用户名: 密码: 验证码:
山地河流生境对河流生物多样性的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
河流生境是河流生物和物理环境的自然联系,受到河道内部结构、流域地形地貌、人为干扰等环境因素影响。大型底栖动物和鱼类是山地河流生态系统的重要组成部分,对河流生境的变化最为敏感。近年来为了片面追求经济效益,引水式小水电建设造成山地河流流域生态失调,坝下河段减水、脱水甚至河床干涸,河流生境破碎和衰退,水生生物多样性丧失等日益严重的生态环境问题。如何寻求水能资源开发与山地河流生态系统健康、河流生物多样性完整的和谐发展,是急需研究和探索的重大问题。
     基于我国山地河流的环境现状和现实需要,本研究紧紧围绕河流生境这一研究主题,开展宏观、中观、微观尺度的山地河流生境分类研究,从中观和微观尺度研究山地河流生境对大型底栖动物的影响,研究了引水式小水电影响下河流生境演变规律及大型底栖动物和鱼类的响应机制。
     主要研究结论如下:
     (1)基于Bisson的河流生境分类方法,结合野外实地调查和GIS分析,以地处三峡库区腹心的重庆开县东河为研究对象,开展宏观、中观、微观尺度的山地河流生境分类研究。在河流系统尺度上,将东河划分为上游、中游、下游3段;河区尺度上,将东河河流生境划分为源头河区、基岩河区、淤积河区三种类型;在河段尺度上,划分了源头河段、基岩河段、小瀑布河段、深潭-浅滩河段、阶梯-深潭河段、平坦河床河段6种类型;河道生境单元尺度上,划分了跌水、小瀑布、急濑、浅濑、斜槽、平流、回水潭、深沟、河道中央水潭、侧面冲槽、跌水潭、崩塌阻塞水潭、死水潭、二级河道水潭等14种类型。微生境尺度上,按照河床底质颗粒大小划分了河流生境。
     (2)调查了重庆市城口县鱼肚河源头河段小圆石和大圆石上附石性水生昆虫,研究了山地源头溪流附石性水生昆虫群落特征和多样性,探讨了不同大小石块对附石性水生昆虫群落的影响。结果表明:鱼肚河源头溪流中水生昆虫有62种,分属6目、30科。蜉蝣目、毛翅目、双翅目昆虫为优势类群。随着溪流高程的增加,毛翅目昆虫优势度愈加明显。附石性水生昆虫功能摄食类群以撕食者、收集者为主。大圆石上附石性水生昆虫群落多度、Shannon-Wiener多样性指数、Margalef丰度指数显著高于小圆石。沿溪流高程梯度,小圆石上水生昆虫群落多样性指标无显著差异;大圆石上水生昆虫群落多度、Margalef丰度指数有显著差异。两种石块在生境异质性和稳定性上的差异是附石性水生昆虫群落差异的主要原因。
     (3)浅滩和深潭是山地河流中观尺度上常见的河流生境结构。在重庆开县东河上游双河口-杉木桥河段,选择21个浅滩和深潭,调查大型底栖动物。结果表明:调查河段浅滩和深潭中大型底栖动物分别为31种和24种,密度分别为450.62 ind/m~2和86.24 ind/m~2,生物量分别为2.88 g/m~2和0.55 g/m~2。浅滩有指示种11种,即纹石蛾、假蜉、假二翅蜉、舌石蛾、高翔蜉、背刺蜉、Heterocloeon sp、锯形蜉、朝大蚊、等蜉、溪颏蜉。深潭指示种仅蜉蝣和黑大蚊两种。刮食者为两类生境的优势功能摄食类群。浅滩中滤食者和刮食者比例显著高于深潭,而收集者和捕食者显著低于深潭。两类生境中大型底栖动物群落结构差异显著。浅滩中大型底栖动物的密度、生物量、丰富度指数、Shannon-Wiener指数、改进的Shannon-Wiener指数均明显高于深潭。受地貌形态、水力特征和冲淤变化规律影响的生境稳定性和异质性差异是大型底栖动物群落差异的主要原因。
     (4)调查重庆东河白里电站和红花电站影响河段的河流生境和鱼类,研究引水式小水电对山地河流鱼类群落的影响,从河流生境角度对其影响机制进行探讨。共采集鱼类149尾,隶属4目、8科、16属、17种。研究表明,引水式小水电影响河段鱼类多样性普遍偏低。引水坝修建后,库区逐年淤积,河流生境异质性和多样性丧失;坝下形成减水河段,河流生境面积缩小,浅滩-深潭交替的生境结构被破坏。引水式小水电对鱼类群落的影响主要是引水坝修建改变河流生境所致。
     (5)选择重庆东河白里电站和红花电站影响河段为研究区域,各电站设置库尾以上河段,库区河段,引水坝下减水河段,电站出水口以上河段,电站出水口以下河段5个调查河段,研究引水式小水电对河流大型底栖动物群落的影响。调查共采集到大型底栖动物43种,隶属3门4纲30科。各调查河段大型底栖动物组成以蜉蝣目、毛翅目昆虫为主。研究表明,引水式小水电修建后河流水质并未发生明显变化,但库区河段和坝下河段的生境状况发生了较大变化。库区河段受泥沙淤积影响,依然保持流水状态,大型底栖动物与电站出水口及库区河段无明显差异。但是由于泥沙淤积降低了生境的多样性和异质性,库区河段大型底栖动物群落密度、生物量和多样性指数显著低于电站出水口以下河段。坝下河段由于流量减少,生境适宜性降低,大型底栖动物密度、生物量和多样性明显降低。
     (6)从河流生境结构和功能出发,选用河流生境多样性指数、河道湿润率、生境单元质量指数,采用专家打分法确定权重系数,建立了山地河流生境快速评价指标体系及定量评价模型。选取东河进行河流生境质量定量评价。结果表明河流生境质量从库尾以上河段起逐步下降,在引水坝以下河段降至最低,其后呈逐渐恢复的态势。坝下河流生境主要受到河流减水影响;坝上河段河流生境主要受泥沙淤积影响。评价结果能较直观地反映水电工程影响下山地河流生境状况,以及导致河流生境质量衰退的原因。
River habitat was significant influenced by in stream physical structure, topography, geomorphology and human disturbance and was also important to river biodiversity. Macroinvertebrate and fish, which is sensitive to river habitat variation, were important component of mountain river ecosystem. In the past twenties years, numerous small diversion type hydropower stations were constructed in mountain river of China for their good economic benefit. As a consequence, a lot of environmental problem relative to river ecosystem and aquatic organisms exhibited including dysbiosis, drought of river channel, habitat fragmentation and loss of aquatic biodiversity. Therefore, maintenance of mountain river ecosystem health, biodiversity integrity was important and urgent for water energy resource exploitation in China.
     In view of the need of reality and present environment status of mountain river in China, we conducted research on river habitat. In this study, we classified river habitat of mountain river ranging from macro to meso and micro habitat scale, explored the relationship between macroinvertebrate and meso habitat and micro habitat, discovered both character of river habitat and pattern of macroinvertebrate and fish community diversity which were influenced by small diversion type hydropower stations.
     The main contents and researeh results are summarized as follows:
     (1) According to Bisson’s river habitat classification system and basing and based on GIS technology and field survey date, we classified river habitat of Dong River ranging from macro to meso and micro habitat scale. At river system scale, we divided Dong River in to three parts, including upstream, middlestream and downstream. At river segment scale, we identified three types segment, including colluvial valleys, bedrock valleys, headwear valleys. At river reach scale, six types of river reaches presented in Dong River, including bedrock reaches, headwear reaches, cascade reaches, step-pool reaches, plane-bed reaches, pool-riffle reaches. At channel unit scale, Dong River had 14 types of habitat as followings: falls, cascade, rapids, riffle, chute, run, eddy, trench, midchannel pool, latteral pool, plunge pool, landslide dam pool, backwater and abandoned channel pool. River habitat at micro habitat scale can be classified according to substrate particle size.
     (2) Aquatic insect larva on stone surfaces played an important role in headwater ecosystem. In May 2007, aquatic insect larvas on small and large cobble surface in four sampling section were investigated in the headwater of Yudu stream in Chengkou County, Chongqing. The aim of present research is to discover the community characteristic and biodiversity of aquatic insect on stone surface and analyze the influence of stone size on insect larva. The result shows that there were 62 species of 30 families of 8 orders in headwater of Yundu stream. Ephemeroptera, Trichoptera and Diptera were the dominant groups. Trichoptera showed more proportions in stream reach of higher altitude. Shredder and Collector-gatherer were dominant functional feeding groups. Abundance, Shannon-Wiener Index and Margalef index of large cobble were significantly higher than that of small cobble, which may be determined by heterogeneity and stability difference of these two types of stone habitats. There were no significant differences in biodiversity index of aquatic insect larva on small cobble among four sampling sites, while abundance and Margalef Index of larva on large cobble were significant different.
     (3) Riffle and pool was the most common habitat unit in mountain river. In July 2011, macroinvertebrate of twenty one riffles and pools respectively in upstream of Dong River in Kaixian County of Chongqing were sampling to compare their difference in assemblage structure and composition. The result indicated that there were 31 and 24 in riffles and pools respectively. The density, wet biomass of riffles were 450.62 ind/m~2 and 2.88 g/m~2, respectively, compared to 86.24 ind/m~2 and 0.55 g/m~2 of pools. Eleven taxon, including Hydropsyche sp, Iron sp, Pseudocloeon sp, Glossosoma sp, Epeorus sp2, Notacanthurus sp, Heterocloeon sp, Serratella sp, Antocha sp, Isonychia sp and Rhithrogena sp, were indicator species of riffles, while pools only had two indicator species, Ephemera sp and Hexatoma sp. Scraper was the dominate functional feeding group in both habitat. Riffles exhibited significantly higher percentage of collector-filterer and scraper, while percentage of collector-gatherer and predator in pools were significantly higher than that of riffles. Difference of macroinvertebrate community structure among two habitats was significant. Density, biomass, species richness, Shannon-Wiener index and Improved Shannon-Wiener index of riffles were significant higher than that of pools. Habitat stability and heterogeneity affected by habitat morphology, hydraulic characteristics and erosion/deposition pattern may be the major explanation.
     (4) Stream habitat and fish community of Dong River in Chongqing were investigated in order to explore the impact of two small diversion type hydropower station, Baili station and Honghua station. Mechanism of their influence on fish community was analysis from stream habitat angle. One hundred and forty-nine fishes were collected in our survey, which were subordinate to seventeen species, sixteen genus, eight families and four orders. The result showed that biodiversity of fish community of the river reach influenced by small diversion type hydropower station was rather lower and the stations was an important reason to explain depressing of fish biodiversity in mountainous stream. After the construction of water dam, habitat heterogeneity and diversity of reservoir area was lost as a result of sediment deposition. Habitat area for fish in reach between dam and powerhouse was decreased and riffle-pool structure was destructed as a result of water regime alteration. Small diversion type hydropower station influenced fish community mainly by deterioration of stream habitat.
     (5) Macroinvertebrate in river reaches influenced by two small diversion type hydropower stations on Dong River, namely Baili and Honghua, were sampling to explore their influence. The result indicated that there were 43 species belonging to three phylum, four classes and thirty families. Mayfly and caddify were the dominated taxa. Water quality was not significant changed by small diversion type hydropower stations, while river habitat deteriorated a lot. The reach behind the dam was influenced by sediment deposition and the flow pattern here was lotic. Component of macroinvertebrate community in the reach behind the dam were not significantly different from the reach disaffected by dam, but density, biodiversity and biomass were significantly depressed. Habitat suitability of the reach downstream of the dam was declined by flux decreasing and macroinvertebrate here exhibited lower density, biodiversity and biomass.
     (6) An evaluation model was established originated from both stream ecosystem structure and function integrality. This model was composed by an index system including stream habitat diversity indicator, channel wet rate and habitat unit quality indicator for rapid habitat quantificational assessment. The weight of indicators was determined by means of Delphi method. The model was used to assess the stream habitat quality of the Dong River which located in the Three Gorges region and influenced by hydroelectric projects. The results show that the habitat quality of the segment behind the dam is worse than the segment both in front of the dam and behind the hydroelectric plant water outlet. Lack of river ecological basic flow should be responsible for the worse status of the segment behind the dam and sediment deposition depressed the status of stream habitat in front of dam. Results of the evaluation can more directly reflect the status of habitat in mountain streams under the influence of hydropower projects, and the reasons of their deterioration.
引文
安催花,郭选英,余欣,等. 2000.多沙河流水库水文学泥沙数学模型及应用[J].人民黄河, 22(8):15-16.
    布恩等著,宁远等译. 1997.河流保护与管理[M].北京:中国科学技术出版社.
    蔡庆华,唐涛,刘建康. 2003.河流生态学研究中的几个热点问题[J].应用生态学报, 14(19): 1573-1577.
    长江水利委员会长江勘测规划设计研究院. 2000.水利水电工程等级划分及洪水标准(SL252-2000)[S].
    陈辈乐,陈湘粦. 2008.海南鹦哥岭地区的鱼类物种多样性与分布特点[J].生物多样性, 16(1):44-52.
    陈浒,李厚琼,吴迪,等. 2010.乌江梯级电站开发对大型底栖无脊椎动物群落结构和多样性的影响[J].长江流域资源与环境, 19(12):1462-1470.
    陈婷. 2007.平原河网地区城市河流生境评价研究:以上海为实例[D].上海:华东师范大学.
    邓红兵,肖宝英,代力民,等. 2002.溪流粗木质残体的生态学研究进展[J].生态学报, 22(1):87-93.
    董哲仁,孙东亚,等. 2007.生态水利工程原理与技术[M].北京:中国水利水电出版社.
    董哲仁,孙东亚,赵进勇,等. 2010.河流生态系统结构功能整体性概念模型[J].水科学进展, 21(4):550-559.
    董哲仁. 2003.河流型态多样性与生物群落多样性[J].水利学报, (11):1-7.
    段学花,王兆印,程东升. 2007.典型河床底质组成中底栖动物群落及多样性[J].生态学报, 24(4):1664-1672.
    段学花. 2009.河流水沙对底栖动物的生态影响研究[D].北京:清华大学.
    丰华丽,王超,李剑超. 2002.河流生态与环境用水研究进展[J].河海大学学报. 30(3):19-23.
    付鹏,陈凯麒,谢悦波,等. 2009.考虑社会影响的水利水电开发环境影响评价方法[J].水利学报, 40(8):1012-1018.
    傅小城,唐涛,蒋万祥,等.引2008.水型电站对河流底栖动物群落结构的影响[J].生态学报, 28(1):45-52.
    郭潇,方国华,章哲恺. 2008.跨流域调水生态环境影响评价指标体系研究[J].水利学报, 39(9):1125-1130.
    国家发展和改革委员会. 2007.关于印发可再生能源中长期发展规划的通知(发改能源[2007]2174号) [Z].
    国家环境保护局. 1993.环境影响评价技术导则:地面水环境(HJ/T2·3-93)[S].
    何萍,史培军,刘树坤,等. 2008.河流分类体系研究综述[J].水科学进展, 19(3):434-441.
    胡本进,杨莲芳,王备新,等. 2005.阊江河1~6级支流大型底栖无脊椎动物取食功能团演变特征[J].应用与环境学报, 11(4):463-466.
    华东水利学院,重庆交通学院. 1980.航道整治[M].北京:人民交通出版社: 13.
    贾兴焕,吴乃成,唐涛,等. 2008.香溪河水系附石藻类的时空动态[J].应用生态学报, 19(4):881-886.
    蒋万祥,蔡庆华,唐涛,等. 2009.香溪河水系大型底栖动物功能摄食类群生态学[J].生态学报, 29(10):5207-5218.
    蒋晓辉,赵卫华,张文鸽. 2010.小浪底水库运行对黄河鲤鱼栖息地的影响[J].生态学报, 30(18): 4940-4947.
    黎璇. 2009.山地河流生境的生态学研究-以重庆澎溪河为例[D].重庆:重庆大学.
    李红敬,林小涛. 2010.广东西部山地森林溪流鱼类群落初步研究[J].江苏农业科学, (8):495-497,504.
    李金国,王庆成,严善春,等. 2007.凉水、帽儿山低级溪流中水生昆虫的群落特征及水质生物评价[J].生态学报, 27(12):5008-5018.
    李强,杨莲芳,吴璟,等. 2006.西苕溪EPT昆虫群落分布与环境因子的典范对应分析[J].生态学报, 26(11): 3817-3825.
    李世东. 2000.中国的水力资源和水电发展政策[EB/OL]. http://www.cws.net.cn/Journal/slxb/20009z/01.html.
    梁学功,张亮. 2006.我国建设项目环境影响评价中生物多样性保护的现状和展望[J].环境保护, 23:50-52.
    林承坤. 1992.泥沙与河流地貌学[M].南京:南京大学出版社: 212.
    刘兰芬. 2002.河流水电开发的环境效益及主要环境问题研究[J].水利学报,(8):121-128.
    刘旭东,李贵启. 1983.我国低水头引水枢纽引水防沙问题的实践及其试验研究[J].泥沙研究, (2): 11-18.
    鲁春霞,谢高地,成升魁,等. 2003.水利工程对河流生态系统服务功能的影响评价方法初探[J].应用生态学报, 14(5):803-807.
    吕一河,傅伯杰. 2001.生态学中的尺度及尺度转换方法[J].生态学报, 21(12):2096-2105.
    栾建国,陈文祥. 2004.河流生态系统的典型特征和服务功能[J].人民长江, 35(9):41-43.
    倪晋仁,马蔼乃. 1998.河流动力地貌学[M].北京:北京大学出版社.
    庞治国,王世岩,胡明罡. 2006.河流生态系统健康评价及展望[J].中国水利水电科学研究院学报, 4(2):151-155.
    裴莹. 2009.城市季节性河流景观恢复性规划设计方法研究[D].哈尔滨:东北林业大学.
    祁继英,阮晓红. 2005.大坝对河流生态系统的环境影响分析[J].河海大学学报(自然科学版),33(1):37-40.
    钱宁,张仁,周志德. 1987.河床演变学[M].北京:科学出版社.
    区余端,苏志尧,解丹丹,等. 2011.雪灾后粤北山地常绿阔叶林优势树种幼苗更新动态[J].生态学报, 31(10):2708-2715.
    渠晓东,蔡庆华,谢志才,等. 2007.香溪河附石性大型底栖动物功能摄食类群研究[J].长江流域资源与环境, 16(6):738-743.
    渠晓东. 2006.香溪河大型底栖动物时空动态生物完整性及小水电站的影响研究[D].武汉:中国科学院水生生物研究所.
    尚文艳,吴钢,付晓,等. 2005.陆地植物群落物种多样性维持机制[J].应用生态学报, 16(3):573-578.
    邵慧,田佳倩,郭柯,等. 2009.样本容量和物种特征对BIOCLIM模型模拟物种分布准确度的影响-以12个中国特有落叶栎树种为例[J].植物生态学报, 33(5): 870-877.
    石瑞华,许士国. 2008.河流生物栖息地调查及评估方法[J].应用生态学报, 19(9):2081-2086.
    水利部. 1994.河流泥沙颗粒分析规程(SL 42-2010)[S].
    苏日古嘎,张金屯,等. 2010.松山自然保护区森林群落的数量分类和排序[J].生态学报, 30(10):2621-2629.
    孙儒泳. 2001.动物生态学原理[M].北京:北京师范大学出版社. 433.
    田立新,杨莲芳,李佑文. 1996.中国经济昆虫志第四十九册-毛翅目(一):小石蛾科、角石蛾科、纹石蛾科、长角石蛾科[M].北京:科学出版社: 20.
    童晓立,胡慧建,陈思源. 1995.利用水生昆虫评价南昆山溪流的水质[J].华南农业大学学报, 16(3): 6-10.
    王波. 2008.梯级水库对河流生境因子的累积影响研究[D].武汉:长江科学院.
    王良忱,张金亮. 1996.沉积环境和沉积相[M].北京:石油工业出版社, 15.
    王寿兵. 2003.对传统生物多样性指数的质疑[J].复旦学报(自然科学版), 42(6): 867-868,874.
    王西琴. 2007.河流生态需水理论、方法与应用[M].北京:中国水利水电出版社, 246-12.
    王兴奎. 2004.河流动力学[M].北京:科学出版社:248-249.
    王兆印,程东升,何易平,等. 2006.西南山区河流阶梯-深潭系统的生态学作用[J].地球科学进展, 21(4):409-416.
    吴乃成,唐涛,周淑婵,等. 2007.香溪河小水电的梯级开发对浮游藻类的影响[J].应用生态学报, 18(5):1091-1096.
    吴强,段辛斌,徐树英,等. 2007.长江三峡库区蓄水后鱼类资源现状[J].淡水渔业, 37(2):70-75.
    武汉水利电力学院编著. 1983.河流泥沙工程学[M].北京:水利电力出版社, 55-60.
    夏霆,朱伟,姜谋余,等. 2007.城市河流栖息地评价方法与应用[J].环境科学学报,27(12):2095-2104.
    徐江,王兆印. 2004.阶梯-深潭的形成及作用机理[J].水利学报, 10:48-55.
    徐江,王兆印. 2003.山区河流阶梯-深潭的发育及其稳定河床的作用[J].泥沙研究, 5:21-27.
    薛瑞德. 1992.水生昆虫与人类健康的关系[J].中国媒介生物学及控制杂志, 3(6): 408-410.
    严云志,占姚军,储玲,等. 2010.溪流大小及其空间位置对鱼类群落结构的影响[J].水生生物学报, 34(5):1022-1030.
    颜玲,赵颖,韩翠香,等. 2007.粤北地区溪流中的树叶分解及大型底栖动物功能摄食群[J].应用生态学报, 18(11): 2573-2579.
    颜玲,赵颖,韩翠香,等. 2007.粤北地区溪流中的树叶分解及大型底栖动物功能摄食群[J].应用生态学报, 18(11): 2573-2579.
    杨少荣,高欣,马宝珊,等. 2010.三峡库区木洞江段鱼类群落结构的季节变化[J].应用与环境生物学报, 16(4):555-560.
    易雨君,王兆印,陆永军. 2007.长江中华鲟栖息地适合度模型研究[J].水科学进展, 18(4):538-543.
    易雨君,王兆印,姚仕明. 2008.栖息地适合度模型在中华鲟产卵场适合度中的应用[J].清华大学学报(自然科学版), 48(3):340-343.
    于力,暴学祥,云宝琛. 1997.长白山水生昆虫的研究[J].水生生物学报, 21(1):31-39.
    张光科. 1999.山区河流若干特性研究[J].四川联合大学学报(工程科学版), 13(1):11-19.
    张辉,危起伟,杨德国,等. 2008.基于流速梯度的河流生境多样性分析-以长江湖北宜昌中华鲟自然保护区核心区江段为例[J].生态学杂志, 27(4):667-674.
    张金屯. 2004.数量生态学[M].北京:科学出版社.
    张仁铎编著. 2006.环境水文学[M].广州:中山大学出版社.
    张水龙,冯平. 2005.河流不连续体概念及其在河流生态系统研究发展中的现状[J].水科学进展, 16(5):758-762.
    张志英,袁野. 2001.溪落渡水利工程对长江上游珍稀特有鱼类的影响探讨[J].淡水渔业, 31(2):62-63.
    赵进勇,董哲仁,孙东亚. 2008.河流生物栖息地评估研究进展[J].科技导报, 26(17):82-88.
    赵彦伟,杨志峰. 2005.河流健康:概念、评价方法与方向[J].地理科学, 25(1):119-124.
    郑丙辉,张远,李英博. 2007.辽河流域河流栖息地评价指标与评价方法研究[J].环境科学学报, 27(6):928-936.
    周长发. 2002.中国大陆蜉蝣目分类研究[D].天津:南开大学.
    周呈瑛,刘信华,黄伟军. 2005.山区河流主要特性分析及滩险整治方法初探[J].水运工程,372(1): 50-54.
    朱筱敏主编. 2008.沉积岩石学[M].北京:石油工业出版社.
    邹体峰,王仲珏. 2007.我国小水电开发建设中存在的问题及对策探讨[J].中国农村水利水电, (9):82-84.
    左光栋. 2009.山区河流引水式电站水库泥沙淤积及电站引水防沙问题研究[D].重庆:重庆交通大学,11-12.
    Allan JD. 1995. Stream ecology: Structure and function of running waters[M]. New York:Chapman and Hall, 83-99.
    Anderson NH, Lehmkuhl DM. 1968. Catastrophic drift of insects in a woodland stream[J]. Ecology, 49(2):198-206.
    Angermeier PL. Spatiotemporal variation in habitat selection by fishes in small Illinois streams. In Matthews WJ, Heins DC eds. 1987. Community and Evolutionary Ecology of North American Stream Fishes[M]. Norman:University of Oklahoma Press.52-60.
    Armitage PD, Angela MM, Diane CC. 1974. A survey of stream invertebrates in the Cow Green basin (Upper Teesdale) before inundation[J]. Freshwater Biology, 4(4):369-398.
    Arthur VB, Peter PB. 1991. Comparisons of benthic invertebrates between riffles and pools[J]. Hydrobiologia, 220:99-108.
    Aumen NG, Hawkins CP, Gregory SV. 1990. Influence of woody debris on nutrient retention in catastrophically disturbed streams[J]. Hydrobiologia, 190:183–192.
    Barbour MT, Gerritsen J, Snyder BD, et al. 1999. Rapid bioassessment protocols for use in streams and wadeable river:preiphyton, benthic macroinvertehrates and fish[M]. Washington, D C:USEPA, 841-899.
    Bathurst JC. 1994. At a site mountain river flow resistance variation[A]; Hydraulic Engineering’94[C]. 682-686.
    Beisel J N, Usseglio-Polatera P, Thomas S, et al. 1998. Stream community structure in relation to spatial variation: the influence of mesohabitat characteristics[J]. Hydrobiologia, 389:73–88
    Bisson PA, Montgomery DR, Buffington JM. 2007. Valley segments, stream reaches, and channel units. In: Hauer FR and Lamberti GA eds. Methods in stream ecology (second edition)[M]. Oxford, UK: Academic Press.
    Bisson PA, Nielson JL, Palmason RA, et al. 1982. A system of naming habitat types in small streams, with examples of habitat utilization by salmonids during low stream flow[C]//Armandtrout N B. Acquisition and Utilization of Aquatic Habitat Information, 62-73.
    Bisson PA, Sullivan K, Nielsen JL. 1998. Channel hydraulics, habitat use, and body form of juvenile coho salmon, steelhead, and cutthroat trout in streams[J]. Transactions of the American Fisheries Society, 117:262–273.
    Bonada N, Rieradevall M, Prat N. 2006. Benthic macroinvertebrate assemblages and macrohabitatconnectivity in Mediterranean-climate streams of northern California. Journal of the North American Benthological Society[J], 25(1):32-43.
    Boon PJ, Davies BR, Petts GE. 2000. Global perspectives on river conservation: science, policy and practice[M]. Chichester:John Wiley&Sons Ltd.
    Bosco IJ, Perry JA. 2000. Drift and benthic invertebrate responses to stepwise and abrupt increases in non-scouring flow[J]. Hydrobiologia, 436:191-208.
    Boulton AJ, Lake PS. 1992. The ecology of two intermittent streams in Victoria, Australia. II. Comparisons of faunal composition between habitats, rivers and years[J]. Hydrobiologia, 27:99-121.
    Bredenhand E, Samways M. 2009. Impact of a dam on benthic macroinvertebrates in a small river in a biodiversity hotspot: Cape Floristic Region, South Africa[J]. Journal of Insect Conservation, 13:297-307.
    Brice JC, Blodgett JC. 1978. Countermeasures for hydraulic problems at bridges[M]. Washington: Federal Highway Administration, 162.
    Brinson MM, Hauer FR, Lee LC, et al. 1995. Guide-book for application of hydrogeomorphic assessments to river wetlands[M]. Washington: US Army Corps of Engineers.
    Brown KM. 1982. Resource overlap and competition in pond snails: an experimental analysis[J]. Ecology, 63:412-422.
    Bunn SE, Edward DH, Loneragan NR. 1986. Spatial and temporal variation in the macroinvertebrate fauna of streams of the Northern Jarrah forest, Western Australia: community structure [J]. Freshwater Biology, 16(1):67-91.
    Calow P, Petts GE. 1994. The rivers handbook (Vol2)[M]. Oxford: Blackwell Scientific, 80.
    Camargo JA, Voelz NJ. 1998. Biotic and abiotic changes along the recovery gradient of two impounded rivers with different impoundment use[J]. Environmental Monitoring and Assessment, 50:143-158.
    Carling PA, Orr GH. 2000. Morphology of riffle–pool sequences in the River Severn, England[J]. Earth surface processes and landforms, 25:369-384.
    Carter JL, Fend SV. 2001. Inter-annual changes in the benthic community structure of riffles and pools in reaches of contrasting gradient[J]. Hydrobiologia, 459:187-200.
    Cobb DG, Galloway TD, Flannagan JF. 1992. Effects of discharge and substrate stability on density and species composition of stream insects[J]. Canadian Journal of Fisheries and Aquatic Sciences, 49(9):1788-1795.
    Commission for the European Communities. 2007. Proposal for a Council Directive establishing a framework for Community action in the field of water policy (COM(97)49) [Z]. Commissionfor the European Communities.
    Cortes R, Ferreira M, Oliveira S et al. 1998. Contrasting impact of small dams on the macroinvertebrates of two Iberian mountain rivers[J]. Hydrobiologia, 389:51-61.
    Cortes RMV, Varandas S, Hughes SJ, et al. 2008. Combining habitat and biological characterization: Ecological validation of the river habitat survey[J]. Limnetica, 27(1):39-56.
    Crosa G, Buffagni A. 2002. Spatial and temporal niche overlap of two mayfly species (Ephemeroptera): the role of substratum roughness and body size[J]. Hydrobiologia, 474:107-115.
    Cude CG. 2001. Oregon water quality index[J]. Journal of the American Water Resources Association, 37(1):125-137.
    Cummins K W. 1962. An evaluation of some techniques for the collection and analysis of benthic samples with special emphasis on lotic waters[J]. American Midland Naturalist, 67:477-504.
    Cummins KW, Lauff GH. 1969. The influence of substrate particle size on the microdistribution of stream macrobenthos[J]. Hydrobiologia, 34:145-181.
    Cummins KW. 1974. Structure and function of stream ecosystems[J]. BioScience, 24:631-641.
    Dana RW, Madeleine MM, Eric JW, et al. 2010. Relating fish biomass to habitat and chemistry in headwater streams of the northeastern United States[J]. Environmental Biology of Fishes, 88:51-62.
    Davenport AJ, Gurnell AM, Armitage PD. 2004. Habitat survey and classification of urban rivers[J]. River Research and Applications, 20:687-704.
    David C H. 2004. Biodiversity of Minnesota caddisflies (Insecta: Trichoptera): delineation and characterization of regions [J]. Environmental Monitoring and Assessment, 95:153-181.
    David LM. 1986. Benthic macroinvertebrate distributions in the riffle-pool communities of two east Texas streams[J]. Hydrobiologia, 135, 61-70.
    Davis WM. 1899. The geographical cycle[J]. The Geographical Journal, 14: 481-504.
    Doeg TJ, Davey GW, Blyth JD. 1987. Response of the aquatic macroinvertebrate communities to dam construction on the Thomson river, Southeastern Australia [J]. Regulated Rivers: Research & Management, 1:195-209.
    Dufren?e Marc, Pierre L. 1997. Species assemblages and indicator species: the need for a flexible asymmetrical approach[J]. Ecological Monographs, 67: 345-366.
    Effie AG, Catherine MP. 2006. Does the river continuum concept apply on a tropical island? Longitudinal variation in a Puerto Rican stream[J]. Canadian Journal of Fisheries and Aquatic Sciences, 63: 134–152.
    Environment Agency. 2003. River Habitat Survey in Britain and Ireland: Field Survey GuidanceManual (2003 Version)[R]. London: Environment Agency.
    Environment Agency. 1997. The quality of rivers and canals in England and Wales 1995[R]. Bristol: Environment Agency.
    Fairchild GW, Horwitz RJ, Nieman DA, et al. 1998. Spatial variation and historical change in fish assemblages of the Schuylkill River drainage,southeast Pennsylvania[J]. American Midland Naturalist, 139(2):282-295.
    Fenoglio S, Bo T, Agosta P, et al. 2005. Mass loss and macroinvertebrate colonisation of fish carcasses in riffles and pools of a NW Italian stream[J]. Hydrobiologia, 532: 111-122.
    FISRWG (Federal Interagency Stream Restoration Working Group of U.S.A). 2001. Stream Corridor Restoration:Principles,Processes,and Practices[R]//NISR Working Group,Part 653 of National Engineering Handbook. USDA-Natural Resources Conservation Service, Washington, DC.
    Flecker AS, Allan JD. 1984. The importance of predation, substrate and spatial refugia in determining lotic insect distributions[J]. Oecologia, 64:306-313.
    Frissell CA, Liss WJ, Warren C, et al. 1986. A hierarchical framework for stream habitat classification: viewing streams in a watershed context[J]. Environmental Management, 10 (2):199 -214.
    Furse MT, Hering D, Brabec K, et al. 2006. Occurrence and variability of River Habitat Survey features across Europe and the consequences for data collection and evaluation[J]. Hydrobiologia, 566:267-280.
    Gauch HG. 1982. Multivariate analysis in community ecology[M]. Cambridge University Press. 1982.
    Godiaho FN, Ferreira MT, Cortes RV. 1997. Composition and spatial organization of fish assemblages in the lower Guadiana basin, southern[J]. Ecology of Freshwater Fish, 6(3):134-143.
    Gurnell AM, Angold P, Gregory KJ. 1994. Classification of river corridors: Issues to be addressed in developing an operational methodology[J]. Aquatic Conservation:Marine and Freshwater Ecosystems. 4:219-231.
    Harvey G, Wallerstein N. 2009. Exploring the interactions between flood defence maintenance works and river habitats:the use of River Habitat Survey data[J]. Aquatic Conservation: Marine and Freshwater Ecosystems, 19(6):689-702.
    Hastie LC, Cooksley SL, Scougall F. 2003. Characterization of freshwater pearl mussel (Margaritifera margaritifera) riverine habitat using River Habitat Survey data[J]. Aquatic Conservation: Marine and Freshwater Ecosystems, 13:213-224.
    Hawkins CP, Kershner JL, Bisson PA, et al. 1993. A hierarchical approach to classifying streamhabitat features[J]. Fisheries, 18:3-12.
    Heino J, Parviainen J, Paavola R, et al. 2005. Characterizing macroinvertebrate assemblage structure in relation to stream size and tributary position[J]. Hydrobiologia, 539:121-130.
    Henry JE, Mackay DW. 1967. A survey of the bottom fauna of streams in the Scottish Highlands part III seasonal changes in the fauna of three streams[J]. Hydrobiologia, 30: 305-334.
    Hildrew AG, Townsend CR, Henderson J. 1980. Interactions between larval size, microdistribution and substrate in the stoneflies of an iron-rich stream[J]. Oikos, 35: 387-396.
    Hoopes RL. 1974. Flooding, as the result of Hurrican Agnes, and its effect on a macroinvertebrate community in an infertile headwater stream in central Pennsylvania[J]. Limnology and Oceanography, 19(5): 853-857.
    Huryn AD, Wallace JB.1987. Community structure of Trichoptera in a mountain stream: Spatial patterns of production and functional organization[J]. Freshwater Biology, 20:141-156.
    Jack WF, Vincent HR. 1990. Hydrologic influences, disturbance, and intraspecific competition in a stream caddisfly population[J]. Ecology, 71: 2083-2094.
    J?hnig S, Lorenz A. 2008. Substrate-specific macroinvertebrate diversity patterns following stream restoration[J]. Aquatic Sciences - Research Across Boundaries, 70:292-303.
    Jani H, Juha P, Riku P, et al. 2005. Characterizing macroinvertebrate assemblage structure in relation to stream size and tributary position[J]. Hydrobiologia, 539:121-130.
    Jowett IG. 1993. A method for objectively identifying pool, run, and riffle habitats from physical measurements[J]. New Zealand Journal of Marine and Freshwater Research, 27:241-248.
    Karr JR, Chu EW. 2000. Sustaining Living Rivers[J]. Hydrobiologia, 422/423:1-14.
    Katano I, Negishi JN, Minagawa T, et al. 2009. Longitudinal macroinvertebrate organization over contrasting discontinuities: effects of a dam and a tributary[J]. Journal of the North American Benthological Society, 28:331-351.
    Kobayashi S, Kagaya T. 2002. Differences in litter characteristics and macroinvertebrate assemblages between litter patches in pools and riffles in a headwater stream[J]. Limnology, 3: 37-42.
    Kondolf GM. 1995. Geomorphological stream channel classification in aquatic habitat restoration: uses and limitations[J]. Aquatic Conservation. 5:127-141.
    Lake PS, Doeg TJ, Marchant R. 1989. Effects of multiple disturbance on macroinvertebrate communities in the Acheron River, Victoria[J]. Australian Journal of Ecology, 14(4): 507-514.
    Larsen DP, Omernik JM, Hughes RM, et al. 1986. The correspondence between spatial patterns in fish assemblages in Ohio streams and aquatic ecoregions[J]. Environment Management, 10:815-828.
    Lekka E, Kagalou I, Lazaridou-Dimitriadou M, et al. 2004. Assessment of the Water and Habitat Quality of a Mediterranean River (Kalamas, Epirus, Hellas), in Accordance with the EU Water Framework Directive[J]. Acta hydrochimica et hydrobiologica, 3(37):175-188.
    Leopoldl B, Wolman MG. 1957. River channel patterns: braided, meandering and straight[R]. RestonVA: USGeological Survey Professional Paper, 39-85.
    Lewin J. 1981. British Rive[M]. London : George Allen & Unwin, 216.
    Lofthouse C, Robert A. 2008. Riffle–pool sequences and meander morphology[J]. Geomorphology, 99: 214-223.
    Lohr SC. 1993. Wetted stream channel, fish-food organisms and trout relative to the wetted perimeter inflection method[D]. Bozeman: Montana State University.
    Manel S, Buckton ST, Ormerod SJ. 2000. Testing large-scale hypotheses using surveys: the effects of land use on the habitats, invertebrates and birds of Himalayan rivers[J]. Journal of Applied Ecology, 37:756-770.
    Mathews RC, Bao YX. 1991. The Texas method of preliminary instream flow determination[J]. Rivers, 2(4): 295-310.
    Matthews WJ. 1986. Fish faunal“breaks”and stream order in the eastern and central United States[J]. Environmental Biology of Fishes, 17(2):81-92.
    Mcclellandab WT, Brusvena MA. 1980. Effects of sediment on the behavior ans distribution of riffle insects in a laboratory[J]. Aquatic Insects, 2(3): 161-169.
    Mcculloch DL. 1986. Benthic macroinvertebrate distributions in the riffle-pool communities of two east Texas streams[J]. Hydrobiologia, 135: 61-70.
    McIntire CD. 1968. Structural characteristics of benthic algal communities in laboratory streams[J]. Ecology, 49:520-537.
    MeffeG K, Sheldon AL. 1988. The influence of habitat structure on fish assemblage composition in southeastern blackwater streams[J]. American Midland Naturalist, 120: 225-240.
    Merritt RW, Cummins KW. 1996. An Introduction to the Aquatic Insects of North America(3rd edition) [M]. Dubuque: Kendall/Hunt Publishing Company. 40.
    Michael HP, Winona LS, Susan AD. 2006. Effects of stream size on taxa richness and other commonly used benthic bioassessment metrics[J]. Hydrobiologia, 568: 309-316.
    Montgomery DR, Buffington JM. 1997. Channel-reach morphology in mountain drainage basins[J]. Geological Society of America Bulletin, 109: 596-611.
    Moog O. 2002. Fauna Aquatica Austriaca (2nd edition)[M]. Vienna: Federal Ministry of Agriculture, Forestry, Environment and Water Management DivisionⅦ. 18.
    Muhar S, Jungwirth M. 1998. Habital integrity of running waters-assessment criteria and theirbiological relevance [J]. Hydrobiologia, 386:195-202.
    Murphy ML. Primary production. In: Naiman RJ, Bilby RE(Eds.). 1998. New York: Springer-Verlag.
    National Park Service. (2004-02-04) [2009-11-25]. National inventory/survey tools for ecological assessment: list of Classification Schemes Compiled to date [EB-OL]. http://www.websitefororg.com/OldWebsites/NPS/CompiledMethods Frameset.htm.
    Naura M, Robinson M. 1998. Principles of using River Habitat Survey to predict the distribution of aquatic species: an example applied to the native white-clawed crayfish Austropotamobius pallipes[J]. Aquatic Conservation: Marine and Freshwater Ecosystems, 8: 515-527.
    O’Keeffe J H. 1997. Review of workshop reports on the Orange River. In: Chutter FM, Palmer RW, Walmsley JJ. Orange river basin: Environmental overview[C]. Pretoria, South Africa: Department of Water and Forestry.
    Osborne LL, Wiley MJ. 1992. Influence of tributary spatial position on the structure of warm water fish communities[J]. Canadian Journal of Fisheries Aquatic Sciences, 49(4): 671-681.
    Parsons M, Norris RH. 1996. The effect of habitat-specific sampling on biological assessment ofwater quality using a predictivemode[J]. FreshwaterBiology, 36: 419 -434.
    Parsons M, Thoms M, Norris R. 2002. Australian River Assessment System: review of physical river assessment methods-a biological perspective[M]. Canberra: Commonwealth of Australia and University of Canberra, 2-10.
    Pavel D, Ladislav MS. 1986. Structure, zonation, and species diversity of the mayfly communities of the BeláRiver basin, Slovakia[J]. Hydrobiologia, 135: 155-165.
    Peter O. 2003. List of Californian macroinvertebrate taxa and standard taxonomic effort. Rancho Cordova: CA Department of Fish and Game[M]. Rancho Cordova: CA Department of Fish and Game. 8.
    Peter PB, Arthur VB. 1991. Riffle-pool geomorphology disrupts longitudinal patterns of stream benthos[J]. Hydrobiologia, 220: 109-117.
    Poff NL, Ward JV. 1989. Implications of stream flow variability and predictability for lotic community structure: a regional analysis of stream flow patterns[J]. Canadian Journal of Fisheries and Aquatic Sciences, 46:1805-1818.
    Prus T, Prus M, Bijok P. 1999. Diversity of invertebrate fauna in littoral of shallow Myczkowce dam reservoir in comparison with a deep Solina dam reservoir[J]. Hydrobiologia, 408/409: 203-210.
    Quinn JM, Hickey CW. 1994. Hydraulic parameters and benthic invertebrate distributions in two gravel-bed New Zealand Rivers. Freshwater Biology, 32(3): 489-500.
    Raven P J, Holmes NTH, Dawson FH. 1998. Quality assessment using river habitat survey data [J]. Aquatic Conservation: Marine and Freshwater Ecosystems, 8:477-499.
    Raven P J, Holmes NTH, Naura M, et al. 2000. Using river habitat survey for environmental assessment and catchment planning in the U.K.[J]. Hydrobiologia, 422(423):359-367.
    Raven PJ, Fox P, Everard M, et al. 1997. River habitat survey: a new system for classifying rivers according to their habitat quality[M]. Edinburgh: The Stationery Office.
    Raven PJ, Holmes NTH, Charrier P, et al. 2002. Towards a harmonized approach for hydromorphological assessment of rivers in Europe- a qualitative comparison of three survey methods[J]. Aquatic Conservation: Marine and Freshwater Ecosystems, 12:405-424.
    Raven PJ, Holmes NTH, Dawson FH, et al. 1998. River habitat quality: the physical character of rivers and streams in the UK and Isle of Man. River Habitat Survey, Report No. 2[M]. Bristol, UK: Environment Agency, 85.
    Resh VH, Jackson JK. 1993. Rapid assessment approaches to biomonitoring using benthic macroinvertebrates. In:Rosenberg DM, Resh VH(Eds.). Freshwater biomonitoring and benthic macroinvertebrates. New York: Chapman and Hall, 195-233.
    Resh VH. 1979. Sampling variability and life history features: basic considerations in the design of aquatic insect studies[J]. Hydrobiologia, 36:290-311.
    Richard CH. 1969. Benthic macroinvertebrates of the Otter Creek drainage basin, Northcentral, Oklahoma[J]. The Southwestern Naturalist, 14(2):231-248.
    Richard VA, David MD. 1986. Predictive quality of macroinvertebrate - habitat associations in lower navigation pools of the Mississippi River[J]. Hydrobiologia, 136:101-112.
    Robert JD, Samuel SC, Gary TL, et al. 2007. Periphyton and macroinvertebrate assemblage structure in headwaters bordered by mature, thinned, and clearcut douglas fir stands[J]. Forest Science, 53:294-307.
    Rosemary JM, Kalff J. 1969. Seasonal variation in standing crop and species diversity of insect communities[J]. Ecology, 50(1):101-109.
    Rosenberg DM, Resh Vh. 1993. Freshwater biomonitoring and benthic macroinvertebrates[M]. New York: Chapman and Hall, 488.
    Rosenberg DM, Wiens AP. 1978. Effects of sediment on the behavior and distribution of riffle insects in a laboratory[J]. Water Research, 12:753-763.
    Rosgen DL. 1994. A classification of natural rivers[J]. Catena , 22 : 169-199.
    Rosgen DL. 1996. Applied river morphology[M]. Colorado:Pagosa Springs.
    Rust BR. 1978. A classification of alluvial channel systems[A]. In: Miall AD(Ed.). Fluvial Sedimentology[C]. Calgary: Canadian Society of Petroleum Geologists (Memoir 5), 187-198.
    Schlosser IJ. 1987. A conceptual framework for fish communities in small warm water streams. In Matthews WJ, Heins DC(Eds.). Community and evolutionary ecology of North Americanstream fishes[M]. Norman:University of Oklahoma Press, Norman, 17-24.
    Schumm SA. 1993. River Morphology: Benchmark Papers in Geology[M]. Stroudsberg, Pennsylvania, Dowden, Hutchinson, and Ross Inc.
    Scullion J, Parish CA, Morgan N, Edwards RW. 1982. Comparison of benthic macroinvertebrate fauna and substratum composition in riffles and pools in the impounded River Elan and the unregulated River Wye, mid-Wales[J]. Freshwater Biology, 12: 579-595.
    Shreve RL. 1966. Statistical law of stream numbers[J]. Journal of Geology, 74(1):17-37.
    Standford JA, Ward JA, Liss WJ, et al. 1996. A general protocol for restoration of regulated rivers[J]. Regulated rivers, 21: 391-414.
    Statzner B, Higler B. 1986. Stream hydraulics as a major determinant of benthic invertebrate zonation patterns[J]. Freshwater Biology, 16: 127-139.
    Statzner BJ, Gore A, Resh WH. 1988. Hydraulic stream ecology: observed patterns and potential applications[J]. Journal of the North American Benthological Society, 7(4): 307-360.
    Stevenson RJ. 1996. The stimulation and drag of current. In: Stevenson RJ, Bothwell ML, Lowe RL (Eds.). Algal Ecology[J]. San Diego, USA: Academic Press, 321-340.
    Strahler AN. 1957. Quantitative analysis of watershed geomorphology[J]. Transactions of American Geophysical Union, 38(6):913-920.
    Tett PC, Gallegos MG, Kelly GM, et al. 1978. Relationships among substrate, flow, and benthic microalgal pigment diversity in Mechams River, Virginia. Limnology and Oceanography, 23:785-797.
    Townsend CR, Thompson RM, McIntosh AR, et al. 1998. Disturbance, resource supply and food-web architecture in streams[J]. Ecology Letters, 1(3): 200-209.
    Triska FJ, Kennedy VC, Avazino RJ, et al. 1989. Retention and transport of nutrients in a third order stream: hyporheic processes[J]. Ecology, 70:1893-1905.
    Vannote RL, Minshall GW, Cummins KW, et al. 1980. The river continuum concept[J]. Canadian Journal of Fisheries and Aquatic Sciences, 37:130-137.
    Vaughan IP, Noble DG, Ormerod SJ. 2003. Combining surveys of river habitats and river birds to appraise riverine hydromorphology[J]. Freshwater Biology, 52:2270-2284.
    Walker J, Diamond M, Naura M. 2002. The development of physical quality objectives for rivers in England and Wales[J]. Aquatic Conservation: Marine and Freshwater Ecosystems, 12:381-390.
    Wallace JB, Webster JR. 1996. The role of macroinvertebrates in stream ecosystem function[J]. Annual Review of Entomology, 4(1):115-139.
    Ward JV. Biology and habitat. 1992. In: Resh VH, Rosenberg DM(Eds.). Aquatic Insect Ecology[M]. New York: John Wiley & Sons, 438.
    Ward JV. 1998. Riverine landscapes: biodiversity patterns, disturbance regimes and aquatic conservation. Biological Conservation, 83: 269-278.
    Ward JV. 1989. The four-dimensional nature of lotic ecosystems[J]. Journal of the North American Benthological Society, 8(1): 2-8.
    Williams DD, Mundie JH. 1978. Substrate size selection by stream invertebrates and the influence of sand[J]. Hydrobiologia, 23(5):1030-1033.
    Wise DH, Molles MC. 1979. Colonization of artificial substrates by stream insects: influence of substrate size and diversity[J]. Hydrobiologia, 65:69-74.
    Wohl EE, Vincent KR, Merrits D. 1993. Pool and riffle characteristics in relation to channel gradient[J]. Geomorphology, 6: 99-110.
    Woolfe KJ, Balzary JR. 1996. Fields in the spectrum of channel style[J]. Sedimentology, 3:797-805.
    Wright JF. 1995. Development and use of a system for predicting the macroinvertebrate fauna in flowing waters[J]. Australian Journal of Ecology, 20:181-197.
    Yang CT. 1971. Formation of riffles and pools[J]. Water Resource Research, 7: 1567-1574.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700