用户名: 密码: 验证码:
相变潜热机理及其应用技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对相变材料在热红外假目标伪装领域的应用需求,以相变材料结构和相变机理研究为基础,进行了相变潜热影响机制和微观本质的探讨,建立了示假性能的多因素综合影响的数学模型,解决了相变材料在热红外示假领域应用的关键技术难题。
     首先,通过氧化反应、接枝共聚反应研究有机相变材料的分子间作用力与相变潜热的关系。动态分析了脂肪烃类、脂肪醇类及脂肪酸类相变材料的分子量、分子极性和分子结构对相变潜热影响的本质因素,建立了相变潜热与影响因素间的定量关系,发现了有机材料相变潜热存在最高限值。
     然后,合理设计实验和测试方案,将无机水合盐复杂的相变过程拆分细化,发现一个新的现象:水合盐的相变形式除了结晶水的脱除和结晶外,还存在另外一种形式,即水合盐在相变点直接熔化形成熔体而发生固-液相变;通过热力学计算分析还发现,脱结晶水发生相变的水合盐,其相变潜热除传统观点认为的脱结晶水吸热外,还包括后续两个连续过程的热效应:脱水后无机盐溶解于结晶水中的溶解热、溶解过程中产生的浓差热效应。以上两种相变形式的结晶水平均相变潜热分别为12kJ·mol~(-1)和7kJ·mol~(-1)。
     其次,采用遗传程序设计、ANSYS软件模拟分析和实测数据,定量分析了相变潜热、热导率、环境温度、风速、材料厚度和形状等各因素对假目标示假效能的影响,并建立了多因素综合影响的数学模型,发现了一些重要的客观规律,如示假效能与表面积无关,与热导率有较大关联。这些结论对后续相变材料热红外假目标的设计起到了很好的指导作用。
     最后,对相变材料热红外假目标技术实际应用的关键难题进行了研究。分析得出典型目标特征部位及其红外暴露征候,为热红外假目标的热区设计和相变材料选择提供了依据;提出了野外自加热的供能技术及三层复合结构,并对高、低温自加热体系进行了改性,高温自热体系有效作用时间提高了4倍,低温自热体系热启动时间由2h缩短至5min,成功地解决了示假前相变材料的熔化、示假后相变材料保温的兼容性难题。
Based on the research of the structure of phase change material and the mechanism(s) of phase transition, the effects and the microscopic nature of latent heat were studied to meet the application demands of phase change materials in the thermal infrared decoy camouflage field. Further experiments were carried out to study the factors that determine the decoy capabilities of the phase change materials, the research results provided practical protocols for the application of phase change materials in the thermal infrared decoy camouflage.
     The relationship between inter-molecular interaction and latent heat was studied by oxidation and the graft copolymerization reaction. How the molecular weight, polar group, and molecular structure affect the latent heat of the organic materials were studied in detail by danamic analyze. The quantitative relationships between latent heat and variable were established. The novel result was found: The latent heat was not always increased when inter-molecular interaction was increased, and it had the maximum.
     Experiments were designed to determine the composition of the phase change latent heat of inorganic salts. A novel solid-liquid phase change form was also observed when solid materials melt at the phase change temperature. The thermodynamics calculation of the obtained results demonstrated that the latent heat of inorganic salts consists of three parts, which are dehydration enthalpy, solution enthalpy, concentration enthalpy. A quantitative correlation between the number of crystal water and the molar latent heat of inorganic salt was established. The molar latent heat was determined to be 7 kJ·mol~(-1) when phase change occurred after the crystal water was missed, while a 12 kJ·mol~(-1)latent heat was detected when inorganic material melted at the phase change temperature.
     The effects of different factors including phase change latent heat, thermal conductivity, environment temperature, wind velocity, material thickness, and shape on decoy camouflage were quantitatively analyzed using ANSYS programs and Genetic Programming Design for single-factor and multi-factor analysis, respectively. The predicted results were further confirmed by experiments. It was concluded that the decoy capabilities was dramatically affected by thermal conductivity whereas the shape demonstrated subtle effect on decoy capabilities. The emprical formula was successfully applied to the design of thermal infrared decoy.
     The infrared exposure profile of typical object was determined to provide critical information on the design of thermal infrared decoy and the selection of phase change materials. An improved self-heating material was developed based on the previously reported materials to meet the outdoor heating requirements. A three-layer material consisting of self-heating, temperature-keeping, and phase change materials was designed to solve the technical problems that prevent thermal infrared decoy from being practically applied.
引文
[1] Babaev B D. System NaF-NaCl-NaNO3[J]. Inorganic Materials,2002,38(1):83~84.
    [2] Brouusseau P L. M. Numerical simulation of a multi-layer lqtent heat rhermal storage system[J]. International Journal of Energy Research,1998,22(1):1~15.
    [3] Dinccer I,Dost S. Aperspective on thermal energy storage systems for solar energy appliication[J]. International Journal of Energy Research,1996,20(6):547~557.
    [4] Tabrizi N S,Sadrameli M. Modeling and simulation of cyclic thermal regenerators utilizing encapsulated phase change materials[J]. International Journal of Energy Research,2003,27(5):431~440.
    [5]王剑峰.相变储热研究进展[J].新能源,2002,22(3):31~35.
    [6]左萍,武克忠,崔维真,刘晓地.四氯合金属(Ⅱ)酸正十烷铵的合成与表征[J].河北师范大学学报,2002,26(1):53~55.
    [7]贺岩峰,张令轩等.热能储存技术研究进展[J].现代化工,1994,8(2):8~10.
    [8]培克曼,吉利.蓄热技术及其应用[M].北京:机械工业出版社,1989.
    [9]张寅平,胡汉平,孔祥冬.相变贮能-理论和应用[M].合肥:中国科学技术大学出版社,1996.
    [10]庄斌舵,陈兴华.蓄(热)冷器[J].能源研究与利用,2002,3(1):17~20.
    [11]邹复柄,章学来.石蜡类相变蓄热材料研究进展[J].能源技术,2006,27(1):29~34.
    [12]乔英杰,王德民,张晓红等.复合相变储能材料研究与应用新进展[J].材料工程,2007,增刊1:17.
    [13] Benlen Z,Jose M,Luisa F. Review on thermal energy storage with phase change materials heat transfer analysis and applications[J]. Applied Thermal Engineering,2003,23(2):251~283.
    [14] Cho J S, Kwon A C. C. G. Microencapsulation of octadecane as a phase-change material by interfacial polymerization in an emulsion systerm[J]. Collid Polym Sci,2002,280:260~266.
    [15] Erwin P,Zhang Xuemei,et al. Influence of ultrasonic irradiation on the solidification behavior of erythritol as a PCM[J]. Journal of Chemical Engineering of Japan,2002,35(3):290~298.
    [16]叶四化,王长安,吴育良等.微胶囊技术及其在相变材料中的应用[J].广州化学,2004,29(4):34~38.
    [17] Choi J K L. J., Kim J H. Preparation of microcapsules containing phase change materials as heat transfer media by in-situ polymerization[J]. Journal of Industrial and Engineering Chemistry,2001,7(6):358~362.
    [18] Fossett A J M. M. T., Kudirka A A, et al. Avionics passive cooling with microencapsulated phase change materials[J]. Journal of Electronics Packaging,1998,120(3):238~242.
    [19] Zhang Xingxiang T. X., Yick Kit Lun,et al. Structure and thermal stabiliaty of microencapsulated phase-change materials[J]. Colloid Polym Sci,2004,282:330~336.
    [20] Hawlader MNA U. M., Mya Khin. Microencapsulated PCM thermal-energy storage system[J]. Applied Energy,2003,74:195~202.
    [21] Masato Tanaka Y. T., Natsukaze Saito.Proceedings The First Joint China/Japan Chemical Engineering Symposium[M].Beijing,2000:552~556.
    [22]孙建强,张仁元.金属相储能与技术的研究与发展[J].材料导报,2005,19(8):99~101.
    [23] Birchenall C E,Riechman A F. Heat storage in eutectic alloys[J]. Metall Trans A,1980,11:1415~1420.
    [24]黄志光等.聚光太阳灶用金属相贮装置的研究[J].太阳能学报,1992,13(3):271~275.
    [25] Bo H,Fredrik. Technical grade paraffin waxes as phase change materials for cool thermal storage and cool storage systems capital cost estimation[J]. Energy Conversion and Management,2002,43:1709~1723.
    [26]游亚戈,樊栓狮,顾中平等.一种相变蓄能稳定发电方法及其装置[P].中国:03101163.2.
    [27] PrisniakovV.F,GabrinetsV.A. The new conceptions for design of thermal energy storage for solar dynamic plants[J]. Acta Astronautica,1995,37:7~10.
    [28]刑玉明,袁修干,王长石.空间站高温固-液相蓄热容器的实验研究[J].航空动力学报,2001,16(1):16~20.
    [29]马芳梅.相变物质储能建筑材料性质研究的进展[J].新型建筑材料,1997,8(2):40~42.
    [30]闫全英,王威,于丹.相变储能材料应用于建筑围护结构中的研究[J].材料导报,2005,19(8):102~105.
    [31]樊栓狮,梁德青,杨向阳等.储能材料与技术[M].北京:化学工业出版社,2004:299~300.
    [32] Quanying Y. An Applied Research on Phasr-Change Material Building Mass. Proceedings of the 3rd international symposium on heat transfer and energy conservation. Guangzhou: South China umiversity of technology press, 2004. p.1285.
    [33] Feldman D,Banu D. Obtaining an energy storing building material by direct incorporation of an organic phase change material in gypsum wallboard[J]. Solar Energy Mater,1991,22(5):231~242.
    [34] Khudhair A M,Farid M M. A review on energy conseervation in building application with thermal storage by latent heat using phase change material[J]. Energy conversion and management,2004,45(8):263~275.
    [35] Rudd A F. Phase-change material wallboard for distributed thermal storage in building[J]. ASHRAE Transactions Research,1993,12(6):339~346.
    [36]吕石磊,冯国会,付英会等.脂肪酸类相变材料墙板在北方寒冷地区应用的DSC分析[J].节能,2004,3(2):36~38.
    [37] Farid M,Kong W.J. Proceeding of the Institution of Mechanical Engineers[J]. Underfloor heating with latent heat storage,2001,12(6):601~609.
    [38] Farid M. M,et al. A review on phase change energy storagy storage: materials and applications[J]. Enerage Conversion and Management,2004,45(9):1597~1615.
    [39] Peippo Y, Sugeno T. Proceedings of the 31st intersociety energy conversion engineering conference. American Nuclear Society. New york, 1996. p.2077.
    [40]王岐东,董黎明,代一心等.相变建筑节能材料的应用研究与进展[J].北京工商大学学报,2005,23(1):5~8.
    [41]张寅平,孔祥冬,葛新石等.一种速冷保温容器[P].中国:92100062,1992-07-06.
    [42]张寅平,李业发,葛新石等.一种相变蓄热电供暖器[P].中国:95229702.7.
    [43]石海峰,张兴祥.微胶囊技术在蓄热调温纺织品的应用[J].纺织学报,2001,8(12):1~5.
    [44]张兴祥,石海峰.调温纤维及其制品[P].中国:96105229.5.
    [45] Yang FY,Chu Y,Huo L, et al. Fabrication of polyaniline/ethycellulose composite microspheres by microencapsulation[J]. CHEMISTRY LETTERS,2005,34(3):338~389.
    [46]蔡利海,张兴祥.相变材料微胶囊的研究与应用[J].材料导报,2002,16(12):61~64.
    [47]周伟,张芳,王小群.相变温控在电子设备上的应用研究进展[J].电子器件,2007,29(1):344~348.
    [48]张兴祥,王馨,吴文键编,满亚辉参编.相变材料胶囊制备与应用[M].北京:化学工业出版社,2010.
    [49]黄琮喜,刘祥萱,王煊军等.具红外隐身功能石蜡微胶囊制备工艺研究[J].化工新型材料,2007,35(2).
    [50]邓春涛.热红外伪装技术的现状与发展[J].现代兵器,1990,6(2):18~20.
    [51]李发学.新型红外伪装纺织品的研究[D].南京:东华大学,2003:76~80.
    [52]李发学,张广平,吴丽莉,俞建勇.相变材料在新型红外伪装服上的应用[J].纺织学报,2003,24(2).
    [53] Mckinney R A,Bryant Y G,Colvin D P.Method of reducing infrared viewability of objects[P].U.S.:6373058,2002-04-16.
    [54]吕舒眉,张拴勤,连长春,黄长庚.相变材料红外特征模拟的理论和实验研究[J].兵工学报,2007,28(4):463~466.
    [55]叶宏,张栓勤,庄双勇等.相变材料模拟金属板热特性的理论设计与实验验证[J].兵工学报,2006,27(3):489~493.
    [56]李彦武.红外热成像仿真假目标的技术研究[D].长沙:国防科学技术大学,2001:65~90.
    [57]李彦武,吴文健.国内外假目标的技术装.湖南省宇航学会复合材料分会2001年学术年会.长沙:国防科学技术大学, 2001. p.16~18.
    [58]孙浩.红外热成像仿真假目标技术用微胶囊相变材料的研制[D].长沙:国防科学技术大学航天与材料工程学院,2004:45~56.
    [59]孙浩,李彦武,吴文健.红外热成像仿真假目标技术研究.第十二届光电对抗与无源干扰学术会议.长春, 2002.
    [60]孙浩,吴文健.石蜡相变微胶囊的研制及其在红外伪装隐身上的应用.全国第十三届光电对抗与无源干扰学术会议.张家界, 2004.
    [61]孙浩,吴文健.石蜡微胶囊化及其红外伪装隐身性能研究[J].光电技术应用,2005,20(3):41~44.
    [62]吴晓森.相变材料红外热成像假目标的研制[D].长沙:国防科学技术大学,2006:55~88.
    [63]吴晓森,刘长利,张学骜等.相变材料应用于红外热成像假目标的探讨[J].材料工程,2006增刊:264~267.
    [64]吴晓森,张学骜,刘长利等.相变材料应用于红外热成像假目标的初步研究[J].光电技术应用,2006,21(3):35~37.
    [65]吴晓森,张学骜,吴文健.微胶囊相变材料研究进展[J].化学世界,2006,47(2):108~112.
    [66]郭志强.低温高潜热无机相变材料及其热红外示假性能的研究[D].长沙:国防科学技术大学,2007:48~72.
    [67]郭志强,吴文健,满亚辉等.基于ANSYS有限元方法对相变材料相变过程的分析[J].新材料新工艺,2007,28(11):87~89.
    [68]李晓霞,张胜虎,凌永顺等.新型热红外伪装体系[J].红外技术,2002,24(1):42~49.
    [69]邢宏龙,杜永,潘向萍.微胶囊相变材料及其在热红外隐身中的应用[J].山西化工,2006,26(5):29~30.
    [70]李金辉,刘晓兰,张荣军等.新型相变储能材料研究进展[J].化工新型材料,2006,34(8):18~21.
    [71]马晓光,张晓林,李俊升等.相变材料的复合及其热性能研究[J].材料科学与工艺,2008,16(5):720~723.
    [72]肖德炎,张东,田胜力.有机/无机复合相变储能材料的长期化学稳定性研究[J].材料开发与应用,2005,20(2):13~16.
    [73]张东,李凯莉等.复合相材料研究进展[J].功能材料,2007,36(12):1936~1940.
    [74]张奕,张小松.有机相变材料储能的研究和进展[J].太阳能学报,2006,27(7):725~730.
    [75] Costa M. B. D., Oliva A.,. Numerical Simulation of a Heat Thermal Energy Storage System with Enhanced Heat Conduction[J]. Energy Conversion and Management,1998,39(34):319~330.
    [76] Horbaniuc B.,Dumitrascu G. Mathermatical Models for the Study of Solidification Within a Longitudinally Finned Heat Pipe Latent Thermal Storage System[J]. Energy Conversion & Managerment,1999,40(10):1765~1774.
    [77] Hoseon Y. Analytisal Solutions to the Unsteady Close-contact Melting on a Flat Plate[J]. International Journal of Heat and Mass Transfer,2000,43(8):1457~1467.
    [78] Lacroix M. Numerical simulation of a shell-and -tube latent heat thermal energy storage unit[J]. Solar Energy,1993,50(4):357~367.
    [79] Lacroix M. Numerical simulation of melting and resolidication of a phase change material around two cylindrial heat exchangeers[J]. Numerical Heat Transfer ,Part A,1993,50(2):143~160.
    [80] Lacroix M. Coupling of wall conduction with natural convection-dominated melting of a phase change material[J]. Numerical Heat Transfer ,Part A,1994,51(4):483~498.
    [81] Ravindran K.,Lewis R.W. Finite Element Modeling of Solidification Effects Mould Filling[J]. Finite Element in Analysis and Design,1998,31(2):99~116.
    [82] Sasaguchi K.,Ishihara A.,Zhang H. Numerical study on Utilization of melting of phase change material for cooling a heated surface at a constant rate[J]. Numerical Heat Transfer ,Part A,1996,29(7):19~31.
    [83] Wakao N.,Kaguei S.,Funazkri T. Effect of fluid dispersion coeffcients on particle to fluid heat transfer coeffcients in packed beds[J]. Chemical Emgineering Design,1979,34(2):325~336.
    [84]康艳兵,张寅平,江亿等.相变蓄热球体堆积床传热模型及热性能分析[J].清华大学学报,2000,40(2):106~109.
    [85]康艳兵,张寅平,朱颖心等.相变蓄热同心套管传热模型和性能分析[J].太阳能学报,1999,20(1):40~45.
    [86]孔详谦.有限单元法在传热学中的应用(第三版)[M].北京:科学技术出版社,1998:55~65.
    [87]王剑峰.组合式相变材料蓄热系统中相变温度分布研究[J].太阳能学报,1998,19(3):294~298.
    [88] Sari A.,Kaygusuzk. Fatty Acids Used for Latent Heat Storage:Thermalstability and Corrosion of Metals with Respect to Thermal Cycling[J]. Renewable Energy,2003,28(6).
    [89]陈伟珂,郭新川等.球体内混合有机材料相变传热特性分析[J].太阳能学报,2002,23(1):19~24.
    [90]李云雁.固体石蜡改性的研究[J].武汉工业学院学报,2001,40:48.
    [91]马宇辉,王桂香等.熔融法聚乙烯蜡接枝马来酸酐的研究[J].粘接,2003,12(6):1~4.
    [92]常建华,董绮功.波谱原理及解析[M].北京:科学出版社,2001.
    [93]冯玉海,沈本贤,陈新等.石蜡无催化氧化改性工艺[J].华东理工大学学报,2001(6):269.
    [94]曾昭琼主编.有机化学[M].北京:高等教育出版社,1994:35.
    [95]高忠良.聚乙烯接枝马来酸酐动力学的研究[J].河北工业大学学报,1996(2):46.
    [96]辛厚文.分子拓扑学[M].合肥:中国科学技术大学出版社,1992:41~43.
    [97]许禄,胡昌玉.应用化学图论[M].北京:科学出版社,2000:149~150.
    [98]冯长君.价电子密度连接性指数及其应用[J].南京理工大学学报,2000,24(3):223~227.
    [99]李林峰,游效增.分子拓扑指数及其应用[J].科学通报,1993,25(5):421~423.
    [100]李新华,朱龙观,俞庆森.一种改进的分子连接性指数[J].中国科学(B辑),2000,30(2):188~192.
    [101]秦正龙.有效主量子数拓扑指数及其应用[J].计算机与应用化学,2003,20(6):802~804.
    [102]顾去龙,汪玉静,李宝宗.金属卤化物拓扑指数与理化性质的相关性[J].徐州建筑职业技术学院学报,2004,4(1):40~41.
    [103]秦正龙,冯长君.碱金属卤化物晶格能和磁化率的拓扑研究[J].分析科学学报,2002,18(4):303~305.
    [104] Wiener H. Structure determination of paraffin boiling points [J]. Chem Soc,1947,69:17~20.
    [105]陈艳,冯长君.用自相关拓扑指数估算链烷烃的热力学性质[J].南京化工大学学报,2000,22(5):29~32.
    [106]冯长君.用碳序指数预测链烷烃的热力学性质[J].南京师范大学学报,1999,22(3):42~46.
    [107]沐来龙,冯长君.原子序数连接性指数与烯烃热力学性质的定量关系研究[J].徐州师范大学学报,2004,22(2):51~54.
    [108]杨伟华,冯长君.分子连接性指数与烯、炔烃热力学性质的QSPR研究[J].徐州师范大学学报,2005,23(2):60~67.
    [109]张秀利,李杰红,陈惠兰等.饱和链烃类化合物的物理化学性质的分子拓扑理论研究[J].化学学报,1999,57(1):12~16.
    [110] Abhat A. Low Temperature Latent Heat Thermal Energy Storage:Heat Storage Materials[J]. Solar Energy,1983,30(4):313~332.
    [111] Humphries W R,Griggs E I.A designing handbook for phase change thermal control and energy storage devices[M].USA:NASA Technical Paper,1977:1074~1084.
    [112] Lane G A.Low temperature heat storage with phase change materials[M].Virginia:Int J Energy Res,1980:60~155.
    [113] Lane G A. Phase change materials for energy storage nucleation to prevent subcooling[J]. Solar Energy Mater Solar Sells,1991,27(5):60~135.
    [114] Lane G A,Glew D N,Clark E C.Heat of fusion system for solar energt storagesubsystems for the heating and cooling of building[M].Virginia:Chalottesville,1975.
    [115] Lorsch H G,Kauffman K W. Thermal enrgy storage for heating and air conditioning,Future enegy production system[J]. Heat Mass Transfer Processes,1976,56(1):69~85.
    [116]李志广,米伟娟,黄红军.相变储能材料的应用展望[J].河北化工,2004(5):10~14.
    [117] G N. Application of microencapsulation in textiles[J]. International Journal ofPharmaceutics,2002,242(6):55~62.
    [118] Hale D.A. , Hoover M.J. , O'Nell M.J.Phase Change Materials Handbook[M].Alabama:Marshall Space Flight Cemter Marshall Space Flight Center,1971.
    [119]马沛生.有机化合物实验物性数据手册[M].北京:化学工业出版社,2006.8.
    [120]吴晓森.相变材料红外热成像假目标的研究[D].长沙:国防科学技术大学,2006:33~38.
    [121] Martin G.Broadhurst. An Analysis of the Phase Behavior of the Normal Paraffins[J]. A. Physics and Chemistry,1962,66A(3):241~249.
    [122] Faith H E. Technical assessment of solar thermal energy storage technologies[J]. Renewable Energy,1998,14:35~40.
    [123] Farid M M,Kanzawa A. Thermal performance of a heat storage module using PCM's with different melting temperatures-mathematical modeling [J]. Solar Energy Eng.,1989,111:7~152.
    [124] Farid M M,Kanzawa A. An electriccal storage heater using phase change method of heat storage[J]. Enerage Conversion and Management,1990,30:30~219.
    [125] Himran S,Suwono A,Mansoori G A. Characterization of alkanes and paraffin waxes for application as phase change energy storage medium[J]. Energy Sources,1994,16:28~117.
    [126] Mohammed M.Farid A. M. K. A Review on Phase Change Energy Storage:Materials and Appliccations[J]. Energy Conversion Management,2004,45:1597~1615.
    [127] Zeng X R,Ko T M. Structures and properties of chemically reduced polyanilines [J]. Polymer,1998,39(5):1187~1190.
    [128]吴瑾光.近代傅立叶变换红外光谱技术及应用(上卷)[M].北京:科学技术文献出版社,1994.
    [129]董庆平.红外光谱法[M].北京:石油化学出版社,1977:120~126.
    [130]陈洁,宋启泽.有机波谱分析[M].北京:北京理工大学出版社,1996:52~58.
    [131] Benson D.K. Solid state phase transitions in pentaerythritol and related poyhydr alchohols[J]. Solar Energy Materials,1986,13:133~152.
    [132]何书美.多元醇固-固相变变温红外光谱研究[J].太阳能学报,1999,20(3):294~297.
    [133]张建玲,刘晓地,何书美等.多元醇固-固相变的变温红外光谱研究[J].高等学校化学学报,2000,21(6):937~940.
    [134]赵睿新.三羟甲基甲胺、季戊四醇及其二元体系固-固相的变温红外光谱研究[J].光谱实验室,2002,19(3):307~309.
    [135] Benson D.K.,Burrows R.W.,Webb J.D. Solid state phase change transition in PE and related polyhydric alcohols[J]. Solar Energy Materials,1986,13(2):133~152.
    [136]何书美,周清泽,陈晓艳.多元醇固-固相变变温红外光谱研究[J].太阳能学报,1999,20(3):294~297.
    [137]刑登清,迟文山,阮德水等.多元醇二元体系固-固相变贮热的研究[J].太阳能学报,1995,16(2):131~137.
    [138]徐玲玲,沈艳华,梁斌斌等. Na2SO4.10H2O和Na2HPO4.12H2O体系的相变特性[J].南京工业大学学报,2005,27(4):28~31.
    [139] Biswas D R. Thermal energy storage using sodium sulfate deca-hydrate and water[J]. Solar Energy,1977,19(1):99~104.
    [140]宋萍.水合离子的形成及其对载机盐有关性质的影响[J].青海师专学报(自然科学),1998(4):62~64.
    [141]张良苗,纪晓波,陆文聪等.水合盐形成条件的化学键参数分析[J].上海大学学报,2004,10(4):381~385.
    [142]吴根华,杨世辉.离子水化新模型和水化能的计算[J].安庆师院学报(自然科学),1995,1(1):17~21.
    [143] Bellecci C C. M. Latent heat thermal storage for solar dynamic power generation[J]. Solar Energy,1993,51(3):169~173.
    [144] Strumpf H J,Coombs M G. Solar receiver for the space station brayton engine[J]. Journal of Solar Energy Engineering,1988,110(4):295~300.
    [145] Strumpf H J,Coombs M G. Solar receiver experiment for the space station freedom bratton engine[J]. Journal of Solar Energy Engineering,1990,112(2):12~18.
    [146]陈传福,习复,潘增富等.一种新型贮能材料的研制及其应用前景[J].中国空间科学技术,1995,26(5):31~36.
    [147]崔海亭,袁修干,侯欣宾.蓄热技术的研究进展与应用[J].化工进展,2002,21(1):23~25.
    [148]王胜林,王华,祁先进等.高温相变蓄热的研究进展[J].能源工程,2004,23(6):6~11.
    [149]刑玉明,袁修干,崔海亨.空间站太阳能吸热器相变蓄热系统瞬态热分析[J].太阳能学报,2003,24(2):193~196.
    [150]刑玉明,袁修干,崔海亨,等.空间站太阳能吸热器蓄热性能地面模拟试验[J].航空动力学报,2002,17(2):226~230.
    [151]张丽芝,张庆.相变贮能材料[J].化工新型材料,2001,29(2):19~21.
    [152] Shapiro M M,Feldman D,Hawes D,et al. PCM thermal storage in wallboard[J]. Passive Solar Jpurnal,1987,4(4):419~424.
    [153] Zalba B,Marin J M,Cabeza L F,et al. Review on thermal energy storage with phase change:materials,heat transfer analysis and applications[J]. Applied Thermal Engineering,2003,23(3):251~260.
    [154]冒东奎.相变储能复合材料[J].新能源,1997,19(11):7~11.
    [155]王岐东,张学义,康惠宝.复合相变储能材料的选择[J].北京工业学院学报,1997,15(1):61~68.
    [156]张东,周剑峰,吴科如.相变储能复合材料及其电力调峰功能分析[J].华东电力,2003,31(9):27~32.
    [157]徐万东,张瑞林,余瑞璜.过渡金属化合物晶体结合能计算[J].中国科学(A辑),1988(3):323~330.
    [158]杨宏秀.无机固体化学[M].天津:天津教育出版社,1995:89~93.
    [159]大连理工大学无机化学教研室.无机化学[M].北京:高等教育出版社,2004.
    [160] George A L.Solar heat storage:Latent heat material[M].USA:CRC press,1983.
    [161] Anil I O,Sircar K. Development of phase change technology for heating and cooling of residential buildings and other applications. Proceedings of the 28th Intersociety Energy Conversion Engineering Conference, 1993. p.134~138.
    [162]杜廷发.现代仪器分析[M].长沙:国防科学技术大学出版社,1994:1~3.
    [163]焦小浣,胡文旭,陈玲等.十水硫酸钠相变储热材料应用研究[J].陕西师范大学学报,1996,24(3):37~39.
    [164]马江生.相变储热材料-Na2SO4.10H2O的研制[J].海湖盐与化工,1994,23(1):37~39.
    [165]文越华,张公正,王正刚等. Na2SO4.10H2O复合相变储冷体系的热力学性质[J].北京理工大学学报,1999,19(6):779~781.
    [166]胡启柱,阮德水,梁上启,皮启铎.十水硫酸钠——纸浆体系低温贮能的初步研究[J].华中师范大学学报,1983,27(2):8~14.
    [167]李卫萍,胡起柱,阮德水. Na2CO3.10H2O-NaAc.3H2O体系相图[J].华中师范大学学报,1994,38(2):15~20.
    [168]皮启铎,阮德水,戴志松.太阳能贮热物质的研究概况[J].华中师范大学学报,1983,27(2):9~12.
    [169]阮德水,张太平,胡起柱. Na2HPO4·12H2O-NaCH3COO·3H2O体系相图[J].华中师范大学学报,1991,35(4):20~24.
    [170]阮德水,张太平,张道圣等.相变贮热材料在太阳房中的应用研究[J].华中师范大学学报,1992,37(4):12~15.
    [171]阮德水,张太平,张道圣等.水合盐相变热长期贮存的研究[J].太阳能学报,1993,24(1):2~7.
    [172]孙鑫泉,龚钰秋,徐宝庆.十水硫酸钠体系潜热蓄热材料的研究[J].浙江大学学报(理学版),1990(2):10~15.
    [173]谢全安,郑丹星,武向红. Na2SO4·10H2O共晶盐的热化学研究[J].太阳能学报,2002,23(1):14~20.
    [174]胡起柱,皮启铎,阮德水等. Na2SO4·10H2O-NaCl贮热体系的DSC研究[J].太阳能学报,1985,6(1):5~10.
    [175]冯海燕,刘晓地,葛艳蕊等.水合盐的几中脱水过程探讨[J].无机化学学报,2000,16(1):89~96.
    [176] Biswas D. R. Thermal energy storage using solidium sulfate decaydrate and water[J]. Solar Energy,1977,19(5):99~100.
    [177]程玉蓉.用于建筑节能的相变蓄热材料热性能研究[D].浙江:浙江大学,2006:15~17.
    [178]傅献彩,沈文霞,姚天.物理化学[M].北京:高等教育出版社,2002:474.
    [179]熊亚,金龙飞,胡起柱. CH3COONa·3H2O-Na2SO4·10H2O截面[J].华中师范大学学报,1992,36(3):15~18.
    [180]徐建霞,柯秀芳. CH3COONa·3H2O相变储能性能研究[J].材料开发与应用,2007(6):8~11.
    [181]石海民,梁德青,李栋梁等. CH3COONa·3H2O相变蓄热性能研究[J].制冷学报,2009(2):5~10.
    [182] Mehling H,Cabeza L F,Hippeli S,et al. PCM-module to improve hot water heat stores with stratification[J]. Renewable Energy,2003,28:699~711.
    [183] Sandnes B,Rekstad J. Supercooling salt hydrates:Stored enthalpy as a function of temperature[J]. Solar Energy,2006,80:616~625.
    [184] Cabeza L. F.,Ensson G. ,Hiebler S. ,etal. Thermal performance of sodium acetate trihy-drate thickened with different materials as phasechange energy storage material[J]. Applied Thermal Engineering,2003,23:1697~1704.
    [185]李靖华.三水合醋酸钠——酒石酸低共熔混合物潜热贮能的研究[J].河南师范大学学报,1990(2):20~24.
    [186]李靖华,丁立,张继昌等.三水合醋酸钠—乙酰胺低共熔混合物潜热贮能的研究[J].河南师范大学学报,1988(4):8~12.
    [187]陈祖林,窦万英.浇谈水合离子结构[J].江苏广播电视大学学报,1994,4(4):29~32.
    [188]桐山良一(日).结构无机化学[M].北京:人民教育出版社,1978:147~154.
    [189]王道林,熊裕堂.水合物之浅议[J].山西师范大学学报,1989,3(2):33~39.
    [190] Ruben H. W.,Templeton D. H. Crystal Structure and Entropy of Sodium Sulfate Decahydrate[J]. ,1961,83(2):820~824.
    [191]林联君,房春辉等.球形氢键模型预测电解质溶液中的离子水合数[J].盐湖研究,2006,14(3):43~47.
    [192]尚雄,张雄.储能新技术-相变储能[J].上海建材,2004,16(6):18~20.
    [193]左远志,丁静,杨晓西.中温相变蓄热材料研究进展[J].现代化工,2005,25(12):15~19.
    [194] Robert C W.CRC handbook of chemistry and physics[M].USA:CRC Press Inc,1978.
    [195]余金丽.储能物系功能材料的开发研究[D].天津:天津工业学院,2000:7~9.
    [196]孟庆珍,胡鼎文等.无机化学[M].北京:北京师范大学出版社,1980:28~32.
    [197]李保存,陈侠.水盐体系相图[M].天津:天津轻工业学院,1996:2~5.
    [198] Pieter A著,吴文健,胡碧茹,满亚辉等译.地面目标和背景的热红外特性[M].北京:国防工业出版社,2004:102~112.
    [199]孙浩.红外热成像仿真假目标技术用微胶囊相变材料的研制[D].长沙:国防科学技术大学航天与材料工程学院,2004:47~54.
    [200] Bogdan Horbaniuc,Gheorghe Dumitrascu. Mathematical models for the study of solidification within a longitudinally finned heat pipe latent heat thermal storage system[J]. Energy Conversion & Managerment,1999,40(2):1744~1765.
    [201] Hoseon Yoo. Analytisal solutions to the unsteady close-contact meling on a flat plate[J]. International Journal of Heat and Mass Transfer,2000,43(6):1457~1467.
    [202] Jianfeng Wang,Guangming Chen,Haobo Jing. Theoretical study on a novel phase change process[J]. Journal of Energy Research,1999,23(4):287~294.
    [203] Voller V.R. An overview of numerical methods for solving phase problems[J]. Advances in Numerical Heat Transfer,1997,10(1):341~380.
    [204]刘星桥,郭丽娟,谢玲等. Ansys在方位保持部件温度场分析中的应用[J].火力与指挥控制,2004,3(1):95~97.
    [205]陶文铨.数值传热学[M].西安:西安交通大学出版社,1988:100~120.
    [206]张建峰,王翠玲,吴玉萍等. Ansys有限元分析软件在热分析中的应用[J].冶金能源,2004,23(5):9~12.
    [207]张伟,姚熹,吴小清. Ansys在热释电薄膜红外探测器二维热分析中的应用[J].传感技术学报,2004,3(1):98~100.
    [208]管峰,陈君若,马艳丽.带台阶厚壁管类工件水淬温度场的数值模拟[J].昆明理工大学学报(理工版),2004,29(1).
    [209]虞钢.激光加工中传热相变问题的焓解法[J].中国激光,2000,27(10):20~26.
    [210] Shamsunder N,Sparrow E.M. Analysis of multidimensional conduction phase change via the enthalpy model[J]. Journal of Heat Transfer,1975,97(10):333~340.
    [211] Hideto H. M. Y., Masay Y., , et al,. New PCMs prepared from erythritol-polyalcohols mixtures for latent heat storage between 80 and 100℃[J]. Journal of Chemical Engineering of Japan,2004,37(9):1155~1162.
    [212] Hasan A,Sayigh A. Some fatty acids as phase-change thermal energy storage materials[J]. Renew Energy,1994,4(1):69~76.
    [213] Lamberg P. Approximate analytical model for two-phase solidification problem in a finned phase-change material storage[J]. Applied Energy,2004,77:131~152.
    [214] SariA.,Kaygusuz k. Thermal and heat transfer characteristic in a latent heat storage system using lauric acid[J]. Energy Conversion & Managerment,2002,43(6):505~2493.
    [215] Zhang Y,Jiang Y. A simple methog the T-history method,of determining the heatof fusion,specific heat and thermal conductivity of phase-change materials[J]. Meas Sci Technol,1999,45(10):5~201.
    [216] Banaszek J. ,Domanski R. ,Rebow M. Nnuerical anslysis of the paraffin wax-air spiral thermal energy storage unit[J]. Applied Thermal Engineering,2000,20:323~354.
    [217] Helmut Weinlader,Andreas Beck,Jochen Fricke. PCM-fa?ade-panel for daylighting and room heating[J]. Solar Energy,2005,78:177~186.
    [218] Ahmet San. Thermal rebiability test of some fatty acids as PCMs used for solar thermal latent heat storage applications[J]. Energy Conversion and Management,2003,44:2277~2287.
    [219]张雪梅,钟英杰,黄立新等.超声波缓和赤藻糖醇过冷的实验研究[J].浙江工业大学学报,2005,33(2):18~22.
    [220]刘大有,卢奕南,王飞等.遗传程序设计方法综述[J].计算机研究与发展,2001,38(2):43~48.
    [221]马欢,关富英,韩战钢.遗传程序设计(GP)的适应性函数设计[J].计算机工程与应用,2004,40(30):26~31.
    [222]王四春,张泰山,殷志云等.基于遗传程序设计的GP决策树优化算法及应用[J].计算机工程与应用,2005,41(2):15~20.
    [223]王四春,张泰山,殷志云等. GP算法中适应度函数的光滑拟合与调整参数方法研究[J].自动化学报,2006,11(3):393~399.
    [224]徐佳,李绍军,王惠等.基于最大最小适应度函数的多目标粒子群算法[J].计算机与数字工程,2006,42(8):31~34.
    [225]张星,廖琪梅.自动组题算法中适应度函数的构建方法[J].计算机工程与科学,2007,43(1):88~93.
    [226]候进军,熊令纯.遗传程序设计在数据拟合中的应用[J].长沙电力学院学报(自然科学版),1994,14(2):141~144.
    [227] Wolfgang B.Geneticprogramming[M].California:MorganKaufmann Publishers,1997:110~155.
    [228]刘勇,康立三.遗传算法[M].北京:科学出版社,1993:48~55.
    [229]刘星,刘红研,汪树军.石蜡定形相变材料的包裹及热性能[J].精细化工,2006,22(1):8~11.
    [230]梁辰,闫全英.相变储能技术的研究和发展[J].建筑节能,2007,24(12):41~44.
    [231]张东,周剑敏,吴科如.相变储能复合材料的研究与应用[J].节能与环保,2004,21(1):17~19.
    [232]薛平,李建立,丁文赢等.定形相变材料的制备方法[J].化工新型材料,2008,35(9):16~18.
    [233]周刚.红外热成像系统对目标的探测能力分析[J].现代防御技术,2000,18(6):41~46.
    [234]谢万茂.电热涂料的研制与应用[J].涂料工业,1997(2):25~27.
    [235]李彦武.红外热成像仿真假目标的技术研究[D].长沙:国防科学技术大学,2001:45~53.
    [236]廖杰.自发热材料配方研究[J].化学研究与应用,1998,101(1):20~22.
    [237]薛群虎,刘振英,武志红.国产与进口发热剂性能分析对比[J].铸造,2004,53(7):566~568.
    [238] Clothier P.Q.E. , Pritchard H.O.,et al. Atmospheric oxidation and self-heating in rubbercontaining[J]. Materials. Combustion and Flame,2003,113(6):207~210.
    [239] Chen X. D. On the fundamentals of diffusive self-heating in water containing combustible materials[J]. Chemical Engineering and Processing,1998,37(7):367~378.
    [240]郭志强.低温高潜热无机相变材料及其热红外示假性能的研究[D].长沙:国防科学技术大学,2007:18~29.
    [241] Pause B.Air-conditioning of automatic interiors with phase change materials[M].Frankfor:Internation Textil Symposium,2001:50~60.
    [242] Zhang D,Zhou H. M.,Wu K,et al. Granular phase changing composites for thermal energy storage[J]. Solar Energy,2005,78(3):471~478.
    [243]孙浩.红外热成像仿真假目标技术用微胶囊相变材料的研制[D].长沙:国防科学技术大学航天与材料工程学院,2004:15~31.
    [244] David P. Development of a Cooling Garment with Encapsulated PCM. Proceedings of the ASME. Los Angeles, 2000. p.15~18.
    [245] Revankar S.T. ,Croy T. ,George P.J. . Void distribution in phase-change material capsule of solar latent heat energy storage system. Proceedings of the 35th National Heat Transfer Conference. California, 2001. p.58~68.
    [246]马桂英,鹿玉红. UPS的心脏——蓄电池[J].福建电脑,2004,28(2):34~35.
    [247]陈乃光,胡庆愉,陈唯一.一种食品加热剂放热反应的研究和控制[J].食品科学,1995,16(10):10~17.
    [248]姜炜,李德远.军用食品自发热技术的民用前景[J].食品工业科技,2006,27(2):196~197.
    [249]刘古柱.自热式罐头-罐头食品中的科技之花[J].天津微生物,1996,10(1):44~46.
    [250]费镛,邵琳.自热式罐头发热剂的研制[J].四川食品工业科技,1991,10(2):5.
    [251]裴西宏.速热方便营养米饭的探讨[J].四川工业学院学报,2004,22(4):59~60.
    [252]李先进,赵兴红,顾锐等.控温式化学产热背心[J].医疗卫生装备,1989(1):18~20.
    [253]王金涤.发热袋[P].中国:96230980,1996-06-06.
    [254]李抒,李连生.发热剂及其制造的暖袋和热疗袋[P].中国:96120261.0,1996-10-31.
    [255]陈子庭,沈兴,孙佳生.含酸碱双组分的自发热剂[P].中国:200410083668.3,2004-10-15.
    [256]崔雨生,郑林丽,孙家言等.一种新型发热袋[P].中国:98239690.2,1998-12-18.
    [257]邓荣海.外挂式自动发热袋[P].中国:93225269.9,1993-03-05.
    [258]葛文兰.一种发热袋[P].中国:03129979.2,2003-06-04.
    [259]顾宁,张宇,马明.肿瘤磁致热疗用纳米发热剂的制备方法[P].中国:200510041048.8,2005-07-15.
    [260]韩跃新,任飞,王蕴等.一种矿物发热剂的制备方法[P].中国:200610046672.1,2006-05-25.
    [261]李连生.发热剂及其应用[P].中国:98113472.6,1998-03-19.
    [262]李抒.发热剂及其制造的暖袋和热疗袋[P].中国:98101082.2,1998-03-26.
    [263]梁文龙.可重复使用的发热袋[P].中国:200320116457.6,2003-11-08.
    [264]秦林.发热鞋垫[P].中国:89212938.7,1989-04-12.
    [265]孙寅贵.发热鞋袋[P].中国:85105236,1985-07-10.
    [266]孙友信,郭秀兰,范传源等.高效热袋[P].中国:89109469.85,1989-12-19.
    [267]万永乐.一种发热剂及发热体[P].中国:98118024.8,1998-08-07.
    [268]王新波.一种发热剂[P].中国:97106480.6,1997-06-20.
    [269]肖严.发热袋[P].中国:99256757.2,1999-12-27.
    [270]许庆华.可调节温度的发热剂[P].中国:200510011238,2005-07-29.
    [271]杨念波,陈炼.一种高效发热袋及其制备方法[P].中国:97108171.9,1997-07-30.
    [272]张志华.保健发热袋及其生产方法[P].中国:98114308.3,1998-09-15.
    [273]朱世华,陈述智.自热罐头的近况[J].食品工业科技,1989(4):18~20.
    [274]胡正微.自热罐头[J].世界发明,1990,13(12).
    [275]汪宝忠,王兰.自热方便食品水合发热剂的研究[J].郑州粮食学院食品工程系,1997,18(3):39~43.
    [276]樊全舫,蔺毅峰.自加热易拉罐罐装设计初探[J].山西运城高等专科学校,1997,18(6):60~63.
    [277]李刚.新型包装的罐头食品[J].中国新包装,2001(3):46~47.
    [278]钱平.软包装米饭、面条罐头自加热效果的影响因子研究[J].中国食品学报,2002,2(4):12~20.
    [279]卢明.全新概念的一拉热自热快餐食品[J].中国食品,1999,20(6):36.
    [280]周峰.食品方便制热剂[P].中国:200510019205.5,2005-07-28.
    [281]蔡建设,周峰.新型食品用自发热剂及其使用方法[P].中国:200410012689.6,2004-01-19.
    [282]沈兴,陈子庭.一种无火快速发热剂[P].中国:0212354.3,2002-07-02.
    [283]牛凤娟.用于加热食品的高效发热剂及其制备方法[P].中国:200610098940.4,2006-07-18.
    [284]杨瑞武,徐根生,胡友恒.作发热剂用的镁铝合金[P].中国:90101571.7,1990-03-20.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700