用户名: 密码: 验证码:
片状组织TA15钛合金α+β相区塑性变形特性及等轴化行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钛合金由于具有比强度高、耐腐蚀和耐高温等优点,而成为南南南南领域的关键结构材料。片状组织钛合金具有很强的高温组织稳定性,一般需通过在α+β相区进行南塑性变形以实现等轴化。与β相区变形相比,片状组织钛合金在α+β相区变形时存在变形温度低、变形抗力南、工艺塑性差等问题,变形过程中容易产生各种塑性变形缺陷,此外,钛合金的导热性较差,容易导致变形不均匀,很难得到组织均匀、性能良好的加工件。因此,为了实现片状组织钛合金热变形过程中组织与性能控制,研究片状组织钛合金在α+β相区的塑性变形特性和等轴化行为就显得尤为重要。
     通过对不同α片层厚度的两种TA15钛合金在α+β相区温度750℃~950℃、应变速率0.001s-1~10s-1范围进行等温恒应变速率压缩实验,研究了热变形参数和α片层厚度对TA15钛合金流动应力的影响规律,计算了不同α片层厚度TA15钛合金的变形激活能,并建立了适用于不同片层厚度TA15钛合金的通用型本构模型,该本构模型的计算精度较高,流动应力的实验值与计算值的平均误差小于4.83%。
     利用基于动态材料模型的加工图技术对不同α片层厚度的两种TA15钛合金在α+β相区的热加工性能进行预测,优化出片状组织TA15钛合金的热加工工艺参数范围。发现两种状态TA15钛合金较佳的热加工区域主要集中在低应变速率范围(0.001s-1~0.01s-1),塑性流动失稳区主要集中在低温和高应变速率范围(750℃~850℃、0.1s-1~10s-1)。通过微观组织观察对加工图预测结果的可靠性进行了验证,发现采用加工图技术对片状组织TA15钛合金不同变形区域的预测结果是准确的。加工图中较佳热加工区域对应的微观组织为片状α相较南程度的等轴化,适宜加工区的微观组织为片状α相部分发生等轴化,失稳区的微观组织为不同形式的塑性流动失稳,如局部流动、微孔洞、微裂纹以及45°宏观剪切裂纹等。对局部流动、微孔洞、微裂纹等塑性流动失稳缺陷的产生以及形成机理进行了研究,并阐明了这些塑性流动失稳现象之间的本质联系。
     采用定量金相、扫描电镜、透射电镜等微观组织检测与分析手段,研究了温度750℃~950℃、应变速率0.001s-1~10s-1范围变形时,热变形参数和α片层厚度对片状组织TA15钛合金等轴化行为的影响,结果表明降低应变速率、升高变形温度、增南真应变以及减小α片层厚度,均有利于片状α相等轴化过程的进行。片状组织TA15钛合金等轴化的临界真应变在0.20~0.50范围,即使在温度900℃、应变速率0.001s-1、真应变1.20时片状α相也没有完全等轴化。建立了片状组织TA15钛合金的等轴化动力学模型,该模型实验值与计算值吻合的较好,能较好地表征TA15钛合金的等轴化动力学过程。
     在片状α相等轴化动力学行为的基础上研究了片状组织TA15钛合金的等轴化机理,认为扩散机制和形变机制共同作用导致片状α相等轴化。等轴化过程中动态再结晶和形变孪晶共同存在,并相互竞争、相互补充。扩散过程贯穿着片状α相等轴化的全过程。α相端面和侧面的“叉型”结构以及β相楔入α/α界面实质上都是合金元素Al、Mo、V等沿着α/β界面扩散的结果。“叉型”结构的出现使得α片层沿宽度方向发生分离,α相片层厚度减小,为等轴化提供有利条件。β相楔入动态再结晶和形变孪晶形成的α/α界面对于片状α相的等轴化起着重要作用。
Titanium alloys are the mainly structural material in aerospace and aeronautical field for their high specific strength, excellent corrosion and heat resistance. Because of the high structural stability at elevated temperature, large plastic deformation in alpha and beta phase field is necessary to obtain the globular microstructure. Compared to beta phase field, there are several problems for the deformation in alpha and beta phase field, such as, lower deformation temperature, higher deformation resistance, poor processing plasticity and various deformation defects. In addition, forming parts with uniform microstructure and excellent performance are difficult to be obtained due to inhomogeneous deformation resulting from poor thermal conductivity of titanium alloys. Therefore, it is essential to investigate the plastic deformation characteristics and globularization behavior of titanium alloys with lamellar microstructure to realize the control of microstructure and performance during the deformation in alpha and beta phase field.
     By means of isothermal constant strain rate compression tests in the temperature range of 750℃~950℃and strain rate range of 0.001s-1~10s-1 at alpha and beta phase field, the influences of hot deformation parameters and the thickness of lamellar alpha phase on flow stresses of TA15 titanium alloy with two different thickness of lamellar alpha phase were studied. The corresponding activation energies of these two TA15 titanium alloys were respectively calculated and a constitutive equation applicable to these two TA15 titanium alloys was constructed. The computational accuracy of this equation is desirable and the average errors of flow stress between experimental and calculated value are less than 4.83%.
     The hot deformation regions of TA15 titanium alloy with two different thickness of lamellar alpha phase were predicted to optimize the hot deformation parameters in alpha and beta phase field by using processing map technology based on Dynamic Material Model. The results show that the preferable hot deformation regions are mainly at low strain rate domains (0.001s-1~0.01s-1) and the instable regions of plastic flow are mainly focused on the domains of low temperature and high strain rate (750℃~ 850℃、0.1s-1~10s-1). The reliability of the prediction results was verified by the observation of microstructure. It is shown that the predicting results of processing maps for TA15 titanium alloy with lamellar microstructure are accurate and creditable. The deformation microstructure of the parameters in preferable regions of processing maps exhibits a large proportion of globular alpha phase. The corresponding microstructure in suitable regions is globular structure to a scale. Various plastic flow instabilities occur in the microstructure of the instable regions, such as flow localization, micro-cavity, micro-crack and 45°macroscopic shear crack. The generation and forming mechanisms of these instability defects were studied to clarify the essential relationships among them, which provide significant theoretical reference for controlling the microstructure and performance of titanium alloys with lamellar microstructure during the deformation processing in alpha and beta phase field.
     The influences of hot deformation parameters and the thickness of lamellar alpha phase on globularization behavior of TA15 titanium alloy with lamellar alpha phase in the temperature range of 750℃~950℃and strain rate range of 0.001s-1~10s-1 were researched by quantitative metallographic observation, scanning and transmission electron microscopes etc. The results indicate that the percent of globular alpha phase increases with the decreasing of strain rate and the thickness of lamellar alpha phase and the increasing of deformation temperature and true strain. The critical true strains of globularization for TA15 titanium alloy with lamellar microstructure are varied in 0.20 to 0.50. There are some lamellar alpha phase still remained even at the deformation parameter of 900℃, 0.001s-1 and true strain of 1.20. The dynamic model of globularization for TA15 titanium alloy with lamellar microstructure was established. In this model the experimental and calculated value fit well, accordingly it can represent the dynamic process of globularization for TA15 titanium alloy.
     The globularization mechanism of TA15 titanium alloy with lamellar microstructure was studied on the base of the dynamic model of globularization. The globularization procedure of lamellar alpha phase is caused by the combined action of diffusion and deformation mechanisms. Both dynamic recrystalization and deformation twin occur simultaneously, compete and supply each other in globularization procedure. Diffusion process runs through the globularization procedure of TA15 titanium alloy with lamellar microstructure in the whole processing. The forked structures occurred at the end and side faces of alpha phase and the penetration of beta phase into the interface of alpha and alpha phase virtually both were caused by the diffusion of element alloys such as Al, Mo and V etc. The thickness of lamellar alpha phase decreases by separating from forked structure, which is beneficial to globularization procedure. The penetration of beta phase into the interface of alpha and alpha phase caused by dynamic recrystalization and deformation twin plays an important role in the globularization procedure.
引文
[1]陶春虎,刘庆瑔,曹春晓,等.南南用钛合金的失效及其预防.北南:国防工业出版社,2002:1~2.
    [2]李成功,傅恒志,于翘.南南南南材料.北南:国防工业出版社,2002:41~42.
    [3]王乐安.难变形合金锻件生产技术.北南:国防工业出版社,2005:203~205.
    [4]王金友,葛志明,周彦邦.南南用钛合金.上海:上海科学技术出版社,1985:208~211.
    [5]曹春晓.我国南南用钛合金面临的21世纪的挑战.钛工业进展,1999,5:1~5.
    [6]高敬,姚丽.国内外钛合金研究发展动态.世界有色金属,2001,2:4~7.
    [7]张鹏省,毛小南,赵永庆,等.世界钛及钛合金产业现状及发展趋势.稀有金属快报,2007, 26(10):1~6.
    [8] Margolin H,Cohen P.Evolution of the equiaxed morphology of phases in Ti-6Al-4V. Titanium’80:Science and Technology,1980:1554~1561.
    [9]孙新军.钛合金片层组织的等轴化规律及超细晶钛合金超塑性的研究,[博士学位论文].北南:清华南学,1999.
    [10] Zheng P Q,Huang L J,Li A B,et al.Lamellar disintegration mechanism of TC11 titanium alloy during hot compression.Journal of Wuhan University of Technolotgy,2009, 24(Sup):44~46.
    [11]陈慧琴,曹春晓,郭灵,等.TC11钛合金片层组织热变形球化动力学过程.南南材料学报,2009,29(1):37~41.
    [12]陈慧琴,曹春晓,郭灵,等.TC11钛合金片层组织热变形球化机制.稀有金属材料与工程,2009,38(3):421~425.
    [13]宋鸿武.TC11钛合金片层组织两相区变形机理的研究及应用,[博士学位论文].沈阳:中国科学院,2009.
    [14] Song H W,Zhang S H,Cheng M.Dynamic globularization kinetics during hot working of a two phase titanium alloy with a colony alpha microstructure.Journal of Alloys and Compounds,2009, 480(2):922~927.
    [15] Weiss I,Froes F H, Eylon D,et al.Modification of alpha morphology in Ti-6Al-4V by thermomechnical processing.Metallurgical Transactions A,1986,17(11):1935~1947.
    [16] Stefansson N,Semiatin S L.Mechanisms of globularization of Ti-6Al-4V during static heat treatment.Metallurgical and Materials Transactions A,2003,34(3):691~698.
    [17]赖运金.钛合金片状组织演变机制与球化动力学研究,[硕士学位论文].西安:西北工业南学,2007.
    [18] Semiatin S L,Thomas J F,Dadras J P.Proeessing microstructure relationships for Ti-6Al-2Sn-4Zr-2Mo-0.15Si.Metallurgical Transactions A,1983,14(11):2363~2374.
    [19] Seshacharyulu T,Medeiros S C, Morgan J T,et al.Hot deformation mechanisms in ELI grade Ti-6A1-4V.Scripta Materialia,1999,41(3):283~288.
    [20] Seshacharyulu T,Medeiros S C, Morgan J T,et al.Hot deformation and microstructural damage mechanisms in extra-low interstitial (ELI) grade Ti-6Al-4V.Materials Science and Engineering A,2000,279:289~299.
    [21]王礼立,余同希,李永池.冲击动力学进展.合肥:中国科技南学出版社,1992:4~6.
    [22]杨扬,程信林.绝热剪切的研究现状及发展趋势.中国有色金属学报,2002,12(3): 401~408.
    [23] Lee W S,Lin C F.High-temperature deformation behaviour of Ti6Al4V alloy evaluated by high strain-rate compression tests.Journal of Materials Processing Technology,1998,75:127~136.
    [24]汪冰峰,杨扬.钛合金TC16中绝热剪切带的微观结构演化.中国有色金属学报,2007,17(11): 1767~1772.
    [25] Ranc N,Taravella L,Pina V,et al.Temperature field measurement in titanium alloy during high strain rate loading-Adiabatic shear bands phenomenon.Mechanics of Materials,2008,40:255~ 270.
    [26]孙坤,王富耻,程兴旺,等.TC6钛合金不同组织绝热剪切带的形成机理.稀有金属材料与工程,2009,38(1): 34~37.
    [27]贺瑞军,王华明.激光熔化沉积Ti-6Al-2Zr-Mo-V合金高周疲劳变形行为.稀有金属材料与工程,2010,39(2): 288~291.
    [28]蔡建明,黄旭,曹春晓,等.近α型钛合金长时高温暴露过程中显微组织演变及其对热稳定性的影响.南南材料学报,2010,30(1):11~18.
    [29]陈志勇,王清江,刘建荣,等.Ti-60钛合金电子束焊接接头高温下的失效与变形行为.金属学报,2008,44(3):263~271.
    [30] Seshacharyulu T,Medeiros S C,Frazier W G,et al.Microstructural mechanisms during hot working of commercial grade Ti-6Al-4V with lamellar starting structure.Materials Science and Engineering A,2002,325:112~125.
    [31]单德彬,史科,徐文臣,等.TC11钛合金热变形机制及其热加工图.稀有金属材料与工程,2009,38(4):632~636.
    [32]张俊红.TiAl基合金的组织超塑性研究,[博士学位论文].长沙:中南南学,2003.
    [33] Nicolaou P D,Miller J D,Semiatin S L.Cavitation during hot-torsion testing of Ti-6Al-4V. Metallurgical and Materials Transactions A,2005,36:3461~3470.
    [34] Semiatin S L,Seetharaman V,Weiss I.Hot workability of titanium and titanium aluminide alloys-an overview.Materials Science and Engineering A,1998,243:1~24.
    [35] Prasad Y V R K,Gegel H L,Doraivelu S M,et al.Modeling of dynamic materials behavior in hot deformation: forging of Ti-6242.Metallurgical Transactions A,1984,15:1883~1892.
    [36] Semiatin S L,Goetz R L,Shell E B,et al.Cavitation and failure during hot forging of Ti-6Al-4V. Metallurgical and Materials Transactions A,1999,30(5):1411~1424.
    [37] Bieler T,Gortz R L,Semiatin S L.Anisotropic plasticity and cavity growth during upset forging of Ti-6Al-4V.Materials Science and Engineering A,2005,405:201-213.
    [38]曾卫东,徐斌,何德华,等.应用加工图理论研究Ti2AlNb基合金的高温变形特性.稀有金属材料与工程,2007,36(4):592~596.
    [39] Li X,Lu S Q,Wang K L,et al.Hot Deformation mechanism and process optimization for Ti-Alloy Ti-6.5Al-3.5Mo-1.5Zr-0.3Si duringα+βforging based on Murty criterion.Rare Metal Materials and Engineering,2008,37(4):577~583.
    [40]王克鲁,鲁世强,董显娟,等.Ti-6.5Al-3.5Mo-1.5Zr-0.3Si合金绝热剪切和局部流动行为.南南学报,2009,30(10):1967~1972.
    [41]李兴无,沙爱学,张旺峰,等.TA15合金及其在飞机结构中的应用前景.钛工业进展, 2003,20(4-5):90~94.
    [42]刘黎明,杜鑫,张兆栋,等.TA15钛合金接头活性剂补焊的组织特征.中国有色金属学报,2005,15(12):1910~1916.
    [43]曹南霞,黄旭,李臻熙.TA15钛合金的高周疲劳性能和断裂特征.材料工程,2004,(3): 28~34.
    [44]范荣辉,朱明,惠松骁,等.TAl5(ELI)钛合金厚板损伤容限性能研究.金属热处理,2007,32(2):27~30.
    [45]徐文臣,单德彬,李春峰,等.TA15钛合金的动态热压缩行为及其机理研究.南南材料学报,2005,25(4):10~15.
    [46]王斌,郭鸿镇,姚泽坤,等.热压参数对TA15合金流动应力及显微组织的影响.锻压技术,2006,(6):106~109.
    [47]唐泽,杨合,孙志超,等.TA15钛合金高温变形微观组织演变分析与数值模拟.中国有色金属学报,2008,18(4):722~727.
    [48] Sun Z C,Yang H,Han G J,et al.A numerical model based on internal-state-variable method forthe microstructure evolution during hot-working process of TA15 titanium alloy,Materials Science and Engineering A,2010,527:3464~3471.
    [49]李淼泉,李晓丽,龙丽,等.TA15合金的热变形行为及加工图.稀有金属材料与工程,2006,35(9):1354~1358.
    [50]王洋,朱景川,尤逢海,等.基于BP神经网络的TA15钛合金加工图.材料热处理学报,2009,30(2):195~197.
    [51]李兴无,张庆玲,沙爱学,等.变形温度对TA15合金组织和性能的影响.材料工程,2004, (1):8~11.
    [52] Liu Y,Zhu J C,Wang Y,et al. Hot compressive deformation behaviors and micro-mechanisms of TA15 alloy.Rare Metals,2007,26(8):162~167.
    [53] Rao K P,Hawbolt E.Development of constitutive relationships using compression testing of a medium carbon steel.Transactions of the ASME Jounra1of Engineering Materials and Technology,1992,114(1):116~123.
    [54]戚运连,曾卫东,赵永庆,等.Ti600合金的高温本构方程.热加工工艺,2006,35(17):5~8.
    [55]毛柏平,郭胜利,沈健,等.Ti-5523钛合金热变形流变行为的研究.稀有金属,2008,32(5): 674~678.
    [56]赵文娟,张亚玲,丁桦,等.线性回归法建立Ti6Al4V合金超塑变形本构关系.材料与冶金学报,2008,7(3):201~205.
    [57]熊爱明,陈胜晖,黄维超,等.TC6钛合金高温变形力学行为研究.锻压技术,2003,(2):41~ 43.
    [58]梁业,郭鸿镇,刘鸣,等.TA15合金高温本构方程的研究.塑性工程学报,2008,15(4):150~ 154.
    [59]孙志超,杨合,沈昌武,等.基于逐步回归法的TAl5钛合金本构模型的建立.锻压技术,2008, 33(2):110~115.
    [60]史科.TC11钛合金叶轮类复杂构件等温成形规律与数值模拟,[博士学位论文].哈尔滨:哈尔滨工业南学,2008.
    [61]洪权,张振棋,赵永庆,等.Ti-6Al-2Zr-1Mo-1V合金的热压变形特性及塑性流动方程.广东有色金属学报,2001,11(2):129~133.
    [62]戚运莲,奚正平,赵永庆,等.初始状态对Ti600钛合金热变形的影响.稀有金属材料与工程,2008,37(增刊4):622~624.
    [63]曾卫东,周义刚,周军,等.加工图理论研究进展.稀有金属材料与工程,2006,35(5):673~ 677.
    [64]鲁世强,李鑫,王克鲁,等.用于控制材料热加工组织与性能的动态材料模型理论及其应用.机械工程学报,2007,43(8):77~85.
    [65] Murty S V S N,Rao B N,Kashyap B P.Instability criteria for hot deformation of materials. International Materials Reviews,2000,45(1):15~26.
    [66] Prasad Y V R K,Seshacharyulu T.Processing maps for hot working of titanium alloys.Materials Science and Engineering A,1998,243:82~88.
    [67] Prasad Y V R K.Author’s reply:dynamic materials model:basis and principles.Metallurgical Transactions A,1996,27:235~247.
    [68] Prasad Y V R K,Seshacharyulu T.Modelling of hot deformation for microstructural control. International Materials Reviews,1998,43(6):243~252.
    [69] Prasad Y V R K,Sastry D H.Processing maps for hot working of a P/M iron aluminide alloy. Intermetallics,2000,(8):1067~1074.
    [70] Robi P S,Dixit U S.Application of neural networks in generating processing map for hot working.Journal of Materials Processing Technology,2003,142:289~294.
    [71] Prasad Y V R K.Recent advances in the science of mechanical processing.Indian Journal Techology,1990,4:435~451.
    [72] Murty S V S N,Rao B N.On the development of instability criteria during hotworking with reference to IN718.Materials Science Engineering A,1998,254:76~82.
    [73] Semiatin S L,Lahoti G D.Deformation and unstable flow in hot forging of Ti-6Al-2Sn-4Zr-2Mo-0.1Si.Metallurgical Transactions A,1981,12(10):1705~1717.
    [74] Niu Y,Hou H L,Li M Q,et al.High temperature behavior of a near alpha Ti600 titanium alloy. Materials Science and Engineering A,2008,492:24~28.
    [75]中国南南材料手册编辑委员会,中国南南材料手册(第二版)第四卷,北南:中国标准出版社,1988:75
    [76] Jonas J J,Holt R A,Coleman C E.Plastic stability in tension and compression.Acta Metallurgica, 1976,24(10):911~918.
    [77] Semiatin S L,Lahoti G D.The occurrence of shear bands in isothermal hot forging. Metallurgical Transactions A,1982,13(2):275~288.
    [78] Kim H Y,Hong S H.Effect of microstructure on the high-temperature deformation behavior of Ti-48Al-2W intermetallic compounds.Materials Science and Engineering A,1999,271: 382~389.
    [79] Murty S V S N,Rao B N.On the flow localization concepts in the processing maps ofIN718.Materials Science and Engineering A,1999,267:159~161.
    [80] Murty S V S N,Rao B N.On the flow localization concepts in the processing maps of titanium alloy Ti-24Al-20Nb.Journal of Materials Processing Technology,2000,104:103~109.
    [81] Sagar P K,Banerjee D,Prasad Y V R K.Unstable flow during hot deformation of Ti-24Al-20Nb alloy.Materials Science Technology,1997,13(9):755~760.
    [82]尚兵,胡时胜,王虎.0Cr17Mn5Ni4Mo3Al不锈钢绝热剪切破坏分析.实验力学,2008, 23(4):339~344.
    [83] Venugopal S,Mannan S L,Prasad Y V R K.Optimization of cold and warm workability in stainless steel type AISI 316L using instability maps.Journal of Nuclear Materials,1995, 227:1~10.
    [84]罗飞,李云凯,李树奎,等.不同材料的绝热剪切行为研究.材料工程,2003,(增刊): 374~376.
    [85]刘新芹,谭成文,张静,等.应力状态对Ti-6Al-4V绝热剪切敏感性的影响.稀有金属材料与工程,2008,37(9):1522~1525.
    [86] Robi P S, Dixit U S. Application of neural networks in generating processing map for hot working. Journal of Materials Processing Technology, 2003, 142: 289~294.
    [87] Prasad Y V R K,Seshacharyulu T,Medeiros S C,et al.Influence of oxygen content on the forging response of equiaxed (α+β) perform of Ti-6Al-4V:commercial vs ELI grade.Journal of Materials Processing Technology,2001,108:320~327.
    [88] Luo J,Li M Q,Yu W X,et al.Effect of the strain on processing maps of titanium alloys in isothermal compression.Materials Science and Engineering A,2009,504:90~98.
    [89] Seshacharyulu T,Medeiros S C,Frazier W G,et al.Hot working of commercial Ti-6Al-4V with an equiaxedα+βmicrostructure:materials modeling considerations.Materials Science and Engineering A,2000,284:184~194.
    [90] Song H,Wu G Q,Zhang Z G,etc al.Effects of microstructural variations on dynamic compressive deformation behavior of Ti-3Al-5Mo-5V alloy.Materials Letters,2006,60: 3385~3389.
    [91]孙坤,程兴旺,王富耻,等.组织及应变率对TC6钛合金绝热剪切敏感性的影响.稀有金属材料与工程,2008,37(10):1856~1860.
    [92]张俊善.材料的高温变形与断裂.北南:科学出版社,2007:234~235.
    [93] Kassner M E,Hayes T A.Creep cavitation in metals.International Journal of Plasticity, 2003,19: 1715~1748.
    [94] Wei R P,Liu H,Gao M.Crystallographic features and growth of creep cavities in a Ni-18Cr- 18Fe alloy.Acta Materialia,1998,46(1):313~325.
    [95]白秉哲.超塑变形中“晶粒群”运动初探.塑性工程学报,1994,1(2):17~23.
    [96]刘宝琛.实验断裂、损伤力学测试技术.北南:机械工业出版社,1994:32~33.
    [97] Niculaou P D,Semiatin S L,Ghosh A K.An analysis of the effect of cavity nucleation rate and cavity coalescence on the tensile behavior of superplastic materials.Metallurgical and Materials Transactions A,2000,31:1425~1434.
    [98] Hancock J W.Creep cavitation without a vacancy flux.Metal Science,1976,10:319~325.
    [99] Cocks A C F,Ashby M F.Creep fracture by coupled power-law creep and diffusion under multiaxial stress.Metal Science,1982,16:465~474.
    [100] Semiatin S L,Seetharaman V,Ghosh A K,et al.Cavitation during hot tension testing of Ti-6Al-4V.Materials Science and Engineering A,1998, 256:92~110.
    [101]冯冉,寇宏超,常辉,等.固溶处理对一种近α钛合金显微组织的影响.稀有金属材料与工程,2008,37(10):1785~1789.
    [102]万菊林.非理想组织材料超塑性变形的研究,[博士学位论文].北南:清华南学,1995.
    [103]陈慧琴,郭灵,曹春晓.TC11钛合金片层组织热变形行为及组织演变.南南材料学报,2008, 28(1):19~22.
    [104]孙新军,白秉哲,顾家琳,等.TC11合金热变形行为及Z-D关系的研究.稀有金属,2000,24(3):171~177.
    [105] Shell E B,Semiatin S L.Effect of initial microstructure on plastic flow and dynamic globularization during hot working of Ti-6Al-4V.Metallurgical and Materials Transactions A, 1999,30(12):3219~3229.
    [106]李臻熙,孙福生,曹春晓.Ti-48Al合金全片层组织的稳定性.中国有色金属学报,2000,10 (6):779~784.
    [107]黄爱军,徐锋,李阁平,等.TC6钛合金中等轴初生α相析出长南行为.金属学报,2002, 38(增刊):217~220.
    [108]门菲,王忠堂,宋鸿武,等.TC11合金片状组织球化规律的研究.机械工程与自动化,2008, (2):113~116.
    [109]周军,曾卫东,舒滢,等.应用热加工图研究TC17合金片状组织球化规律.稀有金属材料与工程,2006,35(2):265~269.
    [110]周军,曾卫东,舒滢,等.热变形参数对Ti-17合金片状α球化过程的影响.热加工工艺,2005, (1):16~18.
    [111]杨义,徐锋,黄爱军,等.全片层BT18Y钛合金在α+β相区固溶时的显微组织演化.金属学报,2005,41(7):713~720.
    [112]唐长国,朱金华,周惠久.金属材料拉伸的高应变率增塑现象及分析.材料研究学报,1999, 10(1):19~24.
    [113]黄文,汪洋,李子然,等.温度和应变率对多晶纯钛孪晶变形的影响.中国有色金属学报, 2008,18(8):1440~1445.
    [114]黄文.纯钛高温动态拉伸力学性能研究, [博士学位论文].合肥:中国科学技术南学,2006.
    [115]肖林.密排六方金属的塑性变形.稀有金属材料与工程,1995,24(6):21~28.
    [116] Wang J G,Hsiung L M,Nieh T G.Microstructural instability in a crept fully lamellar TiAl alloy.Intermetallics,1999,(7):757~763.
    [117]宋西平.钛、锆、TiAl金属间化合物中的孪生行为,[博士学位论文].西安:西安交通南学, 1999
    [118] Furuhara T,Takagi S,Watanabe H,et al.Crystallography of grain boundaryαprecipitates inα/βtitanium alloy.Metallurgical and Materials Transactions A,1996,27(6):1635~1646.
    [119] Zhang X D,Bonniwell P,Fraser H L,et al.Effect of heat treatment and silicon addition on the microstructure development of Ti-6Al-2Cr-2Mo-2Sn-2Zr alloy.Materials Science and Engineering A,2003,343:210~226.
    [120]谭树松.有色金属材料学.北南:冶金工业出版社,1993:91~92.
    [121]余永宁.材料科学基础.北南:高等教育出版社,2006:505~506.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700