用户名: 密码: 验证码:
黄瓜采摘机器人视觉关键技术及系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于机器视觉的果蔬采摘机器人可充分利用其信息感知能力对果蔬进行识别,提高采摘效率,但是目前采摘机器人还未得到大量应用,其重要原因之一为果实识别率不高,因此研究采摘机器人的目标识别对加快农业采摘机器人的实用进程、改变目前主要依靠人工采摘的现状具有重要现实意义。
     本文以温室黄瓜作为研究对象,在自然环境下采集的可见光图像中,由于黄瓜果实和叶茎颜色相近给识别带来了困难,采用基于形状特征的模板匹配法可实现黄瓜果实识别率为87%,采用双目立体视觉实现黄瓜采摘点的三维空间坐标定位,在物距500mm-750mm时,实现最大定位误差9.46mm。本文的主要研究内容和成果如下:
     1、研究了黄瓜图像的颜色特征,分析了黄瓜果实和茎叶等在RGB模型和HSI模型中6个分量图像,通过对各分量图像的研究发现,黄瓜果实和茎叶等背景在G分量图像中差别较大,选择G分量图作为颜色特征作图像分割,通过图像增强、阈值分割、形态学操作等一系列处理过程,得到黄瓜图像分割结果,但分割结果并不是很理想。
     2、研究了黄瓜果实形状的表示和描述方法。采集200幅简单背景下的黄瓜图像做处理并得到黄瓜边界,采用椭圆傅里叶描述边界并做归一化处理,通过平均各描述子得到平均椭圆傅里叶描述子,通过反变换描述子重建黄瓜边界,得到标准的黄瓜边界。
     3、研究了模板变形和模板匹配算法。以得到的标准的黄瓜边界为基础,通过5次尺度变换和13次角度变换,得到65个不同尺度和不同角度的黄瓜形状,对其进行实体化后形成模板库。采用基于模板库的匹配算法对复杂背景下的100幅黄瓜图像进行灰度模板匹配,实现黄瓜识别,正确识别率达87%,对颜色相近以及部分遮挡的果实仍能实现识别,并提出匹配的模板起始点作为黄瓜果实顶点。
     4、研究了双目立体视觉原理、数学模型以及摄像机标定方法。构建双目视觉系统并进行摄像机标定实验,得到双目立体视觉系统的内外参数,根据双目视觉原理,对黄瓜采摘点进行定位计算,得到其空间坐标,利用FARO ARM三坐标测量仪测量采摘点实际空间坐标,并与计算结果进行比较,相对于物距500mm~750mm,实现最大定位误差9.46mm,可满足满足采摘系统要求。
     5、建立了一套黄瓜采摘机器人识别和定位系统。构建黄瓜采摘机器人的硬件系统和软件系统,实现了在自然环境下采集的可见光图像中黄瓜果实的识别和空间定位。
Fruit and vegetable harvesting robot based on machine vision could identify fruits and vegetables to improve picking efficiency by using the ability of information apperceiving, but harvesting robot has not been widely used. One of the most important reasons is that the fruits recognition rate is not high enough. Thus there would be important practical significance for accelerating the practical process on agricultural harvesting robot and changing the current status of the main rely on manual harvesting by studying the target recognition of harvesting robot.
     In this thesis, cucumber in greenhouse was taken as the study object, in order to solve the problem on recognition between cucumber fruits and leaves or stem which have similar color, the visible light images of cucumber in natural environment was studied. The fruit could be identified correctly by using template matching which using shape features of cucumber, the recognition rate could achieve to 87%, the three-dimensional coordinate location of cucumber picking point could be calculated by using binocular stereo vision, the location error could achieved to 9.46mm. The main research contents and results in the thesis are as follows:
     1. The color features of cucumber image were studied. The R, G, B and H, S, I component of cucumber fruit and leaf was analyzed, although there is some differences between fruit and leaf on G component but this difference is not enough identify the fruit from the background which could achieve ideal cucumber segmentation. An identification method based on cucumber fruit shape features was proposed. The cucumber fruit border was obtained by using basic image processing on a simple background cucumber image, including preprocessing, morphological operations, region labeling and edge detection.
     2. Cucumber fruit shape representation and description methods were discussed. 200 pieces of different cucumbers were taken as the sample source, the cucumber images were taken and the fruit border was obtained by image processing. Then the boundary was described by using elliptic Fourier description and was normalized. The average elliptic Fourier descriptors waer obtained by averaging all the descriptors. After that the standard cucumber was obtained by inverse transform of boundary descriptors.
     3. Template deformation and template matching method was proposed. After 5 times of scale transformation and 13 times of angle transformation on the standard boundary, 65 pieces of cucumber shapes with different size and different angle was achieved. The gray template matching was done on 100 pieces of cucumber image with complex background by using template matching algorithm based on template database, and the correct recognition rate is 87%. The fruit with partial occlusion and similar color can still be recognized correctly. The matching template starting point was taken as the fruit top point.
     4. The principle, mathematical models and calibration methods of binocular stereo vision was discussed. A binocular vision system was established. The internal and external parameters of the binocular stereo vision system were obtained by camera calibration experiments. And the space coordinates of cucumber picking point was calculated using triangulation measurement method, and the actual position of picking point was measured by using FARO ARM, and the results were compared with the calculation results, the results showed that the max positioning error is 9.46mm relative to the object distance between 500mm and 750mm which could meet the requirement of the vision system..
     5. The identification and positioning system for cucumber harvesting robot was established including the hardware and software systems which achieve the identification of cucumber fruits and space positioning.
引文
[1]汤修映,张铁中.果蔬收获机器人研究综述[J].机器人, 2005(1): 90-96.
    [2] Edan Y, Gaines E. Systems engineering of agricultural robot design [J]. IEEE Transactions on Systems, Man and Cybernetics, 1994, 24(8): 1259-1265.
    [3] Sario Y. Robotics of fruit harvesting: A state-of-the-art review [J]. Journal of Agricultural Engineering Research, 1993, 54(3): 265-280.
    [4]尚庆茂,高丽红,王怀松.黄瓜――无公害生产.北京:中国农业出版社, 2003.
    [5] Arima S, Kondo N. Cucumber harvesting robot and plant training system [J]. Journal of Robotics and Mechatronics, 1999, 11(3): 208-212.
    [6] David C, Roy C. Color vision in robotic fruit harvesting[J].Transactions of the ASAE,1987,30(4):1 144-1148.
    [7] SarioY. Robotic fruit harvesting: a state-of-the-art review[J].Journal of Agricultural Engineering Research,1993,54(3):265-280.
    [8] Jimenez A R, Ceres R, Pons J L. A survey of computer vision methods for locating fruit on trees[J]. Transactions of the ASAE, 2000, 43(6):1911-1920.
    [9]梁喜凤.苗香雯,崔绍荣,王永维.番茄收获机器人技术研究进展[J]农机化研究,2003(4):1-4.
    [10] Harrell R C, Adsit P D,et al. Robotic picking of citrus[J].Robotica ,1990,8(4):269-278.
    [11]姜丽萍,陈树人.果实采摘机器人的研究综述[J].农业装备技术, 2006, 32(1):8-10.
    [12] Kondon N, Monta M, Fujiura T. Basic constitution of a robot for agricultural use [J]. Adcanced Robotics, 1996, 10(4): 39-353.
    [13] Kondon N, Monta M, Fujiura T. Fruit harvesting robot in Japan [J]. Adv.Space Res, 1996, 18(1/2): 181-184.
    [14] Van Henter EJ, Hemming J, Van Tuuijl B A J. An autonomous robot for harvesting cucumbers in greenhouses [J]. Autonomous Robots, 2002, 13:241-258.
    [15]汤修映,张铁中.果蔬收获机器人研究综述[J].机器人, 2005,(01): 58-67.
    [16]汤修映.果蔬收获机器人系统的研究[D].北京,中国农业大学,2006.
    [17]李伟,王库,谭豫之,杨庆华,高峰,袁挺,任永新,侯茗耀,冯青春.温室环境下黄瓜采摘机器人技术研究.第四届全国先进制造装备与机器人技术论文集.中国哈尔滨,2008.07: 79-88.
    [18] Kondo, N., M. Monta, T. Fujiura, Y. Shibano, 1995a. Intelligent Robot to Harvest Tomato, IEEE International, Conference on Robotics and Automation, Video Proceedings, 34.
    [19] N Kondo. Fruit Grading Robot. Proceedings of the 2003 IEE/ASME International Conference on Advanced lntelligent Mechatronics, 1366-1371.
    [20]胡桂仙,于勇,王俊,农业机器人的开发与应用[J].试验与研究, 2002:45-47.
    [21] ReedJ N, Ti11ettRD. Initial experiments in robotic mushroom harvesting. Mechatronics, 1994, 4:265-279.
    [22]张铁中,周天娟,草莓采摘机器人的研究:Ⅰ.基于BP神经网络的草莓图像分割[J].中国农业大学学报, 2004,(04): 136-145.
    [23]张铁中,陈利兵,宋健.草莓采摘机器人的研究:Ⅱ.基于图像的草莓重心位置和采摘点的确定[J].中国农业大学学报, 2005,(01): 127-133
    [24]周天娟,张铁中,杨丽。草莓采摘机器人的研究:Ⅲ.扫描线填充算法在草莓图像孔洞填充中的应用.中国农业大学学报, 2007,(12): 56-61.
    [25]高锐,草莓收获机器人初步研究, [D],北京,中国农业大学, 2004.
    [26]陈利兵,草莓收获机器人采摘系统研究, [D],北京,中国农业大学, 2005.
    [27]徐丽明,草莓收获机器人系统的研究, [D],北京,中国农业大学, 2006.
    [28]梁喜凤,王永维.番茄收获机械手奇异性分析与处理[J].农业工程学报, 2006,(01): 44-50.
    [29]赵金英,张铁中,杨丽.西红柿采摘机器人视觉系统的目标提取[J].农业机械学报, 2006,(10) . 32-37.
    [30]张瑞合,姬长英,沈明霞,曹坤.计算机视觉技术在番茄收获中的应用[J].农业机械学报, 2001,(05). 24-29.
    [31]宋健.开放式茄子采摘机器人关键技术研究,[D].北京,中国农业大学,2006.
    [32]姜海超.林木球果采集机研制, [D].东北林业大学,1997.
    [33]陆怀民.林木球果采集机器人设计与试验[J].农业机械学报, 2001,(06): 77-82.
    [34]袁国勇,张铁中.温室黄瓜果实的模式识别与分割[J].农机化研究,2006(7):150-153.
    [35] YANG Qinghua, QI Liyong, BAO Guanjun, et al. Cucumber image segmentation algorithm based on rough set theory[J]. New Zealand Journal of Agricultural Research, 2007, 50(5):989-996.
    [36] ZHANG Libin, YANG Qinghua, XUN Yi, et al. Recognition of cucumber fruit in greenhouse using computer vision[J]. New Zealand Journal of Agricultural Research, 2007, 50(5): 1293-1298.
    [37] KOLLENBURG L M, WERKHOVEN C, WENNE-KES P. Development of a mechatronic system for automatic harvesting of cucumbers[C]//Robotics and automated machinery for bio-productions 1997. Valencia: Transactions of the ASAE, 1997:21-24.
    [38] KONDO N, NAKAMURA H, MONTA M, et al. Visual sensor for cucumber harvesting robot[C]//Proceedings of Processing Automation Conference III. Japan: Transactions of the ASAE, 1994:461- 470.
    [39]李伟,王库,谭豫之,等.温室环境下黄瓜采摘机器人技术研究[C]//第四届全国先进制造装备与机器人技术论文集.哈尔滨:农机化研究,2008: 79-88.
    [40]鲍官军,荀一,戚利勇等.机器视觉在黄瓜采摘机器人中的应用研究[J].浙江工业大学学报, 2010, 38 (1): 158-162.
    [41]姜丽萍,陈树人.果实采摘机器人的研究综述[J].农业装备技术, 2006, 32(1):8-10.
    [42]章毓晋.图像工程(上册)图像处理(第2版)[M].北京:清华大学出版社, 2007.
    [43]宋健.开放式茄子采摘机器人关键技术研究[D]. 2006.
    [44] Rafael C.Gonzalez.Richard E. Woods.数字图像处理(第二版)[M].阮秋琦,阮宇智,译.北京电子工业出版社, 2004.
    [45]贾云得.机器视觉[M].北京:科学出版社, 2003.
    [46]罗军辉,冯平,哈力旦A.. MATLAB7.0在图像处理中的应用[M].北京:机械工业出版社.2005.
    [47] Rafael C.Gonzalez.Richard E. Woods.数字图像处理(第二版)[M].阮秋琦,阮宇智,译.北京电子工业出版社,2004.
    [48]罗军辉,冯平,哈力旦A.. MATLAB7.0在图像处理中的应用[M].北京:机械工业出版社.2005.
    [49] Rafael C.Gonzalez.Richard E. Woods.数字图像处理(第二版)[M].阮秋琦,阮宇智,译.北京电子工业出版社,2004.
    [50]汤修映.果蔬收获机器人系统的研究,[D].北京,中国农业大学,2006.
    [51]肖德贵.一种基于运动分割的新型视频压缩方法[D]. 2003.
    [52]陈皓,马彩文,陈岳承,孙小林,唐自力.基于灰度统计的快速模板匹配算法[J].光子学报, 2009(6): 1586-1590.
    [53]李强,张钹.一种基于图像灰度的快速匹配算法[J].软件学报, 2006, 17 (2) : 216-222.
    [54]章毓晋.图像工程(下册)图像理解(第2版)[M].北京:清华大学出版社, 2007.
    [55]丘江,刘波,杨静.基于图像差距分割的快速目标匹配识别算法[J].光子学报,2001,30 (11) : 1343-1347.
    [56]贾云得.机器视觉[M].北京:科学出版社, 2003.3:155
    [57] Sarkae N, Wolfe R R. Computer vision based system for quality separation of fresh market tomatoes[J]. Transactions of the ASAE, 1985,28 (5):1714-1718.
    [58] Blume,H .A transformation for extracting new descriptors of shape.In models for the perception of speech and visual form,Wathen-Dunn,W.(e d.),MIT Press,Cambridge, Massachusetts.
    [59] Rafael C.Gonzalez.Richard E. Woods.数字图像处理(第二版)[M].阮秋琦,阮宇智,译.北京电子工业出版社,2004.
    [60]桂江生.二维水果形状检测与分类算法研究[D]. 2007.
    [61]应义斌.水果形状的傅里叶描述子研究[J].生物数学学报, 2001, 16(2): 234~240.
    [62] CT Zahn, RZ Roskies. Fourier descriptors for plane closed curves[C]. Hamburg:IEEE Trans on Computers, 1972.
    [63] H Kauppien, T Sepanen. An experiment comparison of autoregressive and Fourier-based descriptors in 2D shape classification. IEEE T rans on PAM I, 1995, 2: 201-207.
    [64] E Persoon, K S Fu. Shape discrimination using Fourier descriptors. IEEE Trans on PAM I, 1986, 8: 388-397
    [65]王涛,刘文印,孙家广,张宏江.傅立叶描述子识别物体的形状[J].计算机研究与发展, 2002,(12): 102-108.
    [66] Rafael C.Gonzalez.Richard E. Woods.数字图像处理(第二版)[M].阮秋琦,阮宇智,译.北京电子工业出版社, 2004.
    [67] Drolon,H., Duraux,F., Faure,A. Particles shape analysis and classification using the wavelet transform. Pattern Recognition Letters, 21(6-7): 473-482, 2000.
    [68] Li, Jin, Kuo, C-C. J. Automatic target shape recognition via deformable wavelet templates. Proceedings of SPIE, Vol. 2756:2-13, 1996.
    [69] Hu, M .K . Visual pattern recognition by moment invariants. IEEE Transactions Information Theory, 8(2): 179-187, 1962.
    [70] Li Y. Reframing the theory of invariant moments for pattern recognition [J]. Pattern Recognition, 1992, 25(7): 723-730.
    [71] Flusser, J., Suk,T. Pattern recognition by affine moment invariants. Pattern Recognition, 26 (1):167-174, 1993.
    [72] Prokop R J, Reeves a p. a survey of moment-based techniques for unoccluded object representation and recognition [J]. Graohical models and image processing, 1992, 54(5): 438-460.
    [73]肖家庆,卢凌,李晟等.基于矩不变量的图像目标识别[J].武汉理工大学学报, 2006, 30(4): 696-699.
    [74] Frank P.kuhl. Charles R, Giardina. Elliptic Fourier Features of a Closed Contour[J]. Computer Graphics and Image Processing, 1982, 18: 236~258.
    [75]汪业衡,张翔.椭圆傅里叶级数展开法和椭圆光波导的截止频率[J].光学学报, 2000, 20(2): 204~213.
    [76]余少波,鞠发平,肖英明.物体识别不变性方法比较分析(Ⅱ)-统计方法[J].海军工程学院学报,1993,62(1): 8~15.
    [77] Ohsawa R, Tsutsumi T, Uehara H, Namai H, Ninomiya S. 1998. Quantitative evaluation of common buckwheat kernel shape by elliptic Fourier descriptor[J]. Euphytica 101: 175–183.
    [78] Iwata H, Niikura S, Matsuura S, Takano Y, Ukai Y. 1998. Evaluation of variation of root shape of Japanese radish based on image analysis using elliptic Fourier descriptors. Euphytica 102: 143–149.
    [79] Iwata H, Ukai Y. 2002. SHAPE: a computer program package for quantitative evaluation of biological shapes based on elliptic Fourier descriptors. The Journal of Heredity 93: 384–385.
    [80] Furuta N, Ninomiya S, Takahashi S, Ohmori H, Ukai Y. 1995. Quantitative evaluation of soybean leaflet shape by principal component scores based on elliptic Fourier descriptor. Breeding Science 45: 315–320.
    [81] Iwata H, Nesumi H, Ninomiya S, Takano Y, Ukai Y. 2002. The evaluation of genotype environment interactions of citrus leaf morphologyusing image analysis and elliptic Fourier descriptors. Breeding Science 52: 243–251.
    [82] Toyohara H, Irie K, Ding W, Iwata H, Fujimaki H, Kikuchi F, Ukai Y. 2000. Evaluation of tuber shape ofyam cultivars by image analysis and elliptic Fourier descriptors. SABRAO Journal of Breeding and Genetics 32: 31–37.
    [83]彭真明,张启衡,魏宇星等.基于多特征融合的图像匹配模式[J].强激光与粒子束,2004,16 (3): 281-285.
    [84]陈皓,马彩文,陈岳承,孙小林,唐自力.基于灰度统计的快速模板匹配算法[J].光子学报, 2009(6): 1586-1590.
    [85]丘江,刘波,杨静.基于图像差距分割的快速目标匹配识别算法[J].光子学报,2001,30 (11) : 1343-1347.
    [86]荆涛,王仲.光学字符识别技术与展望[J].计算机工程, 2003, 29(2):55-80.
    [87]贾云得.机器视觉[M].北京:科学出版社, 2003.
    [88]袁国勇.黄瓜采摘机器人目标识别与定位系统的研究[D].北京,中国农业大学,2006.
    [89] R.Jimenez, R.Ceres, J.L.Pons. A survey of computer vision methods for locating fruit on trees[J].Transactions of the ASAE 43(6):1911-1920.
    [90]张广军.机器视觉[M].北京,科学出版社.2005.
    [91]贾云得.机器视觉[M].北京:科学出版社, 2003.
    [92]游素亚,徐光佑.立体视觉研究的现状与进展[J].中国图像图形学报.1997, 2(1): 17-24.
    [93]唐志健.基于立体视觉的深度信息恢复技术研究[D].大庆石油学院, 2006.
    [94] O.Faugeras,Three-dimensional Computer Vision:A Geometric Viewpoint[M],The MIT Press,Fourth Printing,2001.125-131.
    [95]廖素英.实时双目立体视觉研究[D].电子科技大学, 2005.
    [96]周东翔,蔡宣平,孙茂印.一种基于特征约束的立体匹配算法[J].中国图像图形学报2001,6(5):653-656.
    [97]林琳.机器人双目视觉定位技术研究[D].西安电子科技大学, 2009.
    [98]张广军.机器视觉[M].北京,科学出版社.2005.
    [99] W.Hoff, N.Abuja.Surfaces from Stereo:Integrating Feature, Matching, Disparity and Contour Detection.IEEE Trans.on Patern Analysis and Machine Intelligence.1989,11(2):121-136.
    [100] M.farge,Y Guezennee,C.M.Ho and C.Meneveau.Continuous Wavelet Analysis of coherent Structures,Center for Tuburlence Research Proceedings of the Summer Program,1990,349-358.
    [101] K. Wong. Mathematical foundation and digital analysis in close-range photogrammetry. Photogrammetric Engineering and Remote Sensing, 2003, 19(2): 238-249.
    [102] D. Brown. Decentering distortion of lenses. Photogrammetric Engineering, 32(3): 444-462, May 1966.
    [103]邱茂林,马颂德,李毅.计算机视觉中摄像机定标综述[J].北京:自动化学报, 2000, 26(1): 35-42.
    [104]蔡健荣,范军,李玉良.立体视觉系统标定及成熟果实定位[J].农机化研究, 2007, 11(03):38-40.
    [105] Y. Abedl-aziz, H. Karara. Direct linear transform from comparator coordinate into object space coordinates. In Proceedings of ASP/UI Symposium on Close-range photogrammetry Urbana, Illinois,1971, 1, 420-475.
    [106] R. Tsai. A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV cameras and lenses [J]. IEEE Journal of Robotics and Automation, 1987, 3 (4):323-344.
    [107]马颂德,张正友.计算机视觉计算理论与实践[M].北京:科学出版社,1998.
    [108] Z. Zhang. A flexible new technique for camera calibration. Microsoft Research Technical Report, Dec 2, 1998.
    [109]研究版智能机器人用户手册(MR-T User Guide) [Z].上海英集斯自动化技术有限公司.
    [110]吴佳艺.基于机器视觉的农林环境导航路径生成算法研究[D]. 2009.
    [111]米本和也. CCD/CMOS图像传感器基础与应用[M].陈榕庭,彭美柱,译.北京:科学出版社, 2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700