用户名: 密码: 验证码:
单层钎焊立方氮化硼砂轮缓进深切磨削钛合金的基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钛合金具有比强度高、高温力学性能好、耐腐蚀等优异性能,在航空动力装备领域的应用越来越广泛,如发动机叶轮、叶盘、叶片等。但是,钛合金属于典型的难加工材料,采用普通切削或磨削方式加工时存在质量稳定性差、工具损耗快、加工成本高等问题,已成为制约新型航空发动机研制进程的主要因素之一。借助于立方氮化硼(CBN)磨料硬度高、热稳定性好、化学惰性大、导热性好等优点,由该种磨粒制作的各型固结磨料砂轮已在钛合金加工中得到了应用,并取得了一定的效果。但是,传统烧结和电镀CBN砂轮表面磨粒出露低、容屑空间小、砂轮易粘附、堵塞,同时磨粒结合强度低,寿命短,难以满足航空发动机行业用钛合金材料日益提高的加工质量和效率要求,因此研制性能优异的新型CBN砂轮并将其用于钛合金高效磨削非常重要。
     本文结合钎焊超硬磨料工具与缓进深切磨削工艺优势,开展了单层钎焊立方氮化硼砂轮缓进深切磨削钛合金的基础研究。完成的主要工作包括:
     (1)根据钛合金缓进深切磨削及钎焊工艺要求,设计了单层钎焊CBN砂轮。优化了钎焊加热工艺和砂轮制造工艺,重点对基体的回转精度和磨粒等高性进行了控制,并通过向Ag-Cu-Ti钎料中加入稀土元素提高了钎料的力学性能、控制了钎料对CBN磨料的润湿性。
     (2)开展了单层钎焊CBN砂轮缓进深切磨削钛合金试验以获得基础数据,通过磨削力、磨削温度和工件表面完整性等综合评价了单层钎焊CBN砂轮的磨削性能。研究发现,钎焊CBN砂轮缓进深切磨削钛合金过程中磨削力和工件表层温度较低,并可长时间保持稳定,显著提高了钛合金磨削效率。试验中未发现磨粒过早脱落和结合剂剥落现象,表明单层钎焊砂轮牢固把持住CBN磨粒,有助于充分发挥超硬磨料优异特性和提高砂轮寿命。
     (3)分析了单颗磨粒最大切厚对钛合金磨削比能的影响,获得了单层钎焊CBN砂轮缓进深切磨削钛合金时不产生“尺寸效应”现象的单颗磨粒最大切厚“阈值”。在此基础上,进行了钛合金叶片榫头高效成形磨削单层钎焊CBN砂轮的设计制作,并优化了磨削工艺参数。
     (4)采用新型组合式断续单层钎焊CBN成形砂轮在生产现场进行了钛合金叶片榫头加工,分析了加工精度和表面完整性,实现了钛合金结构件“以磨代切”。研究表明,采用单层钎焊CBN成形砂轮加工钛合金叶片榫头的加工精度和表面完整性满足了航空发动机用钛合金叶片榫头的设计要求。与车削加工相比,显著提高了加工质量稳定性和效率。同时,单层钎焊CBN成形砂轮亦表现出比陶瓷结合剂CBN砂轮更优异的磨削性能。
Titanium alloys are widely used in the aerospace engine, such as impeller, leaf disc and blade, because of their excellent mechanical strength and resistance to surface degradation. While titanium alloys are machined with traditional abrasive tools, the surface quality is difficult to be controlled and the tool worn quickly. Cubic boron nitride (CBN) wheels have been utilized and taken good effects in grinding titanium alloy for CBN abrasive grits have some distinguished properties, such as extremely high hardness, superior thermal stability, large chemical inertia and excellent thermal conductivity. However, the shortcomings of low holding strength for grains and limited storage space for chips are always accompanied with the traditional multiplayer sintered and monolayer electroplated CBN abrasive tools. Therefore, it is helpful to develop the innovative CBN wheel and scientifically to evaluate the performance of grinding wheel for promoting titanium alloy machining with good quality ad high productivity. The innovative monolayer brazed CBN grinding wheels are developed and evaluated in the creep feed grinding of titanium alloy, in order to enhance the machining efficiency of titanium alloy. While cutting titanium alloy blade tenon, there are some problems, so gringding is considered to replace cutting. According to the design and machining requirements of the lamina rabbet, an innovative monolayer brazed CBN profile grinding wheel is developed and used to machine the rabbet in the production field.
     The main contents in this paper are as follows:
     (1) The innovative monolayer brazed CBN grinding wheels is designed according to the requirements of brazing technique to realize the creep feed grinding of titanium alloys. Moreover, on the basis of determined the suitable brazing process, the machining process of the grinding wheel hub mainly controlling the rotary accuracy of the wheel and the equal height characteristics of grains is effectively controlled, this kind of CBN grinding wheel applied to creep feed grinding of titanium alloy is successfully developed.
     (2) The creep feed grinding experiments are conducted to investigate the grinding performance of the innovative monolayer brazed CBN wheel by the means of studying the grinding force, temperature an specific energy as well as the wear of the grains. The experiment results show that the grinding force and temperature can be controlled effectively while creep feed grinding titanium alloy TC4 with the monolayer brazed CBN wheel and the machining efficiency can be improved obviously. Rare earth La can improve the performance of brazed CBN wheels. On the other hand, the abrasion wear is the leading wear behavior for the brazed CBN grinding wheels. The disadvantageous phenomenon, such as the fallout of CBN grits, has never happened during the experiment, which indicates that strong joining to the grains has been realized in the brazed abrasive tools. Thus, the excellent abrasion resistance of CBN grains could be exhibited completely.
     (3) The effect of the maximum undeformed chip thickness on the grinding specific energy is evaluated and the critical threshold of the maxmum underformed chip thickness is discussed, which can be used as a direction in the design and manufacture of brazed CBN wheels as well as the selection of machining parameters while creep feed grinding titanium alloys.
     (4) According to the design and machining requirements of the lamina rabbet of some aerospace engine turbine, the innovative monolayer brazed CBN profile grinding wheels are designed and manufactured. The grinding experiments are carried out in the production site. The dimension accuracy of the tenon is assessed and the results indicate that it completely meets the requirement to blade tenon of aero-engine. Compared with cutting, the efficiency and quality stability are improved obviously. And the results indicate that the grinding performance of brazed CBN wheel is better than that of vitrified ones.
引文
[1]张喜燕,赵永庆,白晨光.钛合金及应用.北京:化学工业出版社,2005
    [2] E.O. Ezugwu, Z.M. Wang. Titanium alloys and their machinability—a review. Journal of Material Processiing Technology, 1997, 68: 262~274
    [3]王秦生.超硬材料制造.北京:中国标准出版社,2001
    [4]任敬心,康仁科.难加工材料的磨削.北京:国防工业出版社,1999
    [5] U. Teichera, A. Ghoshb, A.B. Chattopadhyay, et al. On the grindability of Titanium alloy by brazed type monolayered superabrasive grinding wheels. International Journal of Machine Tools & Manufacture, 2006, 46: 620~622
    [6] C.Y. Yang, J.H. Xu, W.F. Ding, et al. Grinding titanium alloy with brazed monolayer CBN wheels. Key Engineering Materials, 2008, 359-360: 33~37
    [7] A.K. Chattopadhyay, H.E. Hintermann. On performance of brazed single-layer CBN wheel. Annals of the CIRP, 1994, 43(1): 313~317
    [8] W.F. Ding, J.H. Xu, Y.C. Fu, et al. Interfacial reaction between cubic boron nitride and Ti during active brazing. Journal of Materials Engineering and Performance, 2006, 15(3): 365~369
    [9]王向东,郝斌,逯福生,等.钛的基本性质、应用及我国钛工业概况.钛工业进展,2004,21(1): 6~10
    [10]中国航空材料手册编辑委员会编.中国航空材料手册.北京:中国标准出版社,2001
    [11]陶春虎.航空用钛合金零件的失效及其预防.北京:国防工业出版社,2002
    [12]张春江.钛合金切削加工技术.西安:西北工业大学出版社,1986
    [13]李伯民,赵波.现代磨削技术.北京:机械工业出版社,2003
    [14]邢先占,张树声.缓进给磨削.金刚石与磨料磨具工程,1981,2: 39~40
    [15]李长河,蔡光起,修世超,等.高效率磨粒加工技术发展及关键技术.金刚石与磨料磨具工程,2006,155(5): 77~82
    [16]周志雄,邓朝晖,陈根余,等.磨削技术的发展及关键技术.中国机械工程,2000,11(1-2): 186~189
    [17]姚康德,邢配源,陈友志,等.AT-25柴油机连杆齿型面的深磨试验研究.武汉水运工程学院学报,1989,13(3): 36~43
    [18]陈仁海,郑焕文,张春元.缓进给强力磨削表面残余应力的试验研究.东北工学院学报,1983,36(3): 87~96
    [19]康仁科,杨巧凤,齐威,等.电镀CBN砂轮缓进给磨削难加工材料叶片窄深槽的试验研究.航空制造技术,1999,6: 16~18
    [20] L.C. Zhang, T. Suto, H. Noguchi, et al. A study of creep-feed grinding of metallic and ceramic materials. Journal of Materials Processing Technology, 1995, 48: 267~274
    [21] K.H. Fuh, S.B. Wang. Force modeling and forecasting in creep feed grinding using impoved BP neural network. International Journal of Machine Tools Manufacturing, 1997, 37(8): 1167~1178
    [22] T.W. Liao, K. Li, S.B. McSpadden Jr. Wear mechanisms of diamond abrasives during transitionand steady stages in creep-feed grinding of structural ceramics. Wear, 2000, 242: 28~37
    [23] J. Webste, E. Brinksmeie, C. Heinzel, et al. Assessment of grinding fluid effectiveness in continuous-dress creep feed grinding. Annals of CIRP, 2002, 51(1): 235~240
    [24] Sunarto, Y. Ichida. Creep feed profile grinding of Ni-based superalloys with ultrafine- polycrystalline cBN abrasive grits. Journal of the International Societies for Precision Engineering and Nanotechnology, 2001, 25: 274~283
    [25] A. Abdullah, A. Pak, M. Farahi, et al. Profile wear of resin-bonded nickel-coated diamond wheel and roughness in creep-feed grinding of cemented tungsten carbide. Journal of Materials Processing Technology, 2007, 183: 165~168
    [26] A. Cameron, R. Bauer, A. Warkentin. An investigation of the effects of wheel-cleaning parameters in creep-feed grinding. International Journal of Machine Tools & Manufacture, 2010, 50: 126~130
    [27]王威廉,荆长生.难加工材料缓进给磨削加工表面完整性的试验研究.航空学报,1988,l0(6): 315~323
    [28]徐西鹏,徐鸿钧,戴勇,等.CBN砂轮缓进磨削钛合金的初步研究.机械科学与技术,1991,5: 22~25
    [29]徐西鹏,徐鸿钧.CBN砂轮缓进给磨削钛合金的试验研究.磨床与磨削,1992,3: 31~33
    [30]陈明.难加工材料成形磨削烧伤的研究.[博士学位论文],南京,南京航空航天大学,1994
    [31]徐鸿钧,傅玉灿,孙方宏,等.高效磨削时弧区热作用机理与强化弧区换热的基础研究.中国科学(E辑),2002,32(3): 296~307
    [32]傅玉灿,徐鸿钧.开槽砂轮缓进给深切磨削时工件表层温度场解析.中国机械工程,2002,13(7): 541~543
    [33] A. Harpster. Grinding titanium alloys with plated CBN wheels. Society of Manufacturing Engineers(Superabrasives '91), June 1991
    [34] R. Hood, F. Lechner, D.K. Aspinwall, et al. Creep feed grinding of gamma titanium aluminide and burn resistant titanium alloys using SiC abrasive. International Journal of Machine Tools & Manufacture, 2007, 47: 1486~1492
    [35] Z. Shi, S. Malkin. An investigation of grinding with electroplated CBN wheels. Annals of the CIRP, 2003, 52(1): 267~270
    [36] M.J. Jackson, C.J. Davis, M.P. Hitchiner, et al. High-speed grinding with CBN grinding wheels—applications and future technology. Materials Processing Technology, 2001, 110: 78~88
    [37] Z. Shi, S. Malkin. Wear of Electroplated CBN Grinding Wheels. Journal of Manufacturing Science and Engineering, 2006, 128: 110~118
    [38] F.C. Gift, W.Z. Misiolek, E. Force. Fluid performance study for groove grinding a nickel-based superalloy using electroplated cubic boron nitride (CBN) grinding wheels. Journal of Manufacturing Science and Engineering, 2004, 126(8): 451~458
    [39] T.W. Hwang, C.J. Evans, S. Malkin, et al. High speed grinding of silicon nitride with electroplated diamond wheels. Journal of Manufacturing Science and Engineering, 2000, 122(2): 42~50
    [40] W. Konig, H. Schleich. High performance grinding with electroplated CBN wheels. IndustrialDiamond Review, 1984, 6: 320~323
    [41] H.J. Xu, Y.C. Fu, B. Xiao, et al. Fabrication of monolayer brazed diamond tools with optimum grain distribution. Key Engineering Materials, 2004, 259: 6-9
    [42]王秦生.超硬材料电镀制品.北京:中国标准出版社,2001
    [43]武志斌.高效磨削的瓶颈与对策.[博士学位论文],南京,南京航空航天大学,2001
    [44]王明智,臧建兵,王艳辉.立方氮化硼表面镀Ti及其与金属粘结剂的作用.中国有色金属学报,1997,7(2): 104~106
    [45]李志宏.陶瓷磨具制造.北京:中国标准出版社,2001
    [46]林增栋.钎焊法制造单层金刚石工具的研究.金刚石与磨料磨具工程,2004,6: 1~5
    [47] A.K. Chattopadhyay, L. Chollet, H.E. Hintermann. On performance of brazed bonded monolayer diamond grinding wheel. Annals of the CIRP, 1991, 40(1): 347~350
    [48]卢金斌.金刚石钎焊机理与工艺基础研究.[博士学位论文],南京,南京航空航天大学,2004
    [49] Y.C. Fu, B. Xiao, J.H. Xu, et al. Machining performance of monolayer brazed diamond tools. Key Engineering Materials, 2004, 259: 73~77
    [50] A. Ghosh, A.K. Chattopadhyay. Experimental investigation on performance of touch-dressed single-layer brazed cBN wheels. International Journal of Machine Tools & Manufacture, 2007, 47 (6-7): 1206~1213
    [51] M.G. Nicholas, D.A. Mortimer, L.M. Jones, et al. Some observations on the wetting and bonding of nitride ceramics. Journal of Materials Science, 1990, 25: 2679~2689
    [52] H.E. Hintermann, A.K. Chattopadhyay. Abrasive tool having film-covered CBN grits bonded by brazing to a substrate. U.S. Patent, 5389118, February 14, 1995
    [53] A.K. Chattopadhyay, H.E. Hintermann. On brazing of cubic boron nitride abrasive crystals to steel substrate with alloys containing Cr or Ti. Journal of Materials Science, 1993, 28: 5887~5893
    [54] I.L. Pobol, K. Friedel, J. Felba. Development of method for obtaining brazed joint of cubic boron nitride with base, Proceedings of the Tenth Congress of the IFHT, 1998: 946~951
    [55]王艳辉.金刚石磨料表面镀钛层的制备、结构、性能及应用.[博士学位论文],秦皇岛,燕山大学,2002
    [56]马伯江.金刚石磨粒高频感应钎焊的基础研究.[博士学位论文],南京,南京航空航天大学,2005
    [57] H.H. Su, H.J. Xu, B. Xiao, et al. Study on machining of hard-brittle materials with thin-walled monolayer brazed diamond core drill. Materials Science Forum, 2004, 471: 287~291
    [58] W.F. Ding, J.H. Xu, M. Shen, et al. Thermodynamic and kinetic analysis of interfacial reaction between CBN grain and Ag-Cu-Ti filler alloy. Materials Science and Technology, 2006, 22(1): 105~109
    [59]丁文锋,徐九华,沈敏,等.活性元素Ti在CBN与钎料结合界面的特征.稀有金属材料与工程,2006,35(8): 1215~1218
    [60] A.K. Chattopadhyay, L.Chollet, H.E. Hintermann. Improved monolayer CBN wheel for load free grinding. Journal of Machine Tools & Manufacturing, 1992, 32(4): 571~588
    [61] J. Webster, M. Tricard. Innovation in abrasive products for precision grinding. Annals of theCIRP, 2004, 53(2): 597~617
    [62] G. Burkhard, F. Rehsteiner. High efficiency abrasive tool for honing. Annals of the CIRP, 2002, 51(1): 271~274
    [63]傅玉灿,徐鸿钧.高效磨削用砂轮地貌的优化设计研究.应用科学学报,2001,19 (1): 48~52
    [64] C. Aurich, O. Braun, G. Warnecke, et al. Development of a superabrasive grinding wheel with defined grain structure using kinematic simulation. Annals of the CIRP, 2003, 52(1): 275~280
    [65]孙毓超,刘一波,王秦生.金刚石工具与金属学基础.北京:中国建材出版社,1999
    [66]王秦生.超硬材料电镀制品.北京:中国标准出版社,2001
    [67]张启运,庄鸿寿.钎焊手册.北京:机械工业出版社,1998
    [68]陈登权.陶瓷/金属钎焊用钎料及其钎焊工艺进展.贵金属,2001,22(1): 53~56
    [69]皮晓明.SiC纤维增强SiC复合材料与40Cr连接行为的研究.[硕士学位论文],北京,北京理工大学,2001
    [70] R.W. Xu. Joining of silicon nitride to metals using active brazing. Dissertation for Ph.D Degree, Chicago, University of Illinois, 1994
    [71]王彩凤.我国稀土工业“十一五”发展展望.高层论坛,2004,247(10): 7~9
    [72]杜挺.稀土元素在金属材料中的一些物理化学作用.金属学报,1997,33(1): 69~77
    [73] B.G. Wybournem. The fascination of the rare earths—then, now and in the future. Journal of Alloys and Compounds, 2004, 380: 96~100
    [74]刘静安,温育智.稀土在有色金属工业中的开发与应用.四川有色金属,2003,1: 20~27
    [75]郭洪飞,郝新,何智慧.稀土La对5CrNiMo模具钢力学性能的影响.北京科技大学学报,2007,29(12): 1209~1211
    [76] L.M. Wang, Q. Lin, L.J Yue, et al. Study of application of rare earth elements in advanced low alloy steels. Journal of Alloys and Compounds, 2008, 451: 534~537
    [77] W.M. Xiao, Y.W. Shi, G.C. Xu, et al. Effect of rare earth on mechanical creep–fatigue property of SnAgCu solder joint. Journal of Alloys and Compounds, 2009, 472(1-2): 198~202
    [78] Y.W. Shi, J. Tian, H. Hao, et al. Effects of small amount addition of rare earth Er on microstructure and property of SnAgCu solder. Journal of Alloys and Compounds, 2008, 453: 180~184
    [79] L. Wang, D.Q. Yu, J. Zhao, et al. Improvement of wettability and tensile property in Sn–Ag–RE lead-free solder alloy. Materials Letters, 2002, 56: 1039~1042
    [80] L. Meng, X.L. Zheng Overview of the effects of impurities and rare earth elements in Al-Li alloys. Materials Science and Engineering A, 1997, 237(1): 109~118
    [81] Z.J. Han, S.B. Xue, L. Liu, et al. Effects of micro-amount of cerium on microstructures of Sn-Ag-Cu solder and soldered joint. Journal of Rare Earths, 2006, 24(s2): 228~232
    [82] X. Ma, Y.Y. Qian, F Yoshida. Effect of La on the Cu–Sn intermetallic compound (IMC) growth and solder joint reliability. Journal of Alloys and Compounds, 2002, 334(1-2): 224~227
    [83]宋月清,夏志华,甘长炎,等.稀土元素镧在金刚石工具胎体材料中的作用机理研究.稀有金属,1998,22(1): 39~42
    [84] Q.L. Dai, C.B. Luo, X.P. Xu, et al. Effects of rare earth and sintering temperature on the transverse rupture strength of Fe-based diamond composites. Journal of Materials Processing Technology, 2002, 129: 427~430
    [85]高云,宋月清.稀土元素La对金属胎体/金刚石复合材料粘结性能的影响.金刚石与磨料磨具工程,2000,118: 3~6
    [86]吴贻琨,于清.稀土元素强化金刚石工具材料性能的研究.粉末冶金技术,1999,17: 253~256
    [87]徐西鹏,黄文德.稀土在金刚石圆锯片节块烧结中的作用.稀土,1997,18: 25~28
    [88]潘秉锁.稀土对提高电镀金刚石钻头性能的研究.[博士学位论文],徐州,中国地质大学,2005
    [89]高红宇,于爱兵,张庆林.稀土镧对电镀金刚石工具性能的影响.金刚石与磨料磨具工程,2006,155(5): 66~73
    [90]中国机械工程学会焊接学会.焊接手册第2卷(第2版).北京:机械工业出版社,2001
    [91] S. Mandal, V. Rao, A.K. Ray. Characterization of the brazed joint interface between Al2O3 and (Ag-Cu-Ti), Journal of Materials Science, 2004, 39: 5587~5590
    [92] H.J. Liu, J.C. Feng, Y.Y. Qian. Microstructure and strength of the SiC/TiAl joint brazed with Ag-Cu-Ti filler metal, Journal of Materials Science Letters, 2000, 19: 1241~1242
    [93]蒋成禹,吴铭芳,于治水,等.Al2O3/(Ag72Cu28)97Ti3/Ti-6Al-4V界面结构及性能研究.稀有金属材料与工程,2001,8(30): 264~267
    [94]李荣久.陶瓷——金属复合材料.北京:冶金工业出版社,2004,3: 407~408
    [95]黄小丽.ZrO2与金属的钎焊连接.[博士学位论文],北京,北京科技大学,1995
    [96] T. Yamazaki, A. Suzumura. Role of the reaction product in the solidification of Ag-Cu-Ti filler for brazing diamond, Journal of Materials Science, 1998, 33: 1379~1384
    [97] M. Nomura, T. Ichimori, C. Iwamoto, et al. Structure of wetting front in the Ag-Cu-Ti/SiC reactive system, Journal of Materials Science, 2000, 35: 3953~3958
    [98]吴铭芳,于治水,祁凯,等.Al2O3/Ag-Cu-Ti钎料/Nb连接的微观结构及性能.硅酸盐学报,2000,28(5): 475~478
    [99]印有胜.钎焊手册.哈尔滨:黑龙江出版社,1989
    [100]姚伟,王思爱,沈卓申.AgCu28共晶钎料的铺展性研究.电子元件与材料,2004,23(8): 36~38
    [101] D.A. Weiauch, W.J. Krafick. The spreading kinetics of Ag-28Cu(L) on nickel(S) Part I. Area of spread tests on nickel foil, Journal of Materials Research, 1996, 11(8): 1897~1916
    [102]戴世娟.亚微米颗粒增强铝基复合材料的制备技术研究.[硕士学位论文],镇江,江苏大学,2007
    [103]于仁红,蒋明学.TiN的性质、用途及其粉末制备技术.耐火材料,2005,39(5): 386~389
    [104]李先芬,丁厚福,徐道荣,等.Ti(C, N)基金属陶瓷与45号钢钎焊的试验研究.热加工工艺,2003,2: 24~25
    [105]浩宏奇,金志浩,王永兰,等.氧化铝陶瓷与不锈钢钎焊的接头强度与热震抗力.硅酸盐学报,1996,24(2): 222~227
    [106]亢世江,陈学广,吕志勇,等.钎焊金刚石膜的试验研究及理论分析.焊接学报,2005,26(2): 77~80
    [107] S.S. Li, J.H. Xu, B. Xiao, et al. High performance of monolayer brazing diamond wheel in grinding engineering ceramics. Key Engineering Materials, 2008, 359-360: 38~42
    [108]李曙生.新型单层钎焊金刚石砂轮磨削工程陶瓷的基础研究.[博士学位论文],南京,南京航空航天大学,2008
    [109]任敬心,华安定.磨削原理.西安:西北工业大学出版社,1988
    [110]徐西鹏,徐鸿钧,戴勇,等.树脂结合剂CBN砂轮缓进深磨钛合金——CBN砂轮在缓磨中的应用.南京航空航天大学学报,1993,25(5): 631~637
    [111] S. Malkin.磨削技术理论与应用.沈阳:东北大学出版社,2002
    [112]丁文锋.镍基高温合金高效磨削用单层钎焊立方氮化硼砂轮的研制.[博士学位论文],南京,南京航空航天大学,2006
    [113]李晓天.新型高温合金磨削烧伤机理及砂轮激光修锐技术.[博士学位论文],上海,上海交通大学,2000
    [114]任敬心,杨茂奎,李雅卿,等.镍基高温合金的磨削特征.航空学报,1997,18(6):755~757
    [115]胡协方.缓进给直槽成型磨削的研究.[博士学位论文],南京,南京航空学院,1988
    [116] M. Chen, X.T. Li, F.H. Sun, et al. Studies on the grinding characteristics of dictionally solidified nickel-based superalloy, Journal of Materials Processing Technology, 2001, 116:165~169
    [117] X.P. Xu, Y.Q. Yu, H. Huang. Mechanisms of abrasive wear in grinding of titanium (TC4) and nickel (K417) alloys. Wear, 2003, 255: 1421~1426
    [118]殷玲,刘忠,陈日耀.陶瓷磨削中金刚石砂轮磨损形式及其生成原因.华中理工大学学报,1996,24(4): 19~22
    [119] P. Koshy, A. Iwasaki, M.A. Eibestawi. Surface generation with engineered diamond grinding wheels: Insights from simulation. Annals of the CIRP, 2003, 52(1): 271~274
    [120]邵昆.燃气轮机压气机叶片重点制造技术的研究.[硕士学位论文],成都,四川大学,2006
    [121]张中坚,尹沈华,魏萍.某机低压0级工作叶片的加工工艺.红旗技术,2003,3: 20~23
    [122]高航.断续磨削温度场的研究,机械工程学报,1989,25(2): 22~28
    [123]徐鸿钧,徐西鹏,林涛,张幼桢.断续磨削时工件表层温度场解析.机械工程学报,1994,30(1): 30~36
    [124]宋振武,高航.螺旋槽砂轮磨削性能的试验研究.磨料磨具与磨削,1985,6: 1~5
    [125] Y. Furukawa, S. Ohishi, S. Shiozaki. Selection of creep feed grinding condition in view of workpiece buring. Annals of the CIRP, 1979, 28(1): 213~218

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700