用户名: 密码: 验证码:
AZ91D-Y半固态坯不同制备方法及对触变模锻影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于国家节能减排的政策引导和金属矿产资源供给日益恶化的形势,镁合金以其密度轻和资源丰富越来越受到重视。加速镁合金成形技术的研究是实现可持续发展的重要措施之一。目前镁合金的成形技术,以压铸为主,兼有液态模锻和锻造成形,但这三种工艺本身,均有其不足。例如,采用锻造成形尽管能满足零件较高力学性能的要求,但很难满足其形状复杂的需求。半固态触变模锻技术是一种近净成形复杂形状零件的技术。半固态坯料组织最显著的特征是固相颗粒呈球状,成形后零件的复杂程度远高于锻件,其力学性能高于压铸件和液态模锻件。本文期望通过采用AZ91D-Y镁合金半固态触变模锻成形筒形件,分别对铸造法、近液相线模锻法和等通道角挤压法(Equal channel angular extrusion,ECAE)制备坯料在二次加热过程中的组织演变、球晶组织的生成及特征对触变模锻成形和成形件力学性能的影响展开深入的研究,探讨不同半固态制坯方法的适用范围和应用的可能性。
     本文采用铸造法、近液相线模锻法和ECAE法制备了AZ91D-Y半固态坯。借助金相显微镜、扫描电子显微镜、X射线衍射仪和万能拉伸试验机分别研究了不同方法制备坯料的微观组织和力学性能。研究表明,添加稀土Y细化了α(Mg)和β(Mg17Al12),产生了杆状的Al2Y新相;在铸造制坯中,可获得粗大的等轴晶,柱状晶不明显;在近液相线模锻制坯中,可获得细小的枝晶组织,且随着模锻压力的增加,坯料的力学性能上升;在ECAE变形中,随着温度的升高,有利于获得等轴状晶粒,但不利于获得较高的屈服强度和抗拉强度,增加ECAE变形道次,有利于获得细小的等轴状再结晶组织。
     分别将铸态、近液相线模锻态和ECAE态的坯料加热到半固态温度区间。采用金相显微镜研究了铸造法、近液相线模锻法和ECAE法制备半固态坯料在二次加热过程中的组织演变及特征。研究结果表明,铸造法坯料在二次加热过程中组织的演变规律是由发达的树枝晶演变为大块状组织,大块状组织逐渐分离成碎块状组织,随后固相颗粒球化并主要通过合并的方式长大;近液相线模锻法坯料组织的演变规律是由细小的树枝晶演变为块状组织,块状组织分离成碎块状组织,随后固相颗粒球化并主要通过Ostwald熟化机制长大;ECAE法坯料组织的演变规律是挤压态组织发生再结晶,形成再结晶块状组织,块状组织分离后,发生球化并主要通过Ostwald熟化机制长大。近液相线模锻法和ECAE法坯料的平均固相颗粒尺寸小于铸造法;三种制坯方法中,ECAE法制备坯料的组织演变进程最快,固相颗粒球化效果最好。
     采用热模拟试验研究了铸造法、近液相线模锻法和ECAE法制备坯料的触变流动行为。研究结果表明,ECAE法制备坯料在较小的应力作用下,便可实现稳态充填,触变流动性能最好;近液相线模锻法坯料次之,铸造法坯料较差。借助万能拉伸试验机研究了触变模锻工艺参数和坯料制备方法对模锻制件力学性能的影响。研究结果表明,在半固态温度为560℃,模锻压力为200MPa的条件下,铸造法制备坯料在球化30min后触变模锻获得的力学性能最好,其屈服强度、抗拉强度和断后伸长率分别是131MPa、280MPa和9.2%;近液相线模锻法制备的坯料在球化20min后触变模锻获得的力学性能最好,其屈服强度、抗拉强度和断后伸长率分别是161MPa、302MPa和9.7%;ECAE法(一道次ECAE变形)制备的坯料在球化15min后触变模锻获得的力学性能最好,其屈服强度、抗拉强度和断后伸长率分别是164MPa、307MPa和11.8%,四道次变形坯料触变模锻后的屈服强度、抗拉强度和断后伸长率分别为220MPa、333MPa和16.1%,大大高于一道次变形;在相同成形条件下,ECAE法制备坯料触变模锻后的力学性能最好,近液相线模锻法次之,铸造法较差。
     上述比较研究结果表明,三种制坯方法均具有不同的优势,因而适用于不同的镁合金半固态模锻件对形状、尺寸和性能的要求。其中从制坯成本、制件复杂程度和触变成形件力学性能考虑,以近液相线模锻法具有综合优势,有希望成为高性能镁合金半固态模锻的主要制坯方法之一。
Based on the policy guidance of energy-saving and emission reduction and the deteriorating situation of metal mineral resources supply, we attach great importance to the development of magnesium alloys because of their low density and great abundance. Accelerated research on the forming technology of magnesium alloys is the one of important measures to realize sustainable development. Currently, the forming technology of magnesium alloys is dominated by diecasting, in combination with liquid forging and forging. However, these technologies have their own drawbacks. For example, although forging can meet the requirement of forming parts with good mechanical properties, it is difficult for this technology to form parts with complex shape. Semi-solid thixoforging is the one of near-net shape technologies to form parts with complex shape. The semi-solid microstructure is characterized by spherical grains. The complexity of parts formed by semi-solid thixoforging exceeds that formed by forging. The mechanical properties of parts formed by semi-solid thixoforging exceed those formed by diecasting and liquid forging. The aim of this paper is to research the preparation of semi-solid billets by casting, near-liquidus forging and equal channel angular extrusion (ECAE), respectively. The microstructure evolution during reheating, the effect of the formation and characteristics of spherical grains on thixoforging and the mechanical properties of parts formed by thixoforging are also studied. Moreover, the application scope and possibility of semi-solid billets prepared by different methods are discussed.
     The semi-solid billets are prepared by casting, near-liquidus forging and ECAE, respectively. By means of metallographic microscope, scanning electronic microscope, X-ray diffraction and universal material testing machine, microstructure and mechanical properties of semi-solid billets prepared by three different methods are analyzed. The results show that the addition of Y to AZ91D alloy refines primaryα(Mg) matrix andβ(Mg17Al12) phase. The addition of Y forms rod-shaped Al2Y phase. In the as-cast billet, coarse equiaxed grains are obtained and columnar crystals are not obvious. In the near-liquidus forged billet, fine dendritic microstructures are produced and with increasing applied pressure the mechanical properties of billets are improved. In the ECAE-formed billet, increasing temperature is helpful for obtaining equiaxed grains but unfavorable for improving yield strength and ultimate tensile strength. Moreover, increasing the number of pass promotes the formation of fine equiaxed grains.
     Semi-solid billets prepared by casting, near-liquidus forging and ECAE are reheated in the semi-solid temperature range. Microstructure evolution and characteristics of semi-solid billets prepared by casting, near-liquidus forging and ECAE during reheating are also studied. The results show that in the as-cast billet, coarse dendritic structures evolve into large blocked structures, then into cloddy pulverescent structures, finally irregular grains are spheroidized and coarsening mainly by coalescence. In the near-liquidus forged billet, fine dendritic structures evolve into blocked structure, then into cloddy pulverescent structure, finally irregular grains are spheroidized and coarsening mainly by Ostwald ripening mechanism.In the ECAE formed billet, deformed structures transform into recrystallised structures in the early stage. Then recrystallised structures are penetrated by liquid and disintegrated into seperated grains. These seperated grains are spheroidized and coarsening mainly by Ostwald ripening mechanism. Compared with that of as-cast billet, the mean grain sizes of near-liquidus forged and ECAE formed billets are much smaller. Amoung these three methods, the microstructure evolution for ECAE formed billet is the fastest and the degree of spherpidization is also best.
     Thixotropic behaviors of billets prepared by casting, near-liquidus forging and ECAE are studied in the semi-solid state by thermal simulation experiments. The results show that under low stress the steady state filling is achieved for the ECAE formed billet and the thixotropic fluidity of the ECAE formed billet is best, that of near-liquidus formed billet the second and that of as-cast billet the third. The effect of processing parameters and methods of preparing billets on the mechanical properties of thixoforged billets are studies by universal material testing machine. The results show that when the preheating temperature of billet is 560℃and applied pressure is 200MPa, the best mechanical properties of thixoforged parts prepared by casting can be obtain after 30min isothermal holding; the yield strength, ultimate tensile strength and elongation to fracture are 131MPa、280MPa and 9.2%, respectively. The best mechanical properties of thixoforged parts prepared by near-liquidus forging can be obtain after 20min isothermal holding; the yield strength, ultimate tensile strength and elongation to fracture are 161MPa、302MPa and 9.7%, respectively. The best mechanical properties of thixoforged parts prepared by ECAE can be obtain after 15min isothermal holding; the yield strength, ultimate tensile strength and elongation to fracture are 164MPa、307MPa and 11.8%, respectively. As for the four-pass ECAE formed billet, the yield strength, ultimate tensile strength and elongation to fracture are 220MPa、333MPa and 16.1%, respectively under the same conditions with the one-pass ECAE formed billet. The mechanical properties of thixoforged parts prepared by ECAE are first, those prepared by near-liquidus forging are second and those prepared by casting are third.
     The comparative studies mentioned above demonstrate that casting, near-liquidus forging and ECAE have their own advantages and these methods can satisfy the different requirements for shape, size and mechanical properties of thixoforged magnesium alloy parts. Considering the cost of preparing billet, the complexity of parts and mechanical properties, near-liquidus forging has competitive advantage and is likely to become one of main methods to producing billets with high performance.
引文
1陈振华,严红革,陈吉华,全亚杰,王慧敏,陈鼎.镁合金.化学工业出版社, 2004: 1~290
    2康永林,毛卫民,胡壮麒.金属材料半固态加工理论与技术.科学出版社, 2004: 1~2
    3夏巨谌.金属材料精密塑性加工方法.国防工业出版社, 2007: 1
    4刘正,张奎,曾小勤.镁基轻质合金理论基础及其应用.机械工业出版社, 2006: 91
    5毛卫民.半固态金属成形技术.机械工业出版社, 2004: 4~6
    6管仁国,马伟民.金属半固态成形理论与技术, 2005: 217
    7郭洪民.半固态铝合金流变成形工艺与理论研究.南昌大学博士论文. 2007: 3
    8 R. Mehrabian, M.C. Flemings. Die casting of partially solidified alloys. AFS Trans. 1972, 80:173~182
    9 M.C. Flemings, R.G. Riek, K.P. Young. Rheocasting. Mater. Sci. Eng. 1976, 25:103~117
    10 M.C. Flemings. Behaviour of metal alloys in the semi-solid state. Metall Trans. 1991, 22A(5): 957~981
    11 H. Kaufmann, A. Mundi, P.J. Uggowitzer, N. Ishibashi. An update on the new rheocasting development work for Al-and Mg-alloys. Die Casting Engineer. 2002, 46(4):16~19
    12 P. Giordano, G.L. Chiarmetta. Thixo and rheo casting: comparison on the high production volume component. In: Y. Tsutsui, M. Kiuchi and K. Ichikawa, eds. Proceedings of the 7th International Conference on Semi-Solid Processing of Alloys and Composites, Japan, 2002. National Institute ofAdvanced Industrial Science and Technology, Japan Society for Technology of Plasticity, 2002: 665~670
    13 H. Kaufmann, H. Wabusseg. Metallurgical and processing aspects of the NRC semi-solid casting technology. Aluminum. 2000, 76(1-2): 70~75
    14 Ube Industries Ltd. Method and apparatus for shaping semisolid metals. Japan: European Patent, EPO 745 694 A 1 .1996
    15 Z. Fan. Development of the rheo-diecasting process for magnesium alloys. Mater. Sci. Eng. A. 2005, 413-414: 72~78
    16 Z. Fan, X. Fang, S. Ji. Microstructure and mechanical properties of rheo-dicasting (RDC) aluminum alloys. Mater. Sci. Eng. A. 2005, 412(1-2): 298~306
    17 Z. Chen, M. Qian, S. Ji, Z. Fan. The effects of rheo-diecasting on the integrity and mechanical properties of Mg-6A1-1Zn. Scripta Mater. 2006, 54(2): 207~211
    18 S. Ji, Z. Chen, Z. Fan. Effects of the rheo-die casting process on the microstructure and mechanical properties of AM50 magnesium alloy. Materials Science and Technology. 2005, 21 (9): 1019~1024
    19 M. C. Flemings. R. A. Martinez-Ayers, A. M. de Figueredo et al. Metal alloy compositions and process. US: Patent, 6645323B2. 2003
    20 J.A. Yurko, R.A. Martinez, M.C. Flemings. SSRTM: The Spheroid Growth Route to Semi-solid Forming. In: D. Apelian, A. Alexandrou, G. Georgiou, J. Jorstad and M. Makhlouf, eds. Proceedings of the 8th International Conference on Semi-Solid processing of Alloys and Composites. Limassol: The Worcester Polytechnic Institute and the Metals Processing Institute. 2004: 34~45
    21 J. Yurko, M. C. Flemings, R. A. Martinez. Semi-solid rheocasting (SSR)-increasing the capabilities of die casting. Die Casting Engineer. 2004, 1:50~52
    22 J. Yueko. Idra Prince rheocasting and squeeze casting technology. Die Casting Engineer. 2002, 4: 20~23
    23 S. Kleiner, O. Beffort, A. Wahlen, P.J. Uggowitzer. Microstructure and mechanical properties of squeeze cast and semi-solid cast Mg–Al alloys. J. Light Metals. 2000, 2: 277~280
    24 X. Du, E. Zhang. Microstructure and mechanical behaviour of semi-solid die-casting AZ91D magnesium alloy. Mater. Lett. 2007, 61(11-12): 2333~2337
    25 Z. Fan. Development of the rheo-diecasting process for magnesium alloys. Mater. Sci. Eng. A. 2005, 413-414: 72~78
    26 C. Pitsaris, T. Abbott, C.H.J. Davies, G. Savage. Magnesium. In: K.U. Kainer (Ed.), Proceedings of the 6th International Conference on Magnesium Alloys and Their Applications, Wiley-VCH, Weinheim, 2003, 694
    27 S. Ji, Z. Fan, G. Liu, X. Fang, S.-H. Song. Twin-screw rheomolding of AZ91D Mg-alloy. In: Y. Tsutsui, M. Kiuchi, K. Ichikawa. Proc.of the 7th Int. Conf. on Semi-Solid Processing of Alloys and Composites, Tsukuba, Japan, Sept 25th-27th, 2002, National Institute of Advanced Industrial Science and Technology, Japan Society for Technology of Plasticity: 683~688
    28 Y. Wang, G. Liu, Z. Fan. Microstructural evolution of rheo-diecast AZ91D magnesium alloy during heat treatment. Acta Mater. 2006, 54(3):689~699
    29 P.S. Frederick, N.L. Bradley, S.C. Erickson. Injection molding magnesium alloys. Advanced Mater. Process.1998, 134(4):53~58
    30白培康,王建宏.材料成型新技术.国防工业出版社, 2007: 22
    31黎文献.镁及镁合金.中南大学出版社, 2005: 261
    32崔晓鹏. AZ91D镁合金半固态触变注射组织与工艺研究.吉林大学博士论文. 2006: 21~22
    33田文彤. LC4合金半固态坯SIMA生成及触变成形研究.哈尔滨工业大学博士论文. 2002: 6~7
    34谢水生,黄声宏.半固态金属加工技术及其应用.冶金工业出版社,1999: 5
    35赵祖德,罗守靖.轻合金半固态成形技术.化学工业出版社, 2007: 126~173
    36罗守靖,田文彤,谢水生,毛卫民.半固态加工技术及应用.中国有色金属学报. 2000, 10(6):765~766
    37洪慎章,曾振鹏.半固态模锻的应用和发展.模具技术. 1999, (1):60~65
    38 F. Czerwinski. Near-liquidus molding of Mg-Al and Mg-Al-Zn alloys. Acta Mater. 2005, 53 (7):1973~1984
    39 F. Czerwinski, A. Zielinska-Lipiec, P.J. Pinet, J. Overbeeke. Correlating the microstructure and tensile properties of a thixomolded AZ91D magnesium alloy. Acta Mater. 2001, 49 (7):1225~1235
    40 S. LeBeau, R. Decker. Microstructural design of thixomolded magnesium alloys. In: A.K. Bhasin, J.J. Moore, K.P. Young, S. Midson (Eds.), Proceedings of the Fifth International Conference on Semi-Solid Processing of Alloys and Composites, Golden, CO, USA, 23-25 June 1998, Colorado School of Mines, Golden, CO, USA, 1998, 387~395
    41 J. Jiang, S. Luo. Research on thixoforging magnesium plate of AZ91D magnesium alloy in semi-solid state. Solid State Phenomena. 2006, 116~117: 132~135
    42张津,章宗和.镁合金及应用.化学工业出版社, 2004, 298~301
    43 S.C. Bergsma, M.C. Tolle, M.E. Kassner, X. Li, E. Evangelista. Semi-solid thermal transformations of A1-Si alloys and the resulting mechanicalproperties. Mater. Sci. Eng. A. 1997, 237(1): 24~34
    44 H.V. Atkinson. Modelling the semisolid processing of metallic alloys. Prog. Mater. Sci. 2005, 50(3): 346~354
    45李元东,郝远,闫峰云,方铭. AZ91D镁合金在半固态等温热处理中的组织演变.中国有色金属学报. 2001, 11(4): 571~575
    46李元东,郝远,金玉花,郑斌.半固态等温热处理对AZ91D镁合金组织的影响.甘肃工业大学学报. 2001, 27(1): 27~30
    47艾秀兰,杨军权,高峰.半固态等温热处理对铸态AZ80镁合金组织的影响.中国铸造装备与技术. 2009, 1: 17~19
    48 K.P. Young, C.P. Kyonka, J.A. Courtois, Fine grained metal composition. US Patent No. 4,415,374, March 30, 1982
    49 J.G. Wang, H.Q. Lin, Y.Q. Li, Q.C. Jiang. Effect of initial as-cast microstructure on semi-solid microstructure of AZ91D alloy during the strain-induced melt activation process. J. Alloys and Compd. 2008, 457(1-2): 251~258
    50 H.V. Atkinson, K. Burke, G. Vaneetveld. Recrystallisation in the semi-solid state in 7075 aluminium alloy. Mater. Sci. Eng. A. 2008, 490(1-2): 266~276
    51李元东,郝远,阎峰云. SIMA法制备AZ91D镁合金非枝晶组织锭料.甘肃工业大学学报. 2002, 28(4): 34~38
    52翟秋亚,袁森,蒋百灵. AZ91镁合金的SIMA法半固态组织特征.中国有色金属学报. 2005, 15(1): 123~128.
    53闫洪,张发云,揭小平,罗忠民,杨国泰. AZ61镁合金在形变诱导法中的组织演变.中国机械工程. 2005, 16(8): 719~722
    54姜巨福.新SIMA法制备AZ91D半固态及其触变模锻研究.哈尔滨工业大学博士论文. 2005, 49~64
    55 S.M. Liang, R.S. Chen, E.H. Han. Semisolid microstructure evolution of equalchannel angular extruded Mg-Al alloy during partial remelting. Solid state phenmena. 2008, 141~143: 557~562
    56路国祥,陈体军,郝远.等通道转角挤压AZ91D镁合金在半固态等温热处理过程中的组织演变.铸造. 2008, 57(6): 544~548
    57 Z. Ji, M. Hu, S. Sugiyama, J. Yanagimoto. Formation process of AZ31B semi-solid microstructures through strain-induced melt activation method. Mater. Charact. 2008, 59(7): 905~911
    58罗守靖,杜之明.液相线模锻制备半固态坯料方法.专利号: ZL 01116406. 9
    59罗守靖,陈炳光,齐丕骧.液态模锻与挤压铸造技术.化学工业出版社, 2007, 1~30
    60赵祖德,单巍巍,罗守靖.液相线模锻法制备ZK60-RE镁合金半固态组织演变.材料科学与工艺. 2007, 15(1): 59~63
    61甄子胜,毛卫民,陈洪涛,钟学友.电磁搅拌工艺参数对半固态AZ91D镁合金组织的影响.北京科技大学学报. 2003, 25(4): 341~345
    62毛卫民,李强,甄子胜,陈洪涛,钟雪友.电磁搅拌下半固态AZ91D镁合金的组织形成.特种铸造及有色合金. 2005, 25 (3): 161~163
    63韩富银,张金山,高义斌,王红霞.电磁搅拌对镁合金AZ91D半固态组织的影响.铸造技术. 2005, 26(6): 497~499
    64韩辉.电磁搅拌下AZ91镁合金的显微组织与性能研究.武汉理工大学博士论文. 2008: 42~57
    65 G. Yuan, Y. Sun, W. Ding. Effect of bismuth and antimony additions on the microstructure and mechanical properties of AZ91 magnesium alloy. Mater. Sci. Eng. A. 2001, 308 (1-2): 38~44
    66 K. Hirai, H. Somekawa, Y. Takigawa, K. Higashi. Effects of Ca and Sr addition on mechanical properties of a cast AZ91 magnesium alloy at roomand elevated temperature. Mater. Sci. Eng. A. 2005, 403(1-2): 276~280
    67 G. Wu, Y. Fan, H. Gao, C. Zhai, Y.P. Zhu. The effect of Ca and rare earth elements on the microstructure, mechanical properties and corrosion behavior of AZ91D. Mater. Sci. Eng. A. 2005, 408(1-2): 255~263
    68 J. Zhang, X. Niu, X. Qiu, K. Liu, C. Nan, D. Tang, J. Meng. Effect of yttrium-rich misch metal on the microstructures, mechanical properties and corrosion behavior of die cast AZ91 alloy. J. Alloys Compd. 2009, 471(1-2): 322~330
    69李元东,陈体军,马颖,阎峰云,郝远.添加0.5%富铈混合稀土AZ91D镁合金半固态组织的形成.中国有色金属学报. 2007, 17(2): 320~325
    70 R.M. Wang, A. Eliezer, E. Gutman. Microstructures and dislocations in the stressed AZ91D magnesium alloys. Mater. Sci. Eng. A. 2003, 344(1-2): 282
    71 Y.Z. Lü, Q.D. Wang, W.J. Ding, X.Q. Zeng, Y.P. Zhu. Fracture behavior of AZ91 magnesium alloy. Mater. Lett. 2000,44(5): 265~268
    72 A. Srinivasan, J. Swaminathan, U.T.S. Pillai, K. Guguloth, B.C. Pai. Effect of combined addition of Si and Sb on the microstructure and creep properties of AZ91 magnesium alloy. Mater. Sci. Eng. A. 2008, 485(1-2):86~91
    73齐伟光,赵宝荣,许小忠,刘常明.钇对AZ91D镁合金组织和力学性能的影响.兵器材料科学与工程. 2007, 30(2): 52~55
    74张诗昌,魏伯康,林汉同,王立士.钇及铈镧混合稀土对AZ91镁合金铸态组织的影响.中国有色金属学报. 2001, 11(2): 99~102
    75郭旭涛,李培杰,曾大本. Mg-Y合金的电子理论研究.中国稀土学报. 2003, 21(6): 672~676
    76李金锋,耿浩然,杨中喜,王英姿,崔峰,孙春静.钇对AZ91镁合金组织和力学性能的影响.铸造. 2005, 54(1): 53~56
    77乐启炽,欧鹏,吴跃东,路贵民,崔建忠,邱竹贤. AZ91D镁合金近液相线铸造研究.金属学报. 2002, 38(2): 219~244
    78 Z.W. Li, Z.J. Wei, H.W. W. Microstructures of TiAl3 intermetallic compound solidified under ultra high pressure. T. Nonferr. Metals. Soc. China. 2002, 15(S2): 120~123
    79王智祥,黎业生,袁孚胜,刘金明. AZ91镁合金热挤压成形工艺的研究.江西理工大学学报. 2008, 29(6): 17~20
    80王智祥,谢建新,刘雪峰,李静媛,张丁非,潘复生.形变及时效对AZ91镁合金组织和力学性能的影响.金属学报. 2007, 43(9): 920~924.
    81潘复生,韩恩厚等.高性能变形镁合金及加工技术.科学出版社, 2007, 81~119
    82李淑波,吴昆,郑明毅,熊守美.挤压对AZ91铸造镁合金力学性能的影响.材料工程. 2006, 12: 54~57
    83 H.T. Zhou, Z.D. Zhang, C.M. Liu, Q.W. Wang. Effect of Nd and Y on the microstructure and mechanical properties of ZK60 alloy. Mater. Sci. Eng. A. 2007, 445~446:86~91
    84 Y. Iwahashi, Z. Horita, N. Nemoto. An investigation of microstructural evolution during equal channel angular pressing. Acta Mater. 1997, 45(11): 4733
    85 R. Lapovok, C. Loader, F.H. Dalla Torre, S.L. Semiatin. Microstructure evolution and fatigue behavior of 2124 aluminum processed by ECAE with back pressure. Mater. Sci. Eng. A. 2006, 425(1-2):36~46
    86周明智,薛克敏,李萍.温度和背压方式对等通道转角挤压过程的影响.中国机械工程. 2009, 18(18): 2163~2168
    87汪建敏,许晓静,石凤健,姜银方,陈康敏.等径角挤压获得超细晶铜的研究.热加工工艺. 2004, 7: 6~10
    88 W.J. Kim, C.W. An, Y.S. Kim, S.I. Hong. Mechanical properties and microstructures of an AZ61 Mg alloy produced by equal channel angularpressing. Scripta Mater. 2002, 47(1):39~44
    89 A. Yamashita, Z. Horita, T.G. Langdon. Improving the mechanical properties of magnesium and a magnesium alloy through severe plastic deformation. Mater. Sci. Eng. A. 2001, 300(1-2):142~147
    90 W. J. Kim, S. I. Hong, Y. S. Kim, S. H. Min, H. T. Jeong, J. D. Lee. Texture development and its effect on mechanical properties of an AZ61 Mg alloy fabricated by equal channel angular pressing. Acta Mater. 2003, 51(11): 3293~3307
    91 T. Mukai, M. Yamanoi, H. Watanabe, K. Higashi. Ductility enhancement in AZ31 magnesium alloy by controlling its grain structure. Scripta Mater. 2001, 45(1):89
    92胡汉起.金属凝固原理.机械工业出版社. 2000, 108~109
    93 D. Liu, H. V. Atkinson, P. Kapranos, W. Jirattiticharoean, H. Jones. Microstructural evolution and tensile mechanical properties of thixoformed high performance aluminium alloys. Mater. Sci. Eng. A. 2003, 361(1-2):213~224
    94 W.G. Yang, C-H. Koo. Improving the mechanical properties of Mg-8Al magnesium alloy by the Re addition and extrusion, Bulletin of the College of Engineering. N.T.U. 2003, 89:63~82
    95 T.J. Chen, Y. Ma, Y.D. Li, G.X. Lu, Y. Hao. Microstructural evolution of equal channel angular pressed AZ91D magnesium alloy during partial remelting. Mater. Sci. Technol. DOI 10.1179/174328409X428873
    96 E. Tzimas, A. Zavaliangos. Evolution of near-equiaxed microstructure in the semisolid state. Mater. Sci. Eng. A. 2000, 289(1-2):228~240
    97 E. Tzimas, A. Zavaliangos. A comparative characterization of near-equiaxed microstructures as produced by spray casting, magnetohydrodynamic castingand the stress induced, melt activated process. Mater. Sci. Eng. A. 2000, 289(1-2):217~227
    98 T. J. Chen, Y. Hao, J. Sun. Microstructural evolution of previously deformed ZA27 alloy during partial remelting. Mater. Sci. Eng. A. 2003, 337(1-2):73~81
    99 T.J. Chen, Y. Hao, J. Sun, Y.D. Li. Effect of Mg and RE additions on the semi-solid microstructure of a zinc alloy ZA27. Sci. Technol. Adv. Mater. 2003, 4: 495~502
    100 F. Czerwinski, A. Zielinska-Lipiec. The melting behaviour of extruded Mg-8%Al-%Zn alloy. Acta Mater. 2003, 51(11): 3319~3332
    101 F. Czerwinski. Size evolution of the unmelted phase during injection molding of semisolid magnesium alloys. Scripta Mater. 2003, 48(4):327~331
    102 E.D. Manson-Whitton, I.C. Stone, J.R. Jones, P.S. Grant, B. Cantor. Isothermal grain coarsening of spray formed alloys in the semi-solid state. Acta Mater. 2002, 50(10): 2517~2535
    103 V.A. Snyder, J. Alkemper, P.W. Voorhees. Transient Ostwald ripening and the disagreement between steady-state coarsening theory and experiment. Acta Mater. 2001, 49(4): 699~709
    104肖纪美.合金相与相变.冶金工业出版社, 2003, 300~309
    105 Z. Zhao, Q. Chen, Y. Wang, D. Shu. Microstructural evolution of an ECAE-formed ZK60-RE magnesium alloy in the semi-solid state. Mater. Sci. Eng. A. 2009, 506(1-2):8~51
    106 S. Sannes, H. Gjestland, L. Arnberg, J.K. Solberg.Microstructure coarsening of semi-solid Mg alloys. In: M. Kiuchi, Y. Saito, T. Emi, K. Ichikawa, T. Suzuki, A. Nanba (Eds.), Proceedings of the Third International Conference on Semi-solid Processing of Alloys and Composites, The Japan Society forTechnology of Plasticity and the Iron and Steel Institute of Japan and the Japan Institute of Metals and the Japan Institute of Light Metals and the Materials Process Technology Center and the Japan Foundrymen’s Society and Rheo-Technology Ltd., Tokyo, Japan. 1994: 75~84
    107 A. Khosravani, H. Aashuri, P. Davami, A. Narimannezhad, A. Foroughi, M. Kiani. Microstructural evolution of AZ91 alloy containing 3%Ca prepared by cooling slope. Solid State Phenomena. 2008, 141~143: 427~432
    108 S.M. Liang, R.S. Chen, E.H. Han. Semisolid microstructural evolution of equal channel angular extruded Mg-Al alloy during partial remelting. Solid State Phenomena. 2008, 141~143: 557~562
    109张发云. SiCp/AZ61复合材料制备及半固态触变成形研究.南昌大学博士论文. 2008:74~76
    110 D. Liu, H.V. Atkinson. Effect of heat treatment on properties of thixoformed high performance 2014 and 201 aluminum alloys. J. Mater. Sci. 2004, 39: 99~105
    111 S. Chayong, H.V. Atkinson, P. Kapranos. Multistep induction heating regimes for thixoforming 7075 aluminum alloy. Mater. Sci. Technol. 2004, 20: 490~496
    112阎峰云,强旭东,张玉海,黄晓锋,范松岩. AZ91D镁合金半固态触变成形压铸工艺.中国有色金属学报. 2008, 18(4): 595~600
    113 C.P. Chen, C.-Y.A. Tsao. Semi-solid deformation of non-dendritic structures—I. Phenomenological behavior. Acta Mater. 1997, 45(5): 1955~1968
    114 S. Chayong, H.V. Atkinson, P. Kapranos. Thixoforming 7075 aluminium alloys. Mater. Sci. Eng. A. 2005, 390(1-2):3~12
    115 P. Kapranos, D.H. Kirkwood, H.V. Atkinson, J.T. Rheinlander, J.J. Bentzen,P.T. Toft, C.P. Debel, G. Laslaz, L. Maenner, S. Blais, J.M. Rodriguez-Ibabe, L. Lasa, P. Giordano, G. Chiarmetta, A. Giese. Thixoforming of an automotive part in A390 hypereutectic Al–Si alloy. J. Mater. Proc. Technol. 2003, 135(2-3): 271~277
    116 P. Kapranos, P. J. Ward, H. V. Atkinson, D. H. Kirkwood. Near net shaping by semi-solid metal processing. Mater. Design. 2000, 21(4): 387~394
    117 S. Yu, D. Li, N. Kim. Microstructure evolution of SIMA processed Al2024. Mater. Sci. Eng. A. 2006, 420(1-2):165~170
    118 Q.Q. Zhang, Z.Y. Cao, Y.F. Zhang, G.H. Su, Y.B. Liu. Effect of compression ratio on the microstructure evolution of semisolid AZ91D alloy. J. Mater. Process. Technol. 2007, 184(1-3): 195~200
    119 J.F. Jiang, Y. Wang, S. Luo. Application of equal channel angular extrusion to semi-solid processing of magnesium alloy. Mater. Charact. 2007, 58(2): 190~196
    120 J.F. Jiang, S.J. Luo. Preparation of semi-solid billet of magnesium alloy and its thixoforming. T. Nonferr. Metals. Soc. China. 2007, 17(1): 46~50
    121 J.F. Jiang, S.J. Luo. Microstructure evolution of processed Mg-Al-Zn alloy by equal channel angular extrusion in semi-solid isothermal treatment. T. Nonferr. Metals. Soc. China. 2006, 16(6): 1313~1319
    122 J.F. Jiang, S.J. Luo, J.X. Zou. Preparation of AZ91D magnesium alloy semi-solid billet by new strain induced melt activated method. T. Nonferr. Metals. Soc. China. 2006, 16(5): 1080~1085
    123 F. Czerwinski, A. Zielinska-Lipiec, P. J. Pinet, J. Overbeeke. Correlating the microstructure and tensile properties of a thixomolded AZ91D magnesium alloy. Acta Mater. 2001, 49(7): 1225~1235
    124 H.V. Atkinson, D. Liu. Development of high performance aluminum alloysfor thixoforming. In: Y. Tsutsui, M. Kiuchi, K. Ichikawa. Proc. Of the 7th Int. Conf. on Semi-Solid Processing of Alloys and Composites, Tsukuba, Japan, Sept 25th-27th, 2002, National Institute of Advanced Industrial Science and Technology, Japan Society for Technology of Plasticity: 51~56

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700