    [50]赵松年,机电一体化系统设计,2004,机械工业出版社,北京.
    [51]谭民,徐德,侯增广,王硕,曹志强,先进机器人控制,2007年5月,高等教育出版社,北京.
    [52]刘延柱,高等动力学,2001,高等教育出版社,北京.
    [53]田祥庆,双目家政机器人的目标物识别及抓取研究,硕士学位论文,2010年,华南理工大学.
    [54]J. J. Craig, Introduction to Robotics:Mechanics and Control,2005, Third Edition, AddisonWesley.
    [55]B. Armstrong, O. Khatib, J. Burdick, The Explicit Dynamic Model and In-ertial Parameters of the Puma 560 Arm,, Proceedings of IEEE International Conference on Robotics and Automation,1986,510-518.
    [56]Peter I. Corke, An Automated Symbolic and Numeric Procedure for Ma-nipulator Rigid-Body Dynamic Significance Analysis and Simplification, Proceedings of the 1996 IEEE International Conference on Robotics and Automation Minneapolis, Minnesota April 1996,1018-1023.
    [57]M. H. Korayem, A. Basu, Automated Fast Symbolic Modeling of Robotic Manipulators with Compliant Links, Mathl. Comput. Modelling,1995,22, 9,41-55.
    [58]Hanlei Wang, Yongchun Xie, Adaptive Inverse Dynamics Control of Robots with Uncertain Kinematics and Dynamics, Automatica,2009,45,2114-2119.
    [59]S. Ali A. Moosavian, Evangelos Papadopoulos, Cooperative Object Manip-ulation with Contact Impact Using Multiple Impedance Control, Interna-tional Journal of Control, Automation, and Systems,2010,8,2,314-327.
    [60]Yongjie Zhao, Feng Gao, Dynamic Formulation and Performance Eval-uation of the Redundant Parallel Manipulator, Robotics and Computer-Integrated Manufacturing,2009,25,770-781.
    [61]Eliodoro Carrera, Miguel A. Serna, Inverse Dynamics of Flexible Robots, Mathematics and Computers in Simulation,1996,41,485-508.
    [62]Yangmin Li, Qingsong Xu, Dynamic Modeling and Robust Control of a 3-Prc Translational Parallel Kinematic Machine, Robotics and Computer-Integrated Manufacturing,2009,25,630-640.
    [63]J. Hollerbach, A Recursive Lagrangian Formulation of Manipulator Dynam-ics and a Comparative Study of Dynamics Formulation Complexity. IEEE Trans. Syst. Man Cybern.,1980, SMC-10,730-736.
    [64]T. Kane, D. Levinson, The Use of Kane's Dynamical Equations in Robotics, Int. J. Robot. Res.,1983,2,3-21.
    [65]C. Li, A New Lagrangian Formulation of Dynamics for Robotic Manipula-tors, J. Dynamic Systems, Measurement and Control, Trans. ASME,1989, 111,559-567.
    [66]K. S. Fu, R. C. Gonzalez, C. S. G. Lee, Robotics. Control, Sensing, Vision and Intelligence,1987. McGraw-Hill, New York.
    [67]J. Uickcr, On the Dynamic Analysis of Spatial Linkages Using 4 by 4 Matri-ces, PhD thesis,1965. Mechanical Engineering and Astronautical Sciences, North Western University.
    M. Kahn, The near-Minimum Time Control of Open-Loop Articulated Kinematic Linkages,1969. Technical Report No. Tech. Rep. AIM-106. Stan-ford University.
    [69]A. Bejczy, Robot Arm Dynamics and Control, Feb.1974, Technical Report No. Rep. NASA-CR-136935, NASA JPL.
    [70]R. Paul, Modelling, Trajectory Calculation and Servoing of a Computer Controlled Arm,1972, Technical Report No. Rep. AIM-177, Stanford Uni-versity, Artificial Intelligence Laboratory.
    [71]Santosha Kumar Dwivedy, Peter Eberhard, Dynamic Analysis of Flexible Manipulators, a Literature Review, Mechanism and Machine Theory,2006, 41,749-777.
    [72]Jose Antonio Martin H., Javier De Lope, Matilde Santos, A Method to Learn the Inverse Kinematics of Multi-Link Robots by Evolving Neuro-Controllers, Neurocomputing 2009,72,2806-2814.
    [73]J. Y. S. Luh, M. W. Walker, R. P. C. Paul, On-Line Computational Scheme for Mechanical Manipulators, ASME Journal of Dynamic Systems, Mea-surement and Control,1980,102,69-76.
    [74]Paraskevi Th. Zacharia, An Adaptive Neuro-Fuzzy Inference System for Robot Handling Fabrics with Curved Edges Towards Sewing, J Intell Robot Syst,2010,58,193-209.
    [75]Hill J, Park W T, Real Time Control of a Robot with a Mobile Camera, Proceedings of Int. Symposium on Image Recognition, Washington, USA, 1979,233-246.
    [76]邱联奎,基于机械手的视觉伺服控制及其应用研究,博士学位论文,2006年5月,中国科学技术大学,合肥.
    [77]王社阳,机器人视觉伺服系统的若干问题研究,博士学位论文,2006年6月,哈尔滨工业大学,哈尔滨.
    [78]B. Espiau, F. Chaumette, P. Rives, A New Approach to Visual Servoing in Robotics, IEEE Transactions on Robotics and Automation, Jun 1992,8,3, 313-326.
    [79]Seth Hutchinson, Gregory D. Hager, Peter I. Corke, A Tutorial on Visual Servo Control, IEEE Transaction on Robotics and Automation, October 1996.12,5,651-670.
    [80]E. Malis, F. Chaumette, S. Boudet,21/2 D Visual Servoing, IEEE Trans-action on Robotics and Automation, April 1999,15,2,238-250.
    [81]Sanderson A. C., Weiss L. E., Adaptive Visual Servo Control of Robots, 1983, Pugh A ed, Reprinted in Robot Vision, IFS Pub. Ltd., Bedford, UK, 107-116.
    [82]M. C. Ngugen, Situation-Oriented Behavior-Based Stereo Vision to Gain Robustness Adaptation in Manipulator Control, Proceedings of SPIE, Mas-sachusetts,1999,3837,90-97.
    [83]P. I. Corke, Visual Control of Robot Manipulators-a Review, In:K. Hashimoto, Visual Servoing:Real-Time Control of Robot Manipulators Based on Visual Sensory Feedback,1993, World Scientific, Singapore,1-31.
    [84]A. J. Koivo, N. Houshangi, Real-Time Vision Feedback for Servoing Robotic Manipulator with Self-Tuning Controller, IEEE Trans. Syst., Man, Cybern., 1991,21,1,134-142.
    [85]D. B. Westmore, W. J. Wilson, Direct Dynamic Control of a Robot Using an End-Point Mounted Camera and Kalman Filter Position Estimation, Proceedings of IEEE International Conference on Robotics and Automa-tion, Sacramento, CA,9-11 Apr,1991,3,2376-2384.
    [86]P. K. Allen, B. Yoshimi, A. Timcenko, Real-Time Visual Servoing, Pro-ceedings of IEEE International Conference on Robotics and Automation, Scaramento, CA,9-11 Apr,1991,1,851-856.
    [87]L. E. Weiss, A. C. Sanderson, C. P. Newman, Dynamic Sensor-Based Con-trol of Robots with Visual Feedback, IEEE J. Robotics and Automation, 1987, RA-3,5,404-417.
    [88]N P Papanikolopoulos, P K Khosla, T Kanade, Visual Tracking of a Moving Target by a Camera Mounted on a Robot:A Combination of Vision and Control, IEEE Trans on Robotics and Automation,1993,9,1,14-35.
    [89]Guillaume Allibert, Estelle Courtial, Francois Chaumette, Visual Servoing Via Nonlinear Predictive Control, In:G. Chesi & K. Hashimoto (Eds.): Visual Servoing Via Advan. Numer.Methods, Lncis 401,2010, Springer-Verlag Berlin Heidelberg,375-393.
    [90]Paraskevi Th. Zacharia, An Adaptive Neuro-Fuzzy Inference System for Robot Handling Fabrics with Curved Edges Towards Sewing, J Intcll Robot Syst,2010,58,193-209.
    [91]冈萨雷斯等,数字图像处理(英文版),2004,电子工业出版社,北京.
    [92]于殿泓,图像检测与处理技术,2006,西安电子科技大学出版社,西安.
    [93]Kenneth R. Castleman, Digital Image Processing,2008. Publishing House of Electronics Industry, Beijing.
    [94]刘仕良,基于机器视觉的板栗分级设备研究,硕士学位论文,2005年,北方工业大学.
    [95]Dimitris A. Mitzias, Mertzios, B. G., A Neural Multiclassifier System for Object Recognition in Robotic Vision Applications, Measurement,2004, 36,315-330.
    [96]M. Egmont-Petersena, D. De Ridderb, H. Handelsc, Image Processing with Neural Networks-a Review, Pattern Recognition,2002.35,2279-2301.
    [97]Zafer Iscan, Ayhan Yiiksel, Zumray Dokur, Mchmct Korurek, Tamer Olmez, Medical Image Segmentation with Transform and Moment Based Features and Incremental Supervised Neural Network, Digital Signal Pro-cessing 2009,19,890-901.
    [98]李国勇,智能控制与matlab在电控发动机中的应用,2007,电子工业出版社,北京.
    [99]李明钊,基于神经网络的电控汽油发动机的智能故障诊断研究,硕士学位论文,2008,昆明理工大学.
    [100]王琳,汽车发动机空燃比控制和速度控制的方法研究,硕士学位论文,2006年,哈尔滨工业大学.
    [101]胡波,基于粗糙集理论与bp神经网络结合的火电厂风机故障诊断研究,硕士学位论文,2008年,太原理工大学.
    [102]邓福康,基于人工神经网络的巷道围岩分类与支护参数优化研究,硕士学位论文,2009年,安徽理工大学.
    [103]黄建,基于matlab的汽油发动机空燃比控制方法研究,硕士学位论文,2008年,东北大学.
    [104]方志伟,基于浮动车数据的城市路段行程时间预测研究,硕士学位论文,2007年,北京交通大学.
    [105]刘军,基于神经网络的智能温度仪表的研制,硕士学位论文,2006年,武汉理工大学.
    [106]龚建平,基于bp神经网络的广义预测控制算法的研究与应用,硕士学位论文,2006年,贵州大学.
    [107]韩仁达,基于免疫bp神经网络的图像压缩算法在dm6446上的应用,硕士学位论文,2009年,太原理工大学.
    [108]刘静,基于人工嗅觉系统的智能火灾探测研究,硕士学位论文,2007年,太原理工大学.
    [109]刘德胜,基于多模型数据融合算法的木材干燥动态建模研究,硕士学位论文,2007年,东北林业大学.
    [110]张海清,生物质混煤燃烧及污染物排放特性研究,硕士学位论文,2007年山东大学.
    [111]胡先志,基于bp神经网络控制的冶炼炉控制策略的研究与应用,硕士学位论文,2007年,南昌大学.
    [112]高琳,基于神经网络和遗传算法的预测控制,硕士学位论文,2009年,华北电力大学.
    [113]杨赛,Bp神经网络学问题的分析研究,硕士学位论文,2009年,江西理工大学.
    [114]蒋闽敏,基于bp神经网络的作业成本法的应用研究和实践,硕士学位论文,2011,上海交通大学.
    [115]姚静,基于神经网络的印刷油墨质量检测与控制技术研究,硕士学位论文,2008年,江南大学.
    [116]王淑青,水轮机调节系统控制策略及模型辨识方法研究,博士学位论文,2006年,华中科技大学.
    [117]Martin T. Hagan,神经网络设计,2002.9,机械工业出版社,北京.
    [118]刘丞,自主移动机器人测控系统关键技术研究,硕士学位论文,2009年,西安电子科技大学,西安.
    [119]曾光奇,胡均安等,模糊控制理论与工程应用,2006,华中科技大学出版社,武汉.
    [120]蔡自兴,智能控制原理与应用,2007,清华大学出版社,北京.
    [121]V. Gengenbach, H. Nagel, M. Tonko, K. Schafer, Automatic Dismantling Integrating Optical Flow into a Machine-Vision Controlled Robot System, Proceedings of IEEE International Conference on Robotics and Automa-tion,1996,2,1320-1325.
    [122]C. Scheering, B. Kersting, Uncalibrated Hand-Eye Coordination with a Redundant Camera System, Proceedings of IEEE International Conference on Robotics and Automation,1998,4,2953-2958.
    [123]D. Kragic, H. Christensen, Using a Redundant Coarsely Calibrated Vision System for 3d Grasping, Proceedings of Proceedings of the Computational Intelligence for Modeling, Control and Automation,1999,91-97.
    [124]罗志增,蒋静坪,机器人感觉与多信息融合,2002,机械工业出版社,北京.
    [125]邓巍,丁为民,多传感器信息融合及其在农业中的应用,2006年5月,5,164-168.
    [126]李滟泽,多信息融合技术在发动机故障诊断中的应用,科技资讯,2008年,24,44-45.
    [127]N. Hogan, Impedance Control:An Approach to Manipulator:Part Ⅰ-Theory; Part Ii-Implementation:Part Iii-Applications, ASME J. of Dy-namic Systems, Measurement, and Control,1985,107,1-24.
    [128]M. H. Raibert. J. J. Craig, Hybrid Position/Force Control of Manipulators, ASME J. of Dynamic Systems, Measurement, and Control,1981,102,125-133.
    [129]T. Yoshikawa, Force Control of Robot Manipulators, Proceedings of IEEE Conf. on Robotics and Automation,2000,220-226.
    [130]Ganwen Zang, Ahmad Hemami, An Overview of Robot Force Control, Robotica,1997,15,473-482.
    [131]T.-H. Chin, I. Miyashita, T. Koga, Sensorless Induction Motor Drive:An Innovative Component for Advanced Motion Control, Control Eng. Prac-tice,1997,5,12,1653-1659.
    [132]R. Marino, P. Tomei, C.M. Verrelli, A Global Tracking Control for Speed-Sensorless Induction Motors, Automatica,2004,40,1071-1077.
    [133]Maurizio Cirrincione, Marcello Pucci, Sensorless Direct Torque Control of an Induction Motor by a Tls-Based Mrasobserver with Adaptive Integra-tion, Automatica,2005,41.1843-1854.
    [134]G. R. Arab Markadeh, J. Soltani, Robust Direct Torque and Flux Control of Adjustable Speed Sensorless Induction Machine Drive Based on Space Vector Modulation Using a Pi Predictive Controller, Electrical Engineering, 2006,88,485-496.
    [135]Mchmct Zcki Bilgin, A Sensorless Initial Rotor Position Sensing Using Neu-ral Network for Direct Torque Controlled Permanent Magnet Synchronous Motor Drive, In:B. Beliczynski et al. (Eds.), Icannga 2007, Part Ii, Lncs 4432,2007,713-721.
    [136]S. Thangavel, V. Palanisamy, K. Duraiswamy, Genetic Based Sensorless Hybrid Intelligent Controller for Strip Loop Formation Control between Inter-Stands in Hot Steel Rolling Mills, ISA Transactions 2008,47,179-188.
    [137]Jcmaa Brahmi, Lotfi Krichcn, Abdcrrazak Ouali, A Comparative Study be-tween Three Sensorless Control Strategies for Pmsg in Wind Energy Con-version System, Applied Energy,2009,86,1565-1573.
    [138]Nicola Vitiello, Tommaso Lenzi, Stefano Marco Maria De Rossi, Stefano Roccella, Maria Chiara Carrozza, A Sensorless Torque Control for Antago-nistic Driven Compliant Joints, Mechatronics,2010,20.355-367.
    [139]T Murakami, Y Fangming, O Kouhei, Torque Scnsorless Control in Mulitde-gree of Freedom Manipulator, IEEE Transactions on Industrial Electronics, 1993,40,2,259-265.
    [140]张建忠,孔-轴装配机器人视觉制导关键技术研究,博士学位论文,2006年5月,东南大学,南京.
    [141]Koh Hosoda, Katsuji Igarashi, Minoru Asada, Adaptive Hybrid Visual Ser-voing/Force Control in Unknown Environment, Proceedings of IEEE Conf. on Intelligent Robots and Systems,1996,1097-1103.
    [142]B. J. Nelson, P. K. Khosla, Force and Vision Resolvability for Assimilating Disparate Sensory Feedback, IEEE Trans.on Robotics and Automation, 1996,12,5,714-731.
    [143]A. Pichler, M. Jagerstand, Uncalibrated Hybrid Force-Vision Manipulation, Proceedings of IEEE/RSJ International Conf. on Intelligent Robots and Systems,2000,1865-1871.
    [144]Di Xiao, B. K. Ghosh, Ning Xi, Sensor-Based Hybrid Position/Force Control of a Robot Manipulator in an Uncalibratcd Environment, IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY,2000,8, 4,635-645.
    [145]D. Xiao, B. K. Ghosh, N. Xi, T. J. Tarn, Intelligent Robotic Manipula-tion with Hybrid Position/Force Control in an Uncalibrated Workspace, Proceedings of IEEE Conf. on Robotics and Automation,1996,1097-1103.
    [146]张海藩,软件工程导论,2003.11,第四版,清华大学出版社,北京.
    [147]周秉峰,Uml软件建模,2001.11,北京大学出版社,北京.
    [148]Conrad Bock, Sysml and Uml 2 Support for Activity Modeling, Systems Engineering,2006,9,2,160-186.
    [149]L. Balmelli. D. Brown, M. Cantor, M. Mo, Model-Driven Systems Devel-opment, IBM SYSTEMS JOURNAL,2006,45,3,569-585.
    [150]Doug Rosenberg, Kendall Scott, Applying Use Case Driven Object Model-ing with Uml:An Annotated E-Commerce Example,2003, Science Press and Pearson Education North Asia Limited.
    [151]J. J. Murray, Computational Robot Dynamics, Ph. D. thesis,1984, Carncgic-Mcllon University.
    [152]C. An, C. Atkeson, J. Hollerbach,Model Based Control of a Robot Manip-ulator,1988, MIT Press, Cambridge, MA.
    [153]L. Ljung, From Data to Model:A Guided Tour, Proceedings of IEE CON-TROL'94,1994,422-430.1.1,1.3
    [154]R. Y. Tsai, A Versatile Camera Calibration Technique for High-Accuracy 3d Machine Vision Metrology Using Off-the-Shelf Tv Cameras and Lenses, IEEE J. of Robotics Automation,1987,3,4,323-344.
    [155]Juyang Weng, Paul Cohen, Marc Hemiou, Camera Calibration with Dis-tortion Models and Accuracy Evaluation, IEEE Transactions on Pattern Analysis and Machine Intelligence,1992,14,10,965-980.
    [156]H. Michel, P. Rives, Singularities in the Determination of the Situation of a Robot Effector from the Perspective View of 3 Points,Technical Report No. 1850, Institut National de Recherche en Informatique et en Automatique, INRIA.
    [157]K. Hashimoto, T. Noritsugu, Performance and Sensitivity in Visual Servo-ing, Proceedings of IEEE Int. Conf. on Robotics and Automation,1998, 2321-2326.
    [158]Andrea Bacciotti, and Lionel Rosier:Liapunov Functions and Stability in Control Theory (Springer-Verlag Berlin Heidelberg 2005).
    [159]J. Craig:Introduction to Robotics:Mechanics and Control (Prentice Hall, 2005).
    [160]XIAOMING GAO, DARREN DAWSON, and ZHIHUA QU:On the Robust Control of Two Manipulators Holding a Rigid Object, Journal of Intelligent and Robotic Systems, vol.8 (1992), p.107-119.1.1

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700