用户名: 密码: 验证码:
表面织构电解加工技术的基础研究与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究表明,表面织构技术是改善摩擦副表面摩擦学特性的有效手段。目前,表面织构已经在缸套、滑动轴承和机械密封等工程技术领域中获得了成功的应用。因此,低成本、高效率、高精度的表面织构加工技术已成为制造领域的研究热点。
     国内外研究学者提出了多种表面织构加工手段。电解加工(Electrochemical Machining, ECM)具有诸多优点,如:与工件材料的硬度无关,加工表面无热影响层等,因此,该技术引起了研究人员的关注。电解加工是利用工件阳极在电解液中发生阳极溶解的原理,将工件加工成形的一种制造技术。由于电解加工过程中,工件材料的减少过程以离子的形式进行,因此这种溶解去除方式使电解加工技术在微细制造领域有着巨大的发展潜力。
     本文主要针对特征尺度为数十微米至数百微米的金属表面织构加工技术,提出了表面织构电解加工技术。根据工具阴极与工件阳极的相对位置不同,本文提出了活动模板电解加工技术和电解转印技术。本文的主要内容包括以下几个方面:
     (1)提出全新的活动模板电解加工表面织构技术。该技术可以有效降低加工成本,提高加工效率和加工柔性。
     (2)建立活动模板电解加工表面织构的极间电场模型。利用有限元技术分析加工定域性,并对加工过程进行模拟,将数值分析及模拟结果用于指导试验研究。
     (3)开展活动模板电解加工表面织构技术研究。构建活动模板电解加工平面和曲面织构试验系统,研究了活动模板结构尺寸对表面织构形貌的影响。分析了表面织构随加工过程参数的变化,如电流密度,加工时间等。同时,试验研究了不同阳极工件材料加工后的表面织构形貌。(4)提出采用辅助阳极来提高活动模板电解加工技术的定域性,通过电场理论分析比较了无辅助阳极和有辅助阳极时工件阳极表面的电场分布规律,并通过试验验证辅助阳极可以有效地提高活动模板电解加工的定域性。
     (5)开展电解转印表面织构技术研究。试验研究了基于金属基底的SU-8光刻胶紫外光刻工艺的各个环节,利用优化的工艺措施,制备了高尺寸精度、轮廓清晰、无明显缺陷、与基底金属结合力强的工具阴极。基于电场模型分析工具阴极上胶膜尺寸及加工间隙对加工定域性的影响。同时,研究加工电源对表面织构形貌的影响。
     (6)考察研究表面织构技术对缸套-活塞环/活塞摩擦副摩擦学性能的影响,选择合适的活塞环/活塞片断作为试件,并采用活动模板电解技术在活塞环/活塞表面加工不同尺寸的表面织构。在往复式摩擦试验机上进行摩擦试验,试验结果表明,合理的活塞/活塞环表面织构具有良好的抗磨减摩效果。
It has been identified that the surface texture can improve tribological property. At present, it has been widely applied to many fields such as cylinder, journal bearing, and mechanical seal. Therefore, the processing of surface texturing with low cost, high efficiency and accuracy has become a research topic.
     Various techniques about surface texturing are employed. Compared to the other processing methods, electrochemical machining (ECM) is popular for its advantages in many applications such as its regardless of material hardness and no heat affected layer. ECM is a process of the anodic electrochemical dissolution of the metallic materials in an electrolytic medium utilizing the electrochemical reaction. Due to the tiny size of metal ion, ECM has a tremendous potential in the micro-manufacturing field.
     To fabricate well-defined surface texture in tens of microns to hundreds of microns, electrochemical micromachining of surface texturing is presented. According to the relative position of the tool cathode, the new technology can be classified as through movable mask electrochemical machining and electrochemical pattern transfer, and relative research has been carried out. The dissertation consists of several sections:
     (1) Through movable mask electrochemical machining of surface texturing is proposed. Compared with the traditional through mask electrochemical machining(TMEMM), the modified TMEMM can reduce cost,improve machining efficiency and flexibility .
     (2) The model of current distribution between the anode and cathode through the electrochemical machining process is build. Finite Element Method is then used to solve the model. The machining localization is analyzed and numerical simulation is carried out for better understanding the process and obtaining good processing parameters.
     (3) The key factors influencing the electrochemical machining of surface texturing process through movable mask have been studied experimentally. The experimental system of electrochemical machining is developed. The effects of the dimension of the movable mask and the machining parameters such as current density and the machining time on the surface texturing are investigated experimentally. The appearance of the surface texturing on different anode material surfaces are generated.
     (4) The auxiliary anode is consisted in the mask of the modified TMEMM to improve the localization of the surface texture. Numerical simulation of the current density in the interelectrode gap is verified the proposed method theoretically and the effect of the auxiliary anode on the machining localization on the aluminum-alloy surface is investigated experimentally. The experimental results indicate that the machining localization is significantly improved by the auxiliary anode successfully.
     (5) The key factors influencing the electrochemical pattern transfer of surface texturing have been studied theoretically and experimentally. The parameters of UV lithography process have been studied to pattern SU-8 photoresist spincoated on the cathode surface. Using optimized process parameters, some SU-8 moulds with good definition and topography, fewer defects and excellent adhesion to the metal substrate have been generated successfully. The mathematical model in the interelectrode gap is carried out and the influence of different interelectrode gaps on the electric field distribution is analyzed by the finite element method. The effects of the interelectrode gap and the pulse power parameters on the etch factor of the micro-dimple are investigated.
     (6) To verify the effect of surface texturing on the piston/piston ring samples, the friction tests are carried out using a reciprocating friction tester. According to the contact between the piston/piston rings and cylinder liner, friction tests are carried out for a variety of surface texture with different density and dimensions. The results of friction experiments show that the friction coefficient of the surface with appropriate surface texture is obviously lower than that smooth surface.
引文
[1]谢尔格M,戈尔博S.微/纳米生物摩擦学:大自然的选择[M].北京:机械工业出版社, 2004. 65
    [2]任露泉,王云鹏,李建桥等.科学通报[J], 1997, 42 (17) : 1887-1889
    [3] Ball P. Lifes lessons in design[J]. Nature, 2001, 409(6818): 413-416
    [4]任露泉,佟金,李建桥,等.生物脱附与机械仿生——多学科交叉新技术领域[J].中国机械工程, 1999, 10(9): 984-986
    [5] Tong J, Arnell R D, Ren L Q. Drysliding wear behaviorof bamboo[J]. Wear, 1998, 221(2): 37-46
    [6] Tong J, Ma Y H, Ren L Q. Terminological characteristics of pangolin scale sin dry sliding[J]. Journal of Materials Science Letters, 2000, 19(5): 529-532
    [7]佟金,马云海,任露泉.天然生物材料及其摩擦学[J].摩擦学学报, 2001, 21(4): 315-316
    [8]陈秉聪,任露泉,徐晓波,等.典型动物体表形态及减粘脱土初步研究[J].农业工程学报, 1990 (2): 1~6
    [9]路晓,管自生.自清洁仿生表面的润湿性及其制备的进展[J].材料导报, 2006, 20(6):63-66
    [10] Stegmaier T, Arnim V V, Linke M, et al.纤维基材料的仿生学研究动向[J].国际纺织导报. 2007, 6: 10-14
    [11]温诗铸.世纪回顾与展望——摩擦学研究的发展趋势[J].机械工程学报, 2000,6(6):1-6
    [12] Barthlott W, Neinhuis C. Purity of the sacred lotus, or escape from contamination in biological surfaces [J]. Planta, 1997 , 202(1) :1-8
    [13]江雷.从自然到仿生的超疏水纳米界面材料[J].科技导报, 2005, 23(2):4-8
    [14]丛茜,任露泉,吴连奎.几何非光滑生物体表形态的分类学研究[J].农业工程学报, 1992, 8(2): 7 -12
    [15] Bharat B.摩擦学导论[M].葛世荣,译.北京:机械工业出版社, 2007
    [16]韩志武,任露泉,刘祖斌.激光织构仿生非光滑表面抗磨性能研究[J].摩擦学学报, 2004, 24 (4): 289-293
    [17]任露泉,王再宙,韩志武.仿生非光滑表面滑动摩擦磨损试验研究[J].农业机械学报, 2003, 34 (2): 289-293
    [18]丁淳.表面织构(surface texture).机械工业标准化与质量, 2006, (7): 35
    [19]林东祥,赵玉涛,施秋萍.仿生结构复合材料研究现状[J].材料导报, 2005, 19(6):28-31
    [20]吴明康.仿鲨鱼皮泳衣技术的发展与应用前景[J].纺织科技进展. 2009, (2): 90-91
    [21]刘博,姜鹏,李旭朝,等.鲨鱼盾鳞肋条结构的减阻仿生研究进展[J].材料导报, 2008, (7) :14 - 17
    [22] Bechert D W, Bruse M, Hage W. Experiments with three-dimensional riblets as an dealized model of shark skin[J]. Experiments in Fluids, 2000, (28): 403~412
    [23]韩鑫,张德远.鲨鱼皮复制工艺研究[J].中国科学(E辑:技术科学),2008 , (1) : 9 - 15
    [24]孙久荣,戴振东.非光滑表面仿生学(Ⅰ) [J].自然科学进展, 2008, 18(3): 241-246
    [25]孙久荣,戴振东.非光滑表面仿生学(Ⅱ) [J].自然科学进展, 2008, 18(7): 727-733
    [26]刘维民,薛群基.摩擦学研究及发展趋势[J].中国机械工程, 2000, 11(1-2): 86~89
    [27]温诗铸,黄平.摩擦学原理(第三版) [M].清华大学出版社, 2008
    [28]张嗣伟.无所不在的摩擦大有可为的摩擦学.中国教育报, 2005.03. 07
    [29] Tung S C, McMillan M L. Automotive tribology overview of current advances and challenges for the future[J]. Tribology International, 2004, 37(7) : 517–536
    [30] Priest M, Taylor C M. Automobile engine tribology-approaching the surface[J]. Wear, 2000, 241(2):193-203
    [31] Nakada M. Trends in engine technology and tribology[J]. Tribol Int, 1994, 27(1): 3-8
    [32] Ogihara H, Technology for Reducing Engine Rubbing Resistance by Means of Surface Improvement [J], Honda R&D Technical Review, 2000, 12(2): 93-98
    [33] Ronen A, Etsion I, Kligerman Y. Friction-reducing surface-texturing in reciprocating automotive components[J]. Tribology Transactions, 2001. 44(3): 359-366
    [34] Ryk G, Etsion I. Testing piston rings with partial laser surface texturing for fiction reduction [J]. Wear, 2006, 261(7-8): 792-796
    [35]顾永泉.机械密封实用技术[M].北京:机械工业出版社, 1992
    [36]王汝美.实用机械密封技术问答[M].北京:中国石化出版社, 1995
    [37] Guo Z G, Liu W M. Tribological behavior of molybdenum coordination compound without sufur and phosphorus as oil additive for steel-steel Contact [J]. Tribology, 2006, 26(2): 97-101
    [38] Wong H C, Umehara N, Kato K. The effect of surface roughness on friction of ceramics sliding in water [J]. Wear, 1998, 218(2):237-243
    [39]万轶.表面织构与合金化改善密封材料摩擦学性能研究[D].南京:南京理工大学,2008
    [40] Bruzzone A A G., Costa H L, Lonardo P M, et al. Advances in engineered surfaces for functionalperformance[J]. CIRP Annals - Manufacturing Technology, 2008, 57(2) :750–769
    [41] Zhou L, Kato K, G Vurens, et al. The effect of slider surface texture on flyability and lubricantmigration under nearcontact conditions [J]. Tribology International 2003, 36(4-6): 269-277
    [42] Menezes P L, Kishore, Kailas S V. Influence of surface texture on coefficient of friction and transfer layer formation during sliding of pure magnesium pin on 080 M40 ( EN8) steel plate [J ]. Wear, 2006, 261(5-6): 578 - 591
    [43]邓宝清,任露泉,苏岩,等.模拟活塞缸套摩擦副的仿生非光滑表面的摩擦学研究[ J ].吉林大学学报, 2004,34 (1) : 79 - 84
    [44] Galda L, Pawlus P, Sep J. Dimples shape and distribution effect on characteristics of Stribeck curve[J]. Tribology International, 2009,42(10): 1505–1512
    [45] Wakuda M, Yamauchi Y, Kanzaki S, et al. Effect of surface texturing on friction reduction between ceramic and steel materials under lubricated sliding contact[J]. Wear , 2003, 254 (3-4) :356–363
    [46]历建全,朱华.表面织构及其对摩擦学性能的影响[J].润滑与密封, 2009, 34(2): 94-97
    [47]王晓雷,王静秋,韩文非.边界润滑条件下表面微细织构减摩特性的研究[J].润滑与密封. 2007, 32(12): 36-39
    [48]宋起飞,周宏,李跃,等.仿生非光滑表面铸铁材料的常温摩擦磨损性能[J].摩擦学学报, 2006, 26 (1): 24-27
    [49]杨卓娟,韩志武,任露泉.激光处理凹坑形仿生非光滑表面试件的高温摩擦磨损特性研究[ J ].摩擦学学报, 2005, 25(4) : 374 - 377
    [50] Andersson P, Koskinen J, VarjusS, et al. Microlubrication effect by laser-textured steel surfaces [J]. Wear, 2007, 262: 369 - 379
    [51] Pettersson U, Jacobson S. Influence of surface texture on boundary lubricated sliding contacts [J]. Tribology International, 2003, 36(11): 857 - 864
    [52]巴瑞璋,张晓兵.激光加工密集群孔技术[J].航空制造技术, 2003, (7): 68-71
    [53]杨洗陈,汪刚,赵友博,等.飞秒激光制备阵列孔金属微滤膜[J].中国激光,34(8): 1155-1158
    [54]万轶,熊党生.激光表面织构化改善摩擦学性能的研究进展[J].摩擦学学报, 2006, 26(6):603-607
    [55]钱振华.激光造型技术在摩擦副表面处理中的应用[J]..表面技术, 2008, 37(1): 86~87
    [56] Petkovsek R, Babnik A, Diaci J. Optodynamic monitoring of the laser drilling of through-holes in glass ampoules[J]. Measurement Science & Technology, 2006,17(10): 2828~2834
    [57] Eppes T A, Milanovic I M, Shetty D. Laser percussion drilling modeling utility[J]. Journal of Laser Applications, 2009, 21(2): 102~109
    [58] Cheng J, Perrie W, Sharp M, et al. Single-pulse drilling study on Au, Al and Ti alloy by using a picosecond laser[J]. Applied Physics A-Materials Science & Processing, 2009, 95(3): 739~746
    [59] Kacar E, Mutlu M, Akman E, et al. Characterization of the drilling alumina ceramic using Nd: YAG pulsed laser[J]. Journal of Mateirals Processing Technology, 2009, 209(4): 2008-2014
    [60] Wang X D, Michalowski A, Walter D, et al. Laser drilling of stainless steel with nanosecond double-pulse[J]. Optics and Laser Technology, 2009, 41(2): 148~153
    [61] Yu M R, Kim H S, Blick R H. Laser drilling of nano-pores in sandwiched thin glass membranes [J]. Optics Express, 2009, 17(12): 10044~10049
    [62] Schreck S, Zum G, K.-H. Laser-assisted structuring of ceramic and steel surfaces for improving tribological properties[J]. Applied Surface Science 2005, 247(1-4): 616–622
    [63] Voevodin A A, Zabinski J S. Laser surface texturing for adaptive solid lubrication[J]. Wear, 2006, 261 (11-12) 1285–1292
    [64] Wang X L, Kato K, Adachi K, et al, The effect of laser texturing of Sic surface on the critical load for the transition of water lubrication mode from hydrodynamic to mixed[J], Tribology International, 2001, 34 (10): 703-711
    [65] Etsion I, Halperin G, A laser Surface Textured Hydrostatic Mechanical Seal[J]. Tribology Transactions, 2002, 45(3): 430~434
    [66]樊晶明,王成勇,王军.微磨料空气射流加工技术的发展[J].金刚石与磨料磨具工程, 2005, (1) : 25 - 30, 35
    [67] Pawlowski A G, Belloy E, Sayah A, et al. Powder Blasting Patterning Technology for Microfabrication of Complex Suspended Structures in Glass[ J ]. Microelectronic Engineering, 2003, 67-8: 557 - 565
    [68]冯益华.新型陶瓷喷砂嘴的研究开发及其冲蚀磨损机理研究[D ].济南:山东大学. 2003.
    [69] Slikkerveer P J, Bouten, P C P. High quality mechanical etching of brittle materials by powder blasting [J]. Sensors and Actuators , 2000 , 85(1-3): 296-303.
    [70] Belloy E, Sayah A, Gijs M A M. Oblique powder blasting for three-dimensional micromachining of brittle material[J]. Sensors and Actuators, 2001, 92: 358-363.
    [71]阎秋生.微磨料气射流加工的原理和应用.新技术新工艺[J].2004, (4):20-22
    [72]任延岿,吕玉山,孙建章.微磨料气射流加工机理实验研究[J].沈阳理工大学学报, 2007, 26(5): 6-9
    [73]樊晶明,王成勇,王军等.微磨料空气射流加工特性研究[J].中国机械工程, 2008, (5): 584-589
    [74]邱燕飞,王成勇,宋月贤.微磨料空气射流加工玻璃微流道结构研究[J].金刚石与磨料磨具工程, 2009, 171(3): 32-37
    [75] Wakuda M , Yamauchi Y , Kanzaki S , et al. Effect of surface texturing on friction reduction between ceramic and steel materials under lubricated sliding contact[J].Wear, 2003, 254(3-4): 356–363
    [76] Wakuda M, Yamauchi Y, Kanzaki S. Material response to particle impact during abrasive jet machining of alumina ceramics[J]. Journal of Materials Processing Technology, 2003, 132(1-3) 177–183
    [77] Ghobeity A, Getu H, Krajac T, et al. Process repeatability in abrasive jet micro-machining[J]. Journal of Materials Processing Technology, 2007, 190(1-3): 51–60
    [78] Ghobeity A, Krajac T, Burzynski T. Surface evolution models in abrasive jet micromachining[J]. Wear, 2008,264(3-4): 185–198
    [79] Pham D T, Dimov S S, Bigot S, et al. Micro-EDM recent developments and research issues[J]. Journal of Materials Processing Technology, 2004, 149 (1-3): 50-57
    [80] Beltrami I, Joseph C, Clavel R, et al. Micro- and nanoelectric-discharge machining[J]. Journal of Materials Processing Technology, 2004, 149 (1-3): 263-265
    [81]王振龙,赵万生,狄士春,等.微细电火花加工技术的研究进展[J].中国机械工程, 2002, 13(10): 894-899
    [82]余祖元,郭东明,贾振元.微细电火花加工技术[J].中国科技论文在线, 2007, 2(3): 214-220
    [83]赵万生,李志勇,王振龙,等.微三维结构电火花铣削关键技术研究[J].微细加工技术, 2003, (3): 49-55
    [84]张勇,王振龙,李志勇,等.微细电火花加工装置关键技术研究[J].机械工程学报, 2004, 40(9): 175-179
    [85]李文卓,刘加光,于云霞.微细电火加工机床关键技术[J].机械工程学报, 2007, 43(1): 170-175
    [86]张勇,王振龙,胡富强,等.微细电火花加工装置的设计与应用[J].微细加工技术, 2004, (2): 55-60
    [87]霍孟友,张建华,艾兴.电火花放电加工间隙状态检测方法综述[J].电加工与模具, 2003, (3): 17-20
    [88]狄士春,于滨,迟关心,等.基于异形孔等效放电面积的微细电火花加工技术[J].中国机械工程, 2003, 14(22): 1970-1973
    [89]李刚.基于直线电机的微细电火花加工系统及其关键技术研究[D].哈尔滨:哈尔滨工业大学, 2007
    [90]杨志伟.微凸起和微坑结构的特种加工成形技术研究[D].南京:南京航空航天大学, 2007
    [91]王建业,徐家文.电解加工原理和应用[M].北京:国防工业出版社, 2001
    [92]刘晋春,赵家齐,赵万生.特种加工(第四版) [M].北京:机械工业出版, 2004
    [93] McGeough J A. Principle of Electrochemical Machining[M]. London: Chapman & Hall, 1974.
    [94] Wilson J. Practice and theory of electrochemical machining[M]. New York: Wiley Interscience, 1971
    [95] McGeough J A, Pajak P T, De Silva A K M, Harrison D K. Recent research and developments in electrochemical machining[J]. International Journal of Electrical Machining, 2003, (8): 1~14.
    [96] Natsu W, Ikeda T, Kunieda M. Generating complicated surface with electrolyte jet machining[J]. Precision Engineering 2007, 31(1):33–39
    [97] Xiong Lu, Yang Leng, Electrochemical micromachining of titanium surfaces for biomedical applications[J].Journal of Materials Processing Technology,2005, 169(2): 173–178
    [98] Madore C, Piotrowski O, Landolt D, Through-mask electrochemical micromachining of titanium[J], J. Electrochem. Soc. 1999, 146(7): 2526–2532
    [99] Kern P, Veh J, Michler J.New developments in through-mask electrochemical micromachining of titanium[J]. J. Micromech.Microeng. 2007, 17(6) :1168–1177
    [100]West A C, Madore C, Matlosz M, Landolt D. Shape changes during through-mask electrochemical micromaching of thin metal films[J]. Electrochem.Soc, 1992, 139(2): 499-506
    [101]Jiang L M, Li W, Attia A. A potential method for electrochemical micromachining of titanium alloy Ti6Al4V. J Appl Electrochem, 2008, 38(): 785–791
    [102]Bhattacharyya B, Munda J. Experimental investigation into electrochemical micromachining (EMM) process[J]. Journal of Materials Processing Technology, 2003, 140(1-3): 287-291
    [103]Kenney J A, Hwang G S, Shin W. Two-dimensional computational model for electrochemicalmicromachining with ultrashort voltage pulses[J]. Applied Physics Letters, 2004, 84(19): 3774-3776
    [104]Kozak J, Rajurkar K P, Makkar Y. Study of Pulse Electrochemical Micro Machining[J]. Society of Manufacturing Engineers,2003, (4):1-6
    [105]Kozak J, Rajurkar K P , Makkar Y. Selected problems of micro-electrochemical machining [J].Journal of Materials Processing Technology, 2004, 149 (1-3) : 426-431
    [106]Shenoy R V , Datta M, Romankiw L T. Investigation of island formation during through-mask electrochemical micromaching[J]. J. Electrochem.Soc, 1996, 143(7): 2305-2309
    [107]Rosset E, Datta M, Landolt D. Electrochemical dissolution of stainless steels in flow channel cells with and without photoresist masks[J]. Journal of applied electrochemistry, 1990, 20(1): 69-76
    [108]Raffelstetter P, Mollay B. On the modeling of shape evolution in through-mask electrochemical micromachining of complex patterned substrates. Electrochimica Acta, 2010, 55(6): 2149–2157
    [109]Madore C, Piotrowski O, Landolt D, Through-mask electrochemical micromachining of titanium[J], J. Electrochem. Soc, 1999, 146(7): 2526–2532
    [110]West A C, Madore C, Matlosz M, et al. Shape Change during Through-mask electrochemical micromachining of Thin Metal Films[J].J.Electrochem.Soc, 1992, 139(2): 499-506
    [111]Rosset E, Landolt D. Experimental investigation of shape changes in electrochemical micromachining through photoresist masks[J]. Precision engineering, 1989, 11(2): 79-82
    [112]Madore C, Landolt D. Electrochemical micromachining of controlled topographies on titanium for biological applications. J. Micromech. Microeng. 1997, 7(4): 270–275
    [113]Chauvy P -F, Hoffmann P, Landolt D. Electrochemical micromachining of titanium using laser oxide film lithography: excimer laser irradiation of anodic oxide[J]. Applied Surface Science 2003, 211(1-4): 113–127
    [114]Landolt D, Chauvy P -F, Zinger O. Electrochemical micromachining, polishing and surface structuring of metals: fundamental aspects and new developments. Electrochimica Acta, 2003, 48(20-22): 3185-/3201
    [115]Sch?nenberger I, Roy S. Microscale pattern transfer without photolithography of substrates[J]. Electrochimica Acta, 2005,51(5):809-810
    [116]Nouraeiz S, RoyS.Electrochemical Process for Micropattern Transfer Without Photolithography: A Modeling Analysis[J]. Journal of The Electrochemical Society, 2008, 155 (2): 97-103
    [117]Costa H L, Hutchings I M. Development of a maskless electrochemical texturing method[J]. Journal of Materials Processing Technology, 2009, 209(8): 3869-3878
    [118]Costa H L, Hutchings I M. Effects of die surface patterning on lubrication in strip drawing[J]. Journal of materials processing technology, 2009, 209(3): 1175–1180
    [119]郑瑞庭.浅淡松孔镀铬[J].电镀与环保, 2004, 24(3):37-38
    [120]葛郢汉.活塞的材料分析[J].现代机械,2006(5): 52~54
    [121]刘达利等,新型铝活塞[D].国防工业出版社,1999
    [122]Shaw J M, Gelorme J D, N C LaBianca, et al. Negative photoresists for optical lithography[J]. IBM Journal of Research and Development, 1997 , (41): 81-94
    [123]Lee K Y, LaBianca N, Rishton S A, et al. Micromachining applications of a high resolution ultrathick photoresist[J], J Vac Sci Technol, 1995, (13): 3012-3016
    [124]Harshavardhan C. Shinde. Development of Microfabricated Micro-Well Structures Using SU-8(50) Negative Photoresist[D]. Louisville: University of Louisville, 1998
    [125]张立国,陈迪,杨帆,等.SU-8胶光刻工艺研究[J].光学精密工程, 2002,10(3):266-268
    [126]Zhana J, Tan L K, Gong Q H. Characterization of the polymerization of SU-8 photoresist and its application in electro- mechanical systems[J]. Polymer Testing, 2001, 20: 693-701
    [127]Emslie A.G., Bonner F T, Peck L G. Flow of a Viscous Liquid on a Rotating Disk[J]. Journal of Applied Physics, 1958, 29:858–862
    [128]Acrivos A, Shah M J, Petersen E E. On the Flow of a Non-Newtonian Liquid on a Rotating Disk[J]. Journal of Applied Physics, 1960, 31:963-968
    [129]Dylan E. Haas and Dunbar P. Birnie III, Real Time Monitoring of Striation Development During Spin-on-glass Deposition [C]. Proceedings of Am. Ceramic. Soc. Symposium on Sol-Gel Commercialization and Application, May 2000
    [130]明平美. UV-LIGA-微细电火花加工组合制造技术基础研究[D].南京:南京航空航天大学, 2006
    [131]郑晓虎.基于平面线圈的微传感器及其制造技术研究[D].南京:南京航空航天大学, 2007
    [132]曾永彬.屏蔽模板随动式微细电铸技术的基础研究[D].南京:南京航空航天大学, 2008
    [133]袁明超.表面织构对活塞环/缸套摩擦副摩擦学性能的影响[D].南京:南京航空航天大学, 2010
    [134]刘一静.活塞裙部减摩织构的研究[D].南京:南京航空航天大学, 2010
    [135]吴跃新.内燃机活塞环-缸套材料摩擦磨损性能研究[D].昆明:昆明理工大学, 2003
    [136]李伯奎.气缸套平台珩磨网纹片状覆盖缺陷的产生原因及预防[J].工具技术, 2008, 12 (42): 55~57
    [137]张云电,叶雪明.薄壁缸套工作表面的储油结构[J].机电工程, 1999, (6): 47-48
    [138]Ogihara H. Technology for Reducing Engine Rubbing Resistance by Means of Surface Improvement [J], Honda R&D Technical Review, 2000, 12(2): 93-98

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700