用户名: 密码: 验证码:
基于电解电火花效应的硬脆绝缘材料微加工技术
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微电子机械系统(MEMs)己在通信、汽车、生物医学、可再生能源、航空航天、智能武器等领域发挥了重要的作用。玻璃等MEMs绝缘硬脆材料具有高硬夏、高脆性、耐磨损、耐腐蚀、绝缘、透明以及生物相容性等优良属性,然而它们的微加工却十分困难。电解电火花加工(EcDM)是一种针对玻璃、石英、陶瓷等绝缘硬脆材料的微加工方法。它加工效率高、柔性好、成本低,但在精夏、深夏等方面还未达到大规模工业应用的要求。为此,本文提出一系列基于电解电火花效应的绝缘材料微加工技术。本文首先探讨了电解电火花效应的特性和机理。其次围绕电解电火花效应,建立了电解电火花加工的数学模型。最后提出并试验研究了电解电火花热辅助机械加工、电解电火花振动冲击加工和用于微磨削加工的电解电火花砂轮修整的工艺和机理。
     在电解电火花效应的特性和机理的研究中,揭示了电解电火花效应的静态电压一电流特性,指出是否达到临界电压直接决定电解电火花效应的发生。着重观察了放电区间的动态特性,发现放电频率和脉冲峰值电流符合泊松分布。针对气层的形成机理,建立了气泡层和气层的电学模型,引入渗流理论解释气泡层向气层转化的机制。
     在电解电火花加工数学建模的研究中,首先建立模型假设,阐述加工机理,之后推导出模型公式,再用有限元方法仿真得到单火花放电下的材料去除量。通过试验获取模型参数并验证模型的有效性,模型预测结果与试验结果基本吻合。开展了基于模型的电解电火花加工工艺和机理研究,发现在低电压时的材料去除方式主要是化学腐蚀,随着电压的升高热蚀去除的比例增大。本模型的特点包括:利用高斯热源代替矩形热源更能准确地描述单火花热源、用当量熔点作为材料去除准则能把复杂的热一化学耦合问题简化为热传导问题、用指数衰减函数来描述加工域效应。
     在电解电火花热辅助机械加工的研究中,首先阐述了加工原理,再用数学语言描述了热辅助加工过程。随后将新方法与普通电解电火花加工的效果进行对比,试验结果表明,电解电火花热辅助机械加工提高了放电域的加工效率,减小了尺寸误差和圆夏误差。研究了工艺参数对加工结果的影响,发现加工效率随电压的增大而升高,但加工精夏随之下降。在达到临界深夏之前,加工效率随工具电极转速的升高而升高。使用扫描电镜观察了加工后工件表面,证明材料去除机理是热辅助机械加工、热辅助化学加工和热熔化的共同作用,其中热辅助机械加工是主要的材料去除方式。
     在电解电火花振动冲击加工的研究中,首先阐述了加工原理,然后将新方法与普通电解电火花加工的效果进行对比,试验结果表明,电解电火花振动冲击加工能提高加工深夏和流体力学域的加工效率。研究了工艺参数对加工结果的影响,发现加工深夏随振动幅值线性增大。在15—150 Hz范围内,加工深夏略有增加;然而在150—500Hz的过程中,加工深夏由30¨o um跃升到550 um。使用扫描电镜观察了加工后工件表面,证明材料去除机理是热辅助机械加工、热辅助化学加工和热熔化的共同作用。在加工深夏较大时,主要材料去除方式为机械冲击。
     在电解电火花砂轮修整的研究中,将电解电火花效应应用到微磨削加工中的辅助砂轮修磨工艺中,利用了电解电火花加工中的电极损耗来修整砂轮。首先阐述了加工原理,然后对修整过程进行理论分析。分析得出,修整机理是火花产生的局部高温将材料熔化和电化学腐蚀。通过对微磨削砂轮修整前后砂轮表面形貌、法向磨削力以及工件表面粗糙夏的对比发现,修整后砂轮上的磨粒明显暴露出来,且磨粒没有受到破坏;法向磨削力和工件表面粗糙度都降低了50%。研究了工艺参数对修整效果的影响,发现电压和电解液浓夏是控制修整效果的关键参数,最佳条件是32 v的电压和30%的电解液浓夏。
Micro-electromechanical systems (MEMS) have been playing an important role in electronics, automotives, biomedical, renewable energy, aviation and smart weapons. Non-conductive hard brittle MEMS materials such as glass have many favorable properties such as high hardness, high brittleness, wear resistance, chemical inertness, electrical insulation, optical transparency and bio-compatibility. However, they are hard to process in micromachining. Electrochemical discharge machining (ECDM) is a micromachining process for non-conductive materials like glass, quartz and some ceramics. It is featured by high efficiency, high flexibility and low cost. Nevertheless, it has not been put to large-scale industrial applications due to its low machining accuracy and machinable depth. To solve the problems, we propose a series of micromachining techniques for insulating hard brittle materials based on electrochemical discharge effect. In this dissertation, the physics and chemistry of electrochemical discharge effect was discussed; secondly, a new mathematical model for ECDM was developed; finally, experimental investigations were carried out on thermo-assisted mechanical machining using electrochemical discharge effect, electrochemical discharge vibration and shock machining and electrochemical discharge grinding wheel dressing to understand the processes and mechanisms.
     In the study of physics and chemistry of electrochemical discharge effect, the static voltage–current characteristics were discovered, and it was pointed out that the onset of the effect is determined by the critical voltage. Dynamic characteristics in discharge regime was emphasized, it was found that discharge frequency and peak current follow Poisson distributions. Regarding gas film formation mechanism, an electrical model of the bubble layer and gas film were set up, and percolation theory was employed to explain the transformation mechanism from bubble layer to gas film.
     In the study of mathematical modeling for ECDM, the model was formulated through mathematical deduction after establishing appropriate assumptions and machining mechanism. Secondly, finite element method was used to calculate the material removal subjected to a single spark. Thirdly, experiments were conducted to obtain the critical parameters and validate the model; the model predictions were basically consistent with the experimental results. The effects of process parameters and machining mechanism were studied using the model, and it was found out that the material removal mechanism at low applied voltages is mainly chemical dissolution, and the contribution of thermal erosion increases with the increase of applied voltage. The features of this model include the rectangular distribution replaced with Gaussian distribution to model the heat source induced by one spark for high accuracy, the use of equivalent temperature as the material removal criterion to transform the complex coupled thermo-chemical problem to a simple heat conduction problem, and the exponential decay function used to model the regime effect.
     In the study of thermo-assisted mechanical machining using electrochemical discharge effect, the machining principle was introduced; the thermo-assisted machining process was described using mathematical language. This method was compared with conventional ECDM; the experimental results showed that thermo-assisted mechanical machining using electrochemical discharge effect increases machining efficiency in discharge regime, and reduce the dimensional error as well as roundness error. The effects of process parameters were investigated. It was found out that the machining efficiency increases with the applied voltage although the machining accuracy decreases. The machining efficiency increases with the tool rotation rate before it reaches a critical depth. The machined surface was examined using a scanning electron microscope (SEM); it was proved that the machining mechanism is a hybrid effect of thermo-assisted mechanical machining, thermo-assisted chemical machining and thermal erosion. Among them, thermo-assisted mechanical machining is predominant.
     In the study of electrochemical discharge vibration and shock machining, the machining principle was introduced. This method was compared with conventional ECDM; the experimental results showed that electrochemical discharge vibration and shock machining increases the machining efficiency in hydrodynamic regime. The effects of process parameters were investigated. It was demonstrated that the machining efficiency increases linearly with the vibration amplitude. The machined depth slowly increases in the range of 15–150 Hz; however, it increases from 300μm to 550μm in the range of 150–500 Hz. The machined surface was examined using a scanning electron microscope (SEM); it was proved that the machining mechanism is a hybrid effect of thermo-assisted mechanical machining, thermo-assisted chemical machining and thermal erosion. Thermo-assisted mechanical machining is predominant at high machining depths.
     In the study of electrochemical discharge dressing (ECDD), electrochemical discharge effect is applied to auxiliary grinding wheel conditioning in micro-grinding, and the dressing takes advantage of the tool wear in ECDM. The principle of ECDD was introduced, and the dressing process was analyzed. The analysis results showed that the dressing mechanism is the high local temperature caused by the sparks and electrochemical erosion. Through the comparison of grinding face morphology, grinding force and workpiece surface roughness before and after dressing, it was shown that the abrasives were exposed without damage after dressing; normal grinding force and surface roughness of the workpiece were reduced by 50%. The effect of process parameters was investigated, and it was discovered that the applied voltage and electrolyte concentration are two key parameters in the process. The optimal condition was founded to be the applied voltage of 32 V and electrolyte concentration of 30 wt. %.
引文
[1] T. Masuzawa. "State of the art of micromachining." Cirp Annals 2000: Manufacturing Technology, Vol 49/2/2000.473-488, 2000.
    [2] Gabriel M. Rebeiz. RF MEMS : theory, design, and technology. Hoboken, N.J.: Wiley-Interscience. 2003.
    [3] Norio Taniguchi. "Current Status in, and Future Trends of, Ultraprecision Machining and Ultrafine Materials Processing." CIRP Annals - Manufacturing Technology. 32(2): 573-582, 1983.
    [4] B. Ziaie, A. Baldi, M. Lei, Y. D. Gu, R. A. Siegel. "Hard and soft micromachining for BioMEMS: review of techniques and examples of applications in microfluidics and drug delivery." Advanced Drug Delivery Reviews. 56(2): 145-172, Feb 10 2004.
    [5] D. Jed Harrison, Karl Fluri, Kurt Seiler, Zhonghui Fan, Carlo S. Effenhauser, Andreas Manz. "Micromachining a Miniaturized Capillary Electrophoresis-Based Chemical Analysis System on a Chip." Science 261(5123): 895-897, August 1993.
    [6] E. S. Lee, D. Howard, E. Liang, S. D. Collins, R. L. Smith. "Removable tubing interconnects for glass-based micro-fluidic systems made using ECDM." Journal of Micromechanics and Microengineering. 14(4): 535-541, Apr 2004.
    [7] K. P. Rajurkar, G. Levy, A. Malshe, M. M. Sundaram, J. McGeough, X. Hu, R. Resnick, A. DeSilva. "Micro and nano machining by electro-physical and chemical processes." Cirp Annals-Manufacturing Technology. 55(2): 643-666, 2006.
    [8] R. Dixon. iSuppli:MEMS汽车传感器将在2010年出现短期反弹. Available:
    [9] T Rogers,J Kowal”Selection of Glass,Anodic Bonding Conditions and Material Compatibility for Silicon—Glass Capacitive Sensors”Sensors and Acmaors a—Physical 46(1-3):113—120,Jan—Feb 1995
    [10] J Feng,B Kim,J Ni”Modeling of Cermnic Microgridning by Cohesive Zone Based Finite Element Method”Proceedings of the Asme International MamuNcturing Science and Engineering Conference.Vol 2 417—427.2009
    [11] K H Ho,S T Newman”State of the art electrical discharge machining(EDM)”International Journal ofMachine Tools&Manufacture 43(13):1287—1300,Oct 2003
    [12] M Kunieda,B Lauwers,K P Rajurkax,B M Schumacher.”Advancing EDM through fundmnental insight into the process”Cirp Annals—Manufacturing Technology.54(2):599—622,2005
    [13]李磊,顾琳,赵万生”集束电极电火花加工工艺”上海交通大学学报43(1):30—37,Jan 2009
    [14]高清,张勤河,张建华”混粉准干式电火花加工试验研究”机械工程学报45(11):169—175,NOV.2009
    [15] B BhaRacharyya,J Munda,M Malapati”Advancement in electrochemical micro—machining”International Journal of Machine Tools&Manufacture 44(15):1577—1589.Dec 2004
    [16]王维,朱荻,曲宁松,黄绍服,房晓龙”管电极电解加工工艺过程稳定性研究”机械工程学报46(11):179—184,Jun 2010
    [17]王少华,朱荻,曾永彬,朱兵”线电极徽幅振动电解线切割研究”机械工程学报46(13):172—178,July 2010
    [18]刘永红,于丽丽,李小朋,纪仁杰”非导电工程陶瓷电火花磨削技术”机械工程学报44(8):132—136,Aug 2008
    [19] Y H Liu,R J Ji,X R Li,L L Yu,H F ZhaJng,e Y Li”Effect ofmachiningfluid on the process performance of electric discharge milling of insulating A1203 cermnic”International Journal ofMachine Tools&Manufacture 48(9):1030—1035,Jul 2008
    [20] N Mohri,Y Fumzawa,T Tani,T Sata”Some considerations to machining characteristics of insulating ceramics—Towards practical use in industry.”Cirp Annals—MamuNcturing Technology 51(1):161—164,2002
    [21]王建业,罗干英”电解电火花复合加工的发展”电加工(5):15—19,1997
    [22]郭媛媛”TiB一2/Cu电极电解电火花复合加工性能实验研究”[硕士]学位论文,哈尔滨工业大学2008
    [23] T B Thoe,D K Aspinwall,M L H Wise”Review on ultrasonic machining”International Journal ofMachine Tools&Manufacture 38(4):239—255,Apr 1998
    [24] M Masuda,K Sugioka,Y Cheng,N Aoki,M Kawachi,K Shihoyama,K Toyoda,H HelvajiaJa.K Midorikawa”3-D microstructuring inside photosensitive glass by femtosecond laser excitation”Applied Physics a—Materials Science&Processing 76f5、:857—860,Mar 2003
    [25] A K Dubey,V Yadava”Laser beam machining—A review.”International Journal of Machine Tools&Manufacture 48(6):609—628,M|dy 2008
    [26] A N Samant,N B Dahotre”Laser machining of s~uctural ceramics—A review.”Journalof the European Ceramic Society. 29(6): 969-993, Apr 2009.
    [27] Y. Jia, C. J. Wei, B. S. Kim, D. J. Hu, J. Ni. "Feasibility Study on near-Dry Electrical Discharge Dressing of Metal Bonded Diamond Grinding Wheels." Proceedings of the Asme International Manufacturing Science and Engineering Conference, Vol 2.191-198, 2009.
    [28] S. H. Yin, H. Ohmori, Y. T. Dai, Y. Uehara, F. J. Chen, H. N. Tang. "ELID grinding characteristics of glass-ceramic materials." International Journal of Machine Tools & Manufacture. 49(3-4): 333-338, Mar 2009.
    [29] G. Kirchhoff, R. Bunsen. "Chemical Analysis by Observation of Spectra." Annalen der Physik und der Chemie. 110 161–189, 1860.
    [30] H. Vogt, J. Thonstad. "The voltage of alumina reduction cells prior to the anode effect." Journal of Applied Electrochemistry. 32(3): 241–249, 2002.
    [31] M.L. Foucault. "Experiments with the light of the voltaic arc." Journal of the Franklin Institute. 48(1): 50–52, 1849.
    [32] R. Wuthrich, V. Fascio. "Machining of non-conducting materials using electrochemical discharge phenomenon - an overview." International Journal of Machine Tools & Manufacture. 45(9): 1095-1108, Jul 2005.
    [33] B. Mazza, P. Pedeferri, G. Re. "Hydrodynamic instabilities in electrolytic gas evolution." Eiectrochimica Acta. 23(2): 87-93, Feb. 1978.
    [34] H.H. Kellogg. "Anode effect in aqueous electrolysis." Journal of Electrochemical Society. 97(4): 133–142, Apr. 1950.
    [35] Jocelyne Garbarz-Olivier, Christian Guilpin. "The origin of the electrode effect in various electrolytes." Journal of Electroanalytical Chemistry and Interfacial Electrochemistry. 91(1): 79-91, July 1978.
    [36] R. Wuthrich, H. Bleuler. "A model for electrode effects using percolation theory." Electrochimica Acta. 49(9-10): 1547-1554, Apr 15 2004.
    [37] Wuthrich, V. Fascio, H. Bleuler. "A stochastic model for electrode effects." Electrochimica Acta. 49(22-23): 4005-4010, Sep 15 2004.
    [38] H. Kurafuji, K. Suda. "Electrical discharge drilling of glass." Annals of the CIRP. 16 415–419, 1968.
    [39] N.H. Cook, G.B. Foote, P. Jordan, B.N. Kalyani. "Experimental studies in electro-machining." Transactions of ASME, Journal of Engineering for Industry. 95(4): 945–950, 1973.
    [40] K. Allesu, A. Ghosh, M.K. Muju. "Preliminary qualitative approach of a proposed mechanism of material removal in electrical machining of glass." European Journal of Mechanical Engineers 36(3): 202–207, 1992.
    [41] H. Langen, J.M. Breguet, H. Bleuler, Ph. Renaud, T. Masuzawa. "Micro electrochemical discharge machining of glass." International Journal of Electrical Machining. 3 65–69, 1998.
    [42] S. Tandon, V.K. Jain, P. Kumar, K.P. Rajurkar. "Investigations into machining of composites." Precision Engineering 12(4): 227–238, 1990.
    [43] R. Wuthrich, V. Fascio. "Machining of non-conducting materials using electrochemicaldischarge phenomenon - an overview." International Journal of Machine Tools & Manufacture. 45(9): 1095–1108, 2005.
    [44] I.M. Crichton, J.A. McGeough. "Studies of the discharge mechanisms in electrochemical arc machining." Journal of Applied Electrochemistry. 15(1): 113–119, 1985.
    [45] J. M. Park, R. P. Taylor, A. T. Evans, T. R. Brosten, G. F. Nellis, S. A. Klein, J. R. Feller, L. Salerno, Y. B. Gianchandani. "A piezoelectric microvalve for cryogenic applications." Journal of Micromechanics and Microengineering. 18(1): -, Jan 2008.
    [46] X. D. Cao, B. H. Kim, C. N. Chu. "Micro-structuring of glass with features less than 100 mu m by electrochemical discharge machining." Precision Engineering-Journal of the International Societies for Precision Engineering and Nanotechnology. 33(4): 459-465, Oct 2009.
    [47] M. S. Han, B. K. Min, S. J. Lee. "Geometric improvement of electrochemical discharge micro-drilling using an ultrasonic-vibrated electrolyte." Journal of Micromechanics and Microengineering. 19(6): -, Jun 2009.
    [48] Z. P. Zheng, J. K. Lin, F. Y. Huang, B. H. Yan. "Improving the machining efficiency in electrochemical discharge machining (ECDM) microhole drilling by offset pulse voltage." Journal of Micromechanics and Microengineering. 18(2): -, Feb 2008.
    [49] S. K. Chak, P. V. Rao. "Trepanning of Al2O3 by electro-chemical discharge machining (ECDM) process using abrasive electrode with pulsed DC supply." International Journal of Machine Tools & Manufacture. 47(14): 2061-2070, Nov 2007.
    [50] V. K. Jain, S. K. Choudhury, K. M. Ramesh. "On the machining of alumina and glass." International Journal of Machine Tools & Manufacture. 42(11): 1269-1276, Sep 2002.
    [51] Z. P. Zheng, W. H. Cheng, F. Y. Huang, B. H. Yan. "3D microstructuring of Pyrex glass using the electrochemical discharge machining process." Journal of Micromechanics and Microengineering. 17(5): 960-966, May 2007.
    [52] W. Y. Peng, Y. Liao. "Study of electrochemical discharge machining technology for slicing non-conductive brittle materials." Journal of Materials Processing Technology. 149(1-3): 363-369, Jun 10 2004.
    [53] V. K. Jain, S. K. Chak. "Electrochemical spark trepanning of alumina and quartz." Machining Science and Technology. 4(2): 277-290, 2000.
    [54] N. Gautam, V. K. Jain. "Experimental investigations into ECSD process using various tool kinematics." International Journal of Machine Tools & Manufacture. 38(1-2): 15-27, Jan-Feb 1998.
    [55] B.R. Sarkar, B. Doloi, B. Bhattacharyya. "Experimental investigation into electrochemical discharge microdrilling on advanced ceramics." International Journal of Manufacturing Technology and Management. 13(2-4): 214-225 2008.
    [56]刘永红,刘晋春”非导电陶瓷材料电解电火花打孔工艺”制造技术与机床(10):12—13,1998
    [57]刘永红,刘晋春”非导电超硬材料电解电火花复合加工脉冲电源的研制”电加工(24—27):1998
    [58]刘发展”电火花一电解组合加工工艺研究”[硕士]学位论文,南京航空航天大学2010
    [59]仲继卉“电解电火花机械磨削复合加工新方法研究”[工程硕士]学位论文,山东科技大学2006
    [60] J. W. Liu, T. M. Yue, Z. N. Guo. "An analysis of the discharge mechanism in electrochemical discharge machining of particulate reinforced metal matrix composites." International Journal of Machine Tools & Manufacture. 50(1): 86-96, Jan 2010.
    [61] J.A. McGeough, A.B.M. Khayry, W. Munro, J.R. Crookall. "Theoretical and Experimental Investigation of the Relative Effects of Spark Erosion and Electrochemical Dissolution in Electrochemical ARC Machining." CIRP Annals - Manufacturing Technology. 32(1): 113-118, 1983.
    [62] H. Tsuchiya, T. Inoue, M. Miyazaiki. "Wire electro-chemical discharge machining of glasses and ceramics." Bulletin Japanese Society of Precision Engineering. 19(1): 73–74, Mar. 1985.
    [63] I. Basak, A. Ghosh. "Mechanism of spark generation during electrochemical discharge machining: A theoretical model and experimental verification." Journal of Materials Processing Technology. 62(1-3): 46-53, Nov 1996.
    [64] I. Basak, A. Ghosh. "Mechanism of material removal in electrochemical discharge machining: a theoretical model and experimental verification." Journal of Materials Processing Technology. 71(3): 350-359, Nov 23 1997.
    [65] C. T. Yang, S. S. Ho, B. H. Yan. "Micro hole machining of borosilicate glass through electrochemical discharge machining (ECDM)." Precision Machining of Advanced Materials. 196149-166, 2001.
    [66] R. Wuthrich, U. Spaelter, Y. Wu, H. Bleuler. "A systematic characterization method for gravity-feed micro-hole drilling in glass with spark assisted chemical engraving (SACE)." Journal of Micromechanics and Microengineering. 16(9): 1891-1896, Sep 2006.
    [67] P. Maillard, B. Despont, H. Bleuler, R. Wuthrich. "Geometrical characterization of micro-holes drilled in glass by gravity-feed with spark assisted chemical engraving (SACE)." Journal of Micromechanics and Microengineering. 17(7): 1343-1349, Jul 2007.
    [68] T. F. Didar, A. Dolatabadi, R. Wuthrich. "Characterization and modeling of 2D-glass micro-machining by spark-assisted chemical engraving (SACE) with constant velocity." Journal of Micromechanics and Microengineering. 18(6): -, Jun 2008.
    [69] B. R. Sarkar, B. Dolol, B. Bhattacharyya. "Investigation into the influences of the power circuit on the micro-electrochemical discharge machining process." Proceedings of the Institution of Mechanical Engineers Part B-Journal of Engineering Manufacture. 223(2): 133-144, Feb 2009.
    [70] A. Ghosh. "Electrochemical discharge machining: Principle and possibilities." Sadhana-Academy Proceedings in Engineering Sciences. 22435-447, Jun 1997.
    [71] V. K. Jain, S. Adhikary. "On the mechanism of material removal in electrochemical spark machining of quartz under different polarity conditions." Journal of Materials Processing Technology. 200(1-3): 460-470, May 8 2008.
    [72] J. West, A. Jadhav. "ECDM methods for fluidic interfacing through thin glass substrates and the formation of spherical microcavities." Journal of Micromechanics and Microengineering. 17(2): 403-409, Feb 2007.
    [73] S. K. Chak, P. V. Rao. "The drilling of Al2O3 using a pulsed DC supply with a rotary abrasive electrode by the electrochemical discharge process." International Journal of Advanced Manufacturing Technology. 39(7-8): 633-641, Nov 2008.
    [74] D. J. Kim, Y. Ahn, S. H. Lee, Y. K. Kim. "Voltage pulse frequency and duty ratio effects in an electrochemical discharge microdrilling process of Pyrex glass." International Journal of Machine Tools and Manufacture. 46(10): 1064-1067, August 2006 2006.
    [75] B. Bhattacharyya, B. N. Doloi, S. K. Sorkhel. "Experimental investigations into electrochemical discharge machining (ECDM) of non-conductive ceramic materials." Journal of Materials Processing Technology. 95(1-3): 145-154, Oct 15 1999.
    [76] V.K. Jain, P.S. Rao, S.K. Choudhury, K.P. Rajurkar. "Experimental investigations into travelling wire electrocheimical spark machining (TW-ECSM) of composites." Transactions of ASME, Journal of Engineering for Industry 113(1): 75–84, February 1991 1991.
    [77] C. Tsutsumi, K. Okano, T. Suto. "High quality machining of ceramics." Journal of Material Processing Technology. 37(1-4): 639–654, February 1993 1993.
    [78] M. S. Han, B. K. Min, S. J. Lee. "Improvement of surface integrity of electro-chemical discharge machining process using powder-mixed electrolyte." Journal of Materials Processing Technology. 191(1-3): 224-227, Aug 1 2007.
    [79] C. T. Yang, S. L. Song, B. H. Yan, F. Y. Huang. "Improving machining performance of wire electrochemical discharge machining by adding SiC abrasive to electrolyte." International Journal of Machine Tools & Manufacture. 46(15): 2044-2050, Dec 2006.
    [80] L.A. Hof, A. Lal, K. Fujisaki, R. Wüthrich, H.H. Langen, H. Bleuler, "3D Micro structuring of glass with an AFM," presented at the The Fourth EUSPEN International Conference, Glasgow, UK, 2004.
    [81] M. Mousa, A. Allagui, H. D. Ng, R. Wuthrich. "The effect of thermal conductivity of the tool electrode in spark-assisted chemical engraving gravity-feed micro-drilling." Journal of Micromechanics and Microengineering. 19(1): -, Jan 2009.
    [82] C. K. Yang, C. P. Cheng, C. C. Mai, A. C. Wang, J. C. Hung, B. H. Yan. "Effect of surface roughness of tool electrode materials in ECDM performance." International Journal of Machine Tools & Manufacture. 50(12): 1088-1096, Dec 2010.
    [83] Z. P. Zheng, H. C. Su, F. Y. Huang, B. H. Yan. "The tool geometrical shape and pulse-off time of pulse voltage effects in a Pyrex glass electrochemical discharge microdrilling process." Journal of Micromechanics and Microengineering. 17(2): 265-272, Feb 2007.
    [84] R. Wuthrich, L. A. Hof, A. Lal, K. Fujisaki, H. Bleuler, P. Mandin, G. Picard. "Physical principles and miniaturization of spark assisted chemical engraving (SACE)." Journal of Micromechanics and Microengineering. 15(10): S268-S275, Oct 2005.
    [85] R. Wüthrich, B. Despont, P. Maillard, H. Bleuler. "Improving the material removal rate in spark-assisted chemical engraving (SACE) gravity-feed micro-hole drilling by tool vibration." Journal of Micromechanics and Microengineering. 16(11): N28–N31, Nov 2006.
    [86] B. H. Yan, C. T. Yang, F. Y. Huang, Z. H. Lu. "Electrophoretic deposition grinding (EPDG) for improving the precision of microholes drilled via ECDM." Journal of Micromechanicsand Microengineering. 17(2): 376-383, Feb 2007.
    [87] R. Wuthrich, U. Spaelter, H. Bleuler. "The current signal in spark-assisted chemical engraving (SACE): what does it tell us?" Journal of Micromechanics and Microengineering. 16(4): 779-785, Apr 2006.
    [88] K. Furutani, H. Maeda. "Machining a glass rod with a lathe-type electro-chemical discharge machine." Journal of Micromechanics and Microengineering. 18(6): -, Jun 2008.
    [89] R. Wuthrich, K. Fujisaki, P. Couthy, L. A. Hof, H. Bleuler. "Spark assisted chemical engraving (SACE) in microfactory." Journal of Micromechanics and Microengineering. 15(10): S276-S280, Oct 2005.
    [90] C. P. Cheng, K. L. Wu, C. C. Mai, C. K. Yang, Y. S. Hsu, B. H. Yan. "Study of gas film quality in electrochemical discharge machining." International Journal of Machine Tools & Manufacture. 50(8): 689-697, Aug 2010.
    [91] A. Allagui, R. Wuthrich. "Gas film formation time and gas film life time during electrochemical discharge phenomenon." Electrochimica Acta. 54(23): 5336-5343, Sep 30 2009.
    [92] A. Kulkarni, R. Sharan, G. K. Lal. "Measurement of temperature transients in the electrochemical discharge machining process." Temperature: Its Measurement and Control in Science and Industry, Vol 7, Pts 1 and 2. 6841069-1074, 2003.
    [93] T. K. K. R. Mediliyegedara, A. K. M. De Silva, D. K. Harrison, J. A. McGeough, D. Hepburn. "Designing steps and simulation results of a pulse classification system for the electro chemical discharge machining (ECDM) process - An artificial neural network approach." Applied Soft Computing Technologies: The Challenge of Complexity.343-352, 2006.
    [94] T. K. K. R. Mediliyegedara, A. K. M. De Silva, D. K. Harrison, J. A. McGeough. "New developments in the process control of the hybrid electro chemical discharge machining (ECDM) process." Journal of Materials Processing Technology. 167(2-3): 338-343, Aug 30 2005.
    [95] V. Fascio, H. H. Langen, H. Bleuler, C. Comninellis. "Investigations of the spark assisted chemical engraving." Electrochemistry Communications. 5(3): 203-207, Mar 2003.
    [1] M.L. Foucault. "Experiments with the light of the voltaic arc." Journal of the Franklin Institute. 48(1): 50–52, 1849.
    [2] R. Wuthrich, V. Fascio. "Machining of non-conducting materials using electrochemical discharge phenomenon - an overview." International Journal of Machine Tools & Manufacture. 45(9): 1095-1108, Jul 2005.
    [3] Wuthrich, V. Fascio, H. Bleuler. "A stochastic model for electrode effects." Electrochimica Acta. 49(22-23): 4005-4010, Sep 15 2004.
    [4] V. Fascio, R. Wuthrich, H. Bleuler. "Spark assisted chemical engraving in the light of electrochemistry." Electrochimica Acta. 49(22-23): 3997-4003, Sep 15 2004.
    [5] M. S. Han, B. K. Min, S. J. Lee. "Modeling gas film formation in electrochemical discharge machining processes using a side-insulated electrode." Journal of Micromechanics and Microengineering. 18(4): -, Apr 2008.
    [6] R. Wuthrich, H. Bleuler. "A model for electrode effects using percolation theory." Electrochimica Acta. 49(9-10): 1547-1554, Apr 15 2004.
    [1] I. Basak, A. Ghosh. "Mechanism of material removal in electrochemical discharge machining: a theoretical model and experimental verification." Journal of Materials Processing Technology. 71(3): 350-359, Nov 23 1997.
    [2] V. K. Jain, P. M. Dixit, P. M. Pandey. "On the analysis of the electrochemical spark machining process." International Journal of Machine Tools & Manufacture. 39(1): 165-186, Jan 1999.
    [3] K. L. Bhondwe, V. Yadava, G. Kathiresan. "Finite element prediction of material removal rate due to electro-chemical spark machining." International Journal of Machine Tools & Manufacture. 46(14): 1699-1706, Nov 2006.
    [4] R. Wuthrich, U. Spaelter, Y. Wu, H. Bleuler. "A systematic characterization method for gravity-feed micro-hole drilling in glass with spark assisted chemical engraving (SACE)." Journal of Micromechanics and Microengineering. 16(9): 1891-1896, Sep 2006.
    [5] M. Jalali, P. Maillard, R. Wuthrich. "Toward a better understanding of glass gravity-feed micro-hole drilling with electrochemical discharges." Journal of Micromechanics and Microengineering. 19(4): -, Apr 2009.
    [6] R. Wuthrich, V. Fascio. "Machining of non-conducting materials using electrochemical discharge phenomenon - an overview." International Journal of Machine Tools & Manufacture. 45(9): 1095-1108, Jul 2005.
    [7] V. Fascio, R. Wuthrich, H. Bleuler. "Spark assisted chemical engraving in the light of electrochemistry." Electrochimica Acta. 49(22-23): 3997-4003, Sep 15 2004.
    [8] M. C. Panda, V. Yadava. "Finite element prediction of material removal rate due to traveling wire electrochemical spark machining." International Journal of Advanced Manufacturing Technology. 45(5-6): 506-520, Nov 2009.
    [9] C. J. Wei, K. Z. Xu, J. Ni, A. J. Brzezinski, D. J. Hu. "A finite element based model for electrochemical discharge machining in discharge regime." International Journal of Advanced Manufacturing Technology. 54(9-12): 987-995, Jun 2011.
    [10] A. Kulkarni, R. Sharan, G. K. Lal. "Measurement of temperature transients in the electrochemical discharge machining process." Temperature: Its Measurement and Control in Science and Industry, Vol 7, Pts 1 and 2. 6841069-1074, 2003.
    [11] B. Bhattacharyya, J. Munda, M. Malapati. "Advancement in electrochemical micro-machining." International Journal of Machine Tools & Manufacture. 44(15): 1577-1589, Dec 2004.
    [12] B. Bhattacharyya, B. N. Doloi, S. K. Sorkhel. "Experimental investigations into electrochemical discharge machining (ECDM) of non-conductive ceramic materials." Journal of Materials Processing Technology. 95(1-3): 145-154, Oct 15 1999.
    [13] M. S. Han, B. K. Min, S. J. Lee. "Geometric improvement of electrochemical discharge micro-drilling using an ultrasonic-vibrated electrolyte." Journal of Micromechanics and Microengineering. 19(6): -, Jun 2009.
    [14] M. Mousa, A. Allagui, H. D. Ng, R. Wuthrich. "The effect of thermal conductivity of the tool electrode in spark-assisted chemical engraving gravity-feed micro-drilling." Journal of Micromechanics and Microengineering. 19(1): -, Jan 2009.
    [15] P. Maillard, B. Despont, H. Bleuler, R. Wuthrich. "Geometrical characterization of micro-holes drilled in glass by gravity-feed with spark assisted chemical engraving (SACE)." Journal of Micromechanics and Microengineering. 17(7): 1343-1349, Jul 2007.
    [16] R. Wuthrich, B. Despont, P. Maillard, H. Bleuler. "Improving the material removal rate in spark-assisted chemical engraving (SACE) gravity-feed micro-hole drilling." Journal of Micromechanics and Microengineering. 16(11): N28-N31, Nov 2006.
    [1] N. Gautam, V. K. Jain. "Experimental investigations into ECSD process using various tool kinematics." International Journal of Machine Tools & Manufacture. 38(1-2): 15-27, Jan-Feb 1998.
    [2] Z. P. Zheng, H. C. Su, F. Y. Huang, B. H. Yan. "The tool geometrical shape and pulse-off time of pulse voltage effects in a Pyrex glass electrochemical discharge microdrilling process." Journal of Micromechanics and Microengineering. 17(2): 265-272, Feb 2007.
    [3] Z. P. Zheng, J. K. Lin, F. Y. Huang, B. H. Yan. "Improving the machining efficiency in electrochemical discharge machining (ECDM) microhole drilling by offset pulse voltage." Journal of Micromechanics and Microengineering. 18(2): -, Feb 2008.
    [4] M. S. Han, B. K. Min, S. J. Lee. "Modeling gas film formation in electrochemical discharge machining processes using a side-insulated electrode." Journal of Micromechanics and Microengineering. 18(4): -, Apr 2008.
    [5] R. Singh, S. N. Melkote. "Characterization of a hybrid laser-assisted mechanical micromachining (LAMM) process for a difficult-to-machine material." International Journal of Machine Tools & Manufacture. 47(7-8): 1139-1150, Jun 2007.
    [6] C. Zhang, Y. C. Shin. "A novel laser-assisted truing and dressing technique for vitrified CBN wheels." International Journal of Machine Tools & Manufacture. 42(7): 825-835, May 2002.
    [7] R. Wuthrich, V. Fascio. "Machining of non-conducting materials using electrochemical discharge phenomenon - an overview." International Journal of Machine Tools & Manufacture. 45(9): 1095-1108, Jul 2005.
    [8] T. Mabrouki, J. F. Rigal. "A contribution to a qualitative understanding of thermo-mechanical effects during chip formation in hard turning." Journal of Materials Processing Technology. 176(1-3): 214-221, Jun 6 2006.
    [9] M. Mousa, A. Allagui, H. D. Ng, R. Wuthrich. "The effect of thermal conductivity of the tool electrode in spark-assisted chemical engraving gravity-feed micro-drilling." Journal of Micromechanics and Microengineering. 19(1): -, Jan 2009.
    [10] R. Wuthrich, U. Spaelter, Y. Wu, H. Bleuler. "A systematic characterization method for gravity-feed micro-hole drilling in glass with spark assisted chemical engraving (SACE)." Journal of Micromechanics and Microengineering. 16(9): 1891-1896, Sep 2006.
    [11] P. Maillard, B. Despont, H. Bleuler, R. Wuthrich. "Geometrical characterization of micro-holes drilled in glass by gravity-feed with spark assisted chemical engraving (SACE)." Journal of Micromechanics and Microengineering. 17(7): 1343-1349, Jul 2007.
    [12] M. S. Han, B. K. Min, S. J. Lee. "Geometric improvement of electrochemical discharge micro-drilling using an ultrasonic-vibrated electrolyte." Journal of Micromechanics and Microengineering. 19(6): -, Jun 2009.
    [1] R. Wuthrich, U. Spaelter, Y. Wu, H. Bleuler. "A systematic characterization method for gravity-feed micro-hole drilling in glass with spark assisted chemical engraving (SACE)." Journal of Micromechanics and Microengineering. 16(9): 1891-1896, Sep 2006.
    [2] R. Wüthrich, B. Despont, P. Maillard, H. Bleuler. "Improving the material removal rate in spark-assisted chemical engraving (SACE) gravity-feed micro-hole drilling by tool vibration." Journal of Micromechanics and Microengineering. 16(11): N28–N31, Nov 2006.
    [3] M. S. Han, B. K. Min, S. J. Lee. "Geometric improvement of electrochemical discharge micro-drilling using an ultrasonic-vibrated electrolyte." Journal of Micromechanics and Microengineering. 19(6): -, Jun 2009.
    [4] R. Wuthrich, V. Fascio. "Machining of non-conducting materials using electrochemical discharge phenomenon - an overview." International Journal of Machine Tools & Manufacture. 45(9): 1095-1108, Jul 2005.
    [5] M. Fujiki, J. Ni, A. J. Shih. "Investigation of the effects of electrode orientation and fluid flow rate in near-dry EDM milling." International Journal of Machine Tools & Manufacture. 49(10): 749-758, Aug 2009.
    [6] P. Maillard, B. Despont, H. Bleuler, R. Wuthrich. "Geometrical characterization of micro-holes drilled in glass by gravity-feed with spark assisted chemical engraving (SACE)." Journal of Micromechanics and Microengineering. 17(7): 1343-1349, Jul 2007.
    [7] R. Wuthrich, B. Despont, P. Maillard, H. Bleuler. "Improving the material removal rate in spark-assisted chemical engraving (SACE) gravity-feed micro-hole drilling by tool vibration." Journal of Micromechanics and Microengineering. 16(11): N28-N31, Nov 2006.
    [8] M. Ghoreishi, J. Atkinson. "A comparative experimental study of machining characteristics in vibratory, rotary and vibro-rotary electro-discharge machining." Journal of Materials Processing Technology. 120(1-3): 374-384, Jan 15 2002.
    [1] H. W. Park, S. Y. Liang. "Force modeling of micro-grinding incorporating crystallographic effects." International Journal of Machine Tools & Manufacture. 48(15): 1658-1667, Dec 2008.
    [2] A. J. Shih. "An experimental investigation of rotary diamond truing and dressing of vitreous bond wheels for ceramic grinding." International Journal of Machine Tools & Manufacture. 40(12): 1755-1774, Sep 2000.
    [3] B. Linke, F. Klocke. "Temperatures and wear mechanisms in dressing of vitrified bonded grinding wheels." International Journal of Machine Tools & Manufacture. 50(6): 552-558, Jun 2010.
    [4] Y. Jia, C. J. Wei, B. S. Kim, D. J. Hu, J. Ni. "Feasibility Study on near-Dry Electrical Discharge Dressing of Metal Bonded Diamond Grinding Wheels." Proceedings of the Asme International Manufacturing Science and Engineering Conference, Vol 2.191-198, 2009.
    [5] S. H. Yin, H. Ohmori, Y. T. Dai, Y. Uehara, F. J. Chen, H. N. Tang. "ELID grinding characteristics of glass-ceramic materials." International Journal of Machine Tools & Manufacture. 49(3-4): 333-338, Mar 2009.
    [6] M. Schopf, I. Beltrami, M. Boccadoro, D. Kramer. "ECDM (Electro Chemical Discharge Machining), a new method for trueing and dressing of metal-bonded diamond grinding tools." Cirp Annals-Manufacturing Technology. 50(1): 125-128, 2001.
    [7] M. J. Jackson, G. M. Robinson, N. B. Dahotre, A. Khangar, R. Moss. "Laser dressing of vitrified aluminium oxide grinding wheels." British Ceramic Transactions. 102(6): 237-245, Dec 2003.
    [8] D. A. Axinte, J. P. Stepanian, M. C. Kong, J. McGourlay. "Abrasive waterjet turning-An efficient method to profile and dress grinding wheels." International Journal of MachineTools & Manufacture. 49(3-4): 351-356, Mar 2009.
    [9] M. Mousa, A. Allagui, H. D. Ng, R. Wuthrich. "The effect of thermal conductivity of the tool electrode in spark-assisted chemical engraving gravity-feed micro-drilling." Journal of Micromechanics and Microengineering. 19(1): -, Jan 2009.
    [10] C. Wei, D. Hu, K. Xu, J. Ni. "Electrochemical discharge dressing of metal bond micro-grinding tools." International Journal of Machine Tools and Manufacture. 51(2): 165-168, Feb 2011 2011.
    [11] R. Wuthrich, V. Fascio. "Machining of non-conducting materials using electrochemical discharge phenomenon - an overview." International Journal of Machine Tools & Manufacture. 45(9): 1095-1108, Jul 2005.
    [12] V. K. Jain, S. Adhikary. "On the mechanism of material removal in electrochemical spark machining of quartz under different polarity conditions." Journal of Materials Processing Technology. 200(1-3): 460-470, May 8 2008.
    [13] J. Feng, B. Kim, J. Ni. "Modeling of Ceramic Microgridning by Cohesive Zone Based Finite Element Method." Proceedings of the Asme International Manufacturing Science and Engineering Conference, Vol 2.417-427, 2009.
    [14] M. Jalali, P. Maillard, R. Wuthrich. "Toward a better understanding of glass gravity-feed micro-hole drilling with electrochemical discharges." Journal of Micromechanics and Microengineering. 19(4): -, Apr 2009.
    [15] I.M. Crichton, J.A. McGeough. "Studies of the discharge mechanisms in electrochemical arc machining." Journal of Applied Electrochemistry. 15(1): 113–119, 1985.
    [16] V. Fascio, R. Wuthrich, H. Bleuler. "Spark assisted chemical engraving in the light of electrochemistry." Electrochimica Acta. 49(22-23): 3997-4003, Sep 15 2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700