用户名: 密码: 验证码:
杂色云芝液态和固态发酵产漆酶及离子液体对生物质预处理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物质既是可再生能源,为人类提供能量;也是可再生资源,为人类提供物质性生产所需的原料。农作物秸秆是地球上最为丰富的生物质资源,这些生物质主要由三种成分组成,分别为纤维素、半纤维素、木质素,其中木质素是仅次于纤维素的第二大有机碳源,木质素难降解,并且木质素起到包被作用,因此木质素的存在阻碍了生物质的转化利用,木质素的降解构成了自然界碳素循环的限速步骤。白腐真菌是自然界中一类唯一能够彻底降解木质素的微生物,杂色云芝是其典型菌种。白腐真菌降解木质素主要依靠细胞分泌的木质素降解酶系统,其中漆酶(laccase)是木质素质降解酶系统中的代表性酶种。
     漆酶具有很好的底物广泛性(通过单电子传递机制能够氧化单酚、双酚、多酚、芳香族胺、对甲氧基酚以及维生素C等),漆酶氧化底物的过程中伴随着还原氧气生成水。漆酶以氧气为电子受体氧化酚类和部分非酚类化合物的特性以及漆酶具有非常宽的底物专一性,使得漆酶被广泛应用于纸浆的去木质化、染料污水处理、生物能源、生物传感器、食品饮料行业以及有机合成和药物合成中。本论文利用实验室筛选出的高产漆酶菌株Trametes versicolor sdu-4进行了液态和固态发酵培养,对所产漆酶进行了纯化,并研究了该漆酶的生物化学性质及其在染料脱色中的应用。
     各种生物质材料,如木材和农作物秸秆生产的第二代生物乙醇,有望成为一种有价值的汽油替代品或补足物。生物乙醇生产中关键的一步是将生物质中的纤维素水解为单糖,利用纤维素酶将纤维素水解为葡萄糖是最有发展前景的方法之一。但为了使原料更容易与酶接触,需要对木质纤维素原料进行各种类型的预处理。离子液体是近年来兴起的一类极具应用前景的绿色溶剂,以其良好溶解性、不挥发性、在水和空气中稳定等优点而被广泛应用。近年来的研究表明,离子液体可以用来溶解术质纤维素材料。本论文进行了离子液体对秸秆及木粉预处理的研究。
     本论文的主要研究内容及结果如下:
     1.菌株的鉴定。
     本实验室前期研究中利用愈创木酚培养基平板变色法筛选得到一株高效产漆酶的白腐真菌,并且该菌株生长迅速。通过子实体及菌丝体形态观察,并结合ITS1-5.8S rDNA-ITS2序列分析,该菌株被鉴定为杂色云芝菌,并被命名为Trametes versicolor sdu-4。
     2.T. versicolor sdu-4液态发酵产漆酶培养条件的优化
     通过部分因子试验、中心组合试验和响应面分析试验对影响T. versicolor sdu-4液态发酵产漆酶的因素进行了分析和优化,结果表明合成培养基中碳源(glucose)、氮源(yeast extract、CUSO4的浓度以及培养基初始pH值在漆酶液态发酵生产中是最为关键的影响因素。通过优化获得产漆酶的最佳培养条件为葡萄糖3.31g1-,酵母粉8.051 g1-,CuSO4 8.36 mg l-1,培养基初始pH为4.8,在此条件下漆酶最高产量为4146U1-。优化结果可以为发酵过程中碳源、氮源和CuSO4的合理添加提供指导,从而有效的提高漆酶产量,并降低发酵成本。
     3.T. versicolor sdu-4漆酶纯化和生物化学性质的研究
     对T. versicolor sdu-4漆酶进行了分离纯化,然后研究了该漆酶的生物化学性质,依据T. versicolor sdu-4漆酶的生物化学性质和光谱学特征,该漆酶为典型的真菌“蓝色”漆酶,其特征吸收光谱在600 nm和320 nm处都有光吸收。该漆酶的分子量为60 kDa;与已报道的其它漆酶的等电点接近,该漆酶等电点大约为3.0;金属离子含量测定表明,T. versicolor sdu-4漆酶中不含铁离子、锰离子和锌离子,每分子蛋白质中含有4个铜离子:该蛋白质的N末端氨基酸序列为AIGPAASLVVANA;氧化ABTS、DMP和丁香醛连氮的最适pH分别为2.2,3.7和7;该漆酶具有不同于其他典型真菌漆酶的特性,如热稳定性高,pH稳定范围广(3~10),对重金属有一定的耐受性,更宽的底物专一性,使其具有更好的理论研究价值和应用前景。该漆酶氧化ABTS的最适反应温度为75℃,当温度高于80℃,酶活在90 min时就完全丧失,但是70℃。C时的半衰期达到2.2h。漆酶能够在不存在介体的情况下直接氧化溴酚类物质(2-溴苯酚和4-溴苯酚)和非酚型化合物甲基红,具有广阔的应用前景。一般典型真菌“蓝色”漆酶不具备T. versicolor sdu-4漆酶的上述特性,这些特性仅在少量非典型性的“黄漆酶”或者“白漆酶”中有类似报道,表明T. versicolor sdu-4漆酶是一种新的真菌“蓝色”漆酶。
     本章还进行了T. versicolor sdu-4漆酶染料脱色的研究。选用八种不同类型的染料,分别研究了有无介体存在两种条件下T. versicolor sdu-4漆酶催化染料脱色的反应情况。研究表明不添加介体时T. versicolor sdu-4漆酶能够对偶氮染料甲基红和三苯甲烷染料溴酚蓝、亮绿、结晶紫和甲酚红很好地脱色,在有介体ABTS、TEMPO和HBT存在时漆酶也可以对三苯甲烷染料酸性品红、碱性品红和考马斯亮蓝R-250有效脱色。结果表明,T. versicolor sdu-4漆酶在染料脱色中有着比较好的应用前景。
     4.T. versicolor sdu-4固态发酵研究
     以稻草、麦草、玉米秸杆、甘蔗渣和木粉为固体基质,进行T. versicolor sdu-4固态发酵,发现以玉米秸秆(Corn stover, CS)为介质时漆酶产量最高。进而通过部分因子试验、中心组合试验和响应面分析试验对T. versicolor sdu-4在玉米秸秆中的固态发酵进行了详细的研究。结果表明T. versicolor sdu-4利用玉米秸秆进行固态发酵时产漆酶、纤维素酶(CMCase)和木聚糖酶(Xylanase),未检测到木质素过氧化物酶(LiP)和锰过氧化物酶(MnP)。产漆酶的最优固态发酵条件为葡萄糖9mgg-1 CS, CuSO4 4.5μM g-1 CS,介质初始含水最80%,最高漆酶产量为45.1 Ug-1 CS。玉米秸秆中木质素降解的最优发酵条件为葡萄糖9.2 mg g-1 CS; CuSO4 4.3μMg-1 CS;介质初始含水量82%,在此条件下第21天时木质索最高可降解34.8%。
     5.漆酶在有机试剂、离子液体中的稳定性及其对木质素作用机制的研究
     由于离子液体几乎无蒸汽压,不具挥发性,因此被称为“绿色溶剂”,同时离子液体还具有液程宽、溶解能力强及可设计性等优点,另外据报道在离子液体中一些酶能保持较高的稳定性和活性,因此,离子液体作为酶的催化反应介质迅速成为研究热点。本文研究了不同浓度DMSO、1,4-二氧六环、离子液体([Bmim]Cl、[Emim][CH3COO]和[Pmim][CH3COO])对漆酶稳定性的影响。研究结果表明,在有机试剂与水、离子液体与水组成的均相溶液中漆酶仍具有较好的稳定性,但是漆酶稳定性随着溶液中有机试剂和离子液体浓度的升高而降低。当有机试剂或者离子液体的浓度在0~30%(w/w)范围内时,漆酶能够很好的保持活性,且在30%的[Bmim]Cl、[Emim][CH3COO]中,48 h后残余酶活仍在60%以上。但在高浓度的有机试剂和离子液体作用下,漆酶活性丧失很快。
     本论文研究了T. versicolor sdu-4漆酶在30%(W/W)的[Emim][CH3COO]中对酶分离木素(cellulolytic enzyme lignin, CEL)的作用,用红外光谱分析、1H-NMR、13C-NMR等方法对处理前后CEL的结构变化进行了表征。结果表明:T. versicolor sdu-4漆酶在[Emim][CH3COO]中对酶分离木素发生了氧化反应,使其结构中的羰基含量增多;漆酶破坏了酶分离木素中的部分甲氧基,使甲氧基的含量降低;破坏了酶分离木素中的愈创木基芳环和紫丁香基芳环结构。6.离子液体对木粉和秸秆的预处理
     利用离子液体[Pmim][CH3COO]溶解100目的杨术粉后,加入50%(Ⅴ:Ⅴ)丙酮-水溶液为提取剂,真空抽滤得到再生纤维素物质,将滤液中的丙酮旋蒸去除后真空抽滤可得到离子液体木质素(Ionic liquid-processed lignin, IL-processed lignin)。以酶分离木素为对照样,通过红外光谱和1H-NMR、13C-NMR等方法对离子液体木质素进行表征,分析表明制备的离子液体木质素物质即为木质素。利用[Bmim]Cl、[Emim][CH3COO]和[Pmim][CH3COO]分别对稻草、麦草和玉米秸秆进行了预处理,通过红外光谱和扫描电子显微镜(SEM)对处理前后的秸秆进行了表征,并对处理后的秸秆进行了纤维素酶解,以酶解后还原糖浓度和酶解得率为指标,发现三种离子液体中[Emim][CH3COO]对稻草的处理效果最好,[Pmim][CH3COO]对麦草和玉米秸秆的处理效果最好,说明不同的离子液体对不同木质纤维素材料处理效果也不相同。
Biomass is not only the renewable energy source, provides energy to us, but also is the renewable resource, provides raw material which is needed in the production of compounds. Agricultural straw, which mainly consists of cellulose, hemicellulose, and lignin, is the most abundant renewable lignocellulosic biomass. After cellulose, lignin is the most abundant renewable carbon source on earth. The utilization of biomass is hindered by the presence of lignin which is quite resistant to degradation under natural conditions. Lignin degradation process is thought as a rate-determining step of the carbon cycle in the biosphere. White rot fungi are the most efficient lignocellulose de-graders and the only known organisms that can completely break down lignin to carbon dioxide and water. Among them, the most widely studied is Trametes versicolor. Lignin biodegradation by white rot fungi involves various enzymes and the most significant ones are laccases.
     Laccases can catalyze the oxidation of an array of substrates, such as mono-, di-, and polyphenols, aromatic amines, methoxyphenols, and ascorbate by one-electron transfer mechanism. Because of their high nonspecific oxidation capacity, and their use of readily available molecular oxygen as electron acceptor, laccases are useful as biocatalysts for a wide range of biotechnological applications. Laccases can be used in paper pulp bleaching, decolorization of synthetic dyes, wine clarification, fruit juice processing, bioremediation, ethanol production, biosensors, biofuel cells, organic synthesis, and drug synthesis. In this paper, I studied the submerged and solid-state fermentation by Trametes versicolor sdu-4 which could secret a high level of laccase. T. versicolor sdu-4 laccase was purified and characterized. I also studied its application in dye decolorization.
     The second generation bio-ethanols which are made form biomass materials, such as straw, wood residues, agricultural residues, are expected to be valuable alternatives of gasoline. A key step in production of bio-ethanol is hydrolysis of lignocellulosic biomass into monosackcharide. Enzymatic hydrolysis of cellulose by cellulase enzyme is the most promising methods. Due to the recalcitrant structure of lignocelluloses, a pretreatment step is needed prior to enzymatic hydrolysis in order to make the cellulose more accessible to cellulase enzyme. Over the past decades, ionic liquids (ILs), often referred to as 'green solvents', have been the great focus of scientists in various fields due to their unusual physical and chemical properties like high thermal stability, lack of inflammability, low volatility, chemical stability and excellent solubility with many organic compounds. Some studies have shown that lignocellulosic materials can be dissolved in some hydrophilic ionic liquids, such as 1-butyl-3-methylimidazolium chloride (BMIMC1) and 1-allyl-3-methylimidazolium chloride (AMIMC1). The pretreatment of the agricultural straw and wood powder by ILs have been studied in the present study.
     The main results of the present paper are as follows:
     1. Strain identification
     During the previous study of our laboratory, we have screened a strain which could secret a high level of laccase by the mothed of guaiacol culture medium plate color deterioration, and the growth of this strain is rapid. The fungus was characterized as Trametes versicolor sdu-4 according to its morphology and ITS1-5.8S rrNA-ITS2 gene sequence.
     2. Optimization of laccase production by Trametes versicolor sdu-4 under submerged fermentation
     The T. versicolor sdu-4 laccase production under submerged fermentation was optimized by the method of factorial design, central composite design, and response surface methodology. Results indicated that the concentration of carbon source (glucose), nitrogen source (yeast extract), copper sulfate (CuSO4), and nitial pH value of the culture medium play an important role in laccase production by Trametes versicolor sdu-4 under submerged fermentation. Maximum laccase production (4146 U l-1) was observed at glucose (3.31g l-1), yeast extract (8.051 g l-1), CuSO4 (8.36 mg l-1) and nitial pH (4.8). The optimization results led to reduction in culture medium cost for laccase production.
     3. Laccase purification and characterization
     The laccase was purified and then biochemical properties of the enzyme was studied. It has all the characteristics of a typical blue laccase:(1) its molecular mass was 60 kDa; (2) a peak at 600 nm due to type I blue copper atom; (3) a shoulder at 320 nm indicating the presence of the type 3 binuclear copper pair; (4) four copper atoms per enzyme molecule. Therefore, We classified the laccase from T. versicolor sdu-4 as a typical blue fungal laccase. The N-terminal amino acid sequence of the laccase was AIGPAASLWANA. The optimum pH values of T. versicolor sdu-4 laccase were 2.2,3.7, and 7 for the oxidations of ABTS, DMP, and syringaldazine, respectively. The enzyme was stable at pH 3.0~10.0. The optimum temperature for ABTS oxidation was 75℃. The laccase was relatively stable at 70℃. Moreover, the half-life of the purified laccase at 70℃was 2.2 h. When the temperature was at 80℃, laccase activity decreased rapidly and was completely inactivated after 1.5 h. The most noticeable characteristic of laccase was that it oxidized methyl red, 2-bromophenol, and 4-bromophenol without mediators. The laccase showed good decolorization of the triphenylmethane and azo dyes.
     4. Study of solid state fermentation by T. versicolor sdu-4
     Rice Straw, wheat straw, corn stover, sugarcane bagasse, and wood powder were used as the lignocellulosic substrates to study solid-state fermentation by T. versicolor sdu-4. Results showed that the laccase production was highest when corn stover was used as solid medium. The solid-state fermentation conditions of T. versicolor sdu-4 were optimized by the method of factorial design, central composite design, and response surface methodology. The result indicated that laccase, cellulase (CMCase) and xylanase were produced during solid state fermentation. While lignin peroxide enzyme (LiP) and manganese peroxide enzyme (MnP) were not detected. Maximum laccase production (45.1U g-1 CS) was observed at glucose (9 mg g-1 CS), CuSCO4 (4.5μM g-1 CS) and moisture level (80%). Maximal lignin (34.8%) was degraded at glucose (9.2 mg g-1 CS), CuSO4 (4.3μM g-1 CS) and moisture level (82%).
     5. The stability of laccace in organic reagents and ILs and the oxidation of CEL by laccase in ionic liquid
     Recently, ionic liquids (ILs) are considered as an alternative to organic solvents for biocatalysis and biotransformations in view of sustainable and ultimately "green" processes, not only because enzymes displayed high level of activity and stereoselectivity of many different chemical transformations, but mainly because of an overstabilization effect on biocatalysts. In this work the stability of T. versicolor sdu-4 laccace in different concentrations of organic solvents and ILs was studied. The results indicated that:laccase was stable in organic solvent and water, IL and water composed homogeneous solution. However, the laccase activity was decreased rapidly with increasing volume percent of the organic solvent and ILs. In 30% ILs ([Bmim]Cl and [Emim][CH3C00]) solution (w/w), the remaining activity of laccase was still above 60% after 48 h. When the concentration of IL was abave 70%, laccase activity decreased rapidly.
     In the present paper, oxidation of CEL by laccase in 30% [Emim][CH3C00] was also studied. Infrared spectrum,1H-NMR,13C-NMR methods were used to characterize the treated CEL. The results showed that:T. versicolor sdu-4 laccase break down methoxy group, the guaiacyl and syringyl structures of CEL in [Emim][CH3COO].
     6. ILs pretreatment of agricultural straw and wood powder
     100 mesh wood powder was dissolved in ionic liquid [Pmim][CH3C00], then acetone/water (1:1 v/v) was added and stirred at room temperature for 2 h. Cellulose material was regenerated by vacuum filtration. After evaporating the acetone, lignin was regenerated by vacuum filtration. Infrared spectrum analysis, 1H-NMR and 13C-NMR methods were used to characterize the Ionic liquid-processed lignin.
     Rice straw, wheat straw and corn stover were pretreated by [Bmim]CI, [Emim][CH3C00] and [Pmim][CH3COO], respectively. Infrared spectrum analysis and scanning electron microscopy (SEM) were used to characterize the treated straw. The results indicated that [Emim][CH3COO] is the best IL when pretreating rice straw and [Pmim][CH3COO] is the best IL when pretreating wheat straw and corn stover.
引文
Abadulla E, Tzanov T, Costa S, Robra KH, Cavaco-Paulo A, Gribitz GM. Decolorization and detoxifieation of textile dyes with a laeease from Trametes hirsute. Appl Environ Mierobiol 2000,66:3357-3362.
    Acunzo F, Galli C, Masci B. Oxidation of phenols by laccase and laccase-mediator systems. Eur J Biochem 2002,269:5330-5335.
    Adler E. Lignin chemistry-past, present and future. Wood science and technology 1977,11:169-218.
    Allen SG, Kam LC, Zemann AJ. Fractionation of Sugar Cane with Hot, Compressed, Liquid Water. Ind Biochem Bioeng 1998,59:419-427.
    Mikolasch A, Schauer F. Fungal laccases as tools for the synthesis of new hybrid molecules and biomaterials. Appl Microbiol Biotechnol 2009,82:605-624.
    Antorini M, Herpoel-Gimbert I, Choinowski T, Sigoillot JC, Asther M, Wimterhalter K, Piontek K. Purification, erystallisation and X-my diffraction study of fully functional iaceases from two ligninolytic fungi. Biochimica Biophysica Acta 2002,1594:109-114.
    Arakane Y, Muthukrishnan S, Beeman RW, Kanost MR, Kramer KJ. Laccase is the phenoloxidase gene required for beetle cuticle tanning. Proceedings of the National Academy of Sciences.2005,102:11337-11342.
    Arends IWCE, Li YX, Ausan R, Sheldon RA. Comparison of TEMPO and its derivatives as mediators in laccase catalysed oxidation of alcohols. Tetrahedron 2006,62:6659-6665.
    Baldrian P. Fungal laccases-occurrence and properties. FEMS Microbiology Review 2006,30:215-242.
    Bajpai P, Anand A, Sharma N, Mishra SP, Bajpai PK, Lachenal D. enzymes improve ECF bleaching of pulp. Bioresources 2006,1:34-43.
    Bao W, O'Malley DM, Whetten R, Sederoff RR. A Laccase Associated with Lignification in Loblolly Pine Xylem. science 1993,260:672-674.
    Barreca AM, Fabbrini M, Galli C, Gentili P, Ljunggren S. Laccase/mediated oxidation of a lignin model for improved delignification procedures. J Mol Catal B:Enzym 2003,26:105-110.
    Beauchemin KA, Colombatto D, Morgavi DP, Yang WZ. Use of exogenous fibrolytic enzymes to improve feed utilization by ruminants. J Anim Sci 2003,81:E37-47.
    Beloqui A, Pita M, Polaina J, Martinez-Arias A, Golyshina OV, Zumarraga M, Yakimov MM, Garcia-Arellano H, Alcalde M, Fernandez VM. Novel Polyphenol Oxidase Mined from a Metagenome Expression Library of Bovine Rumen. The Journal of Biological Chemistry 2006,281:22933-22942.
    Bertrand G. Sur la presence simultanee de la laccase et de la tyrosinase dans le suc de quelques champignons. C R Hebd Seances Acad Sci 1896,123:463-465.
    Bertrand T, Jolivalt C, Bdozzo P, Caminade E, Joly N, Madzak C, Mougin C. Crystal structure of a four-copper laccase complexed with all arylamine:insights into substrate recognition and correlation with kinetics. Biochem 2002, 41:7325-7333.
    Bhattacharya SS, Banerjee R. Laccase mediated biodegradation of 2,4-dichlorophenol using response surface methodology. Chemosphere 2008,73:81-85.
    Blanchard LA, Hancu D, Beckman EJ, Brennecke JF. Green processing using ionic liquids and CO2. Nature 1999,399:28-29.
    Boominathan K, D'Souza T, Naidu P, Dosoretz C, Reddy C. Temporal expression of the major lignin peroxidase genes of Phanerochaete chrysosporium. Applied and environmental microbiology 1993,59:3946-3950.
    Bourbonnais R, Paice MG. Oxidation of non-phenolic substrates. An expanded role for laccase in lignin biodegradation. FEBS Lett 1990,267:99-102.
    Bourbonnais R, Paice MG, Reid ID, Lanthier P, Yaguchi M. Lignin oxidation by laccase isozymes from Trametes versicolor and role of the mediator 2,2'-azinobis (3-ethylbenzthiazoline-6-sulfonate) in kraft lignin depolymerization. Appl. Environ. Microbiol.1995,61:1876-1880.
    Box GEP, Hunter JS. Multi-Factor Experimental Designs for Exploring Response Surfaces. The Annals of Mathematical Statistics 1957,28:195-241.
    Box GEP, Wilson KB. On the Experimental Attainment of Optimum Conditions. Journal of the Royal Statistical Society. Series B (Methodological) 1951, 13:1-45.
    Brenna O, Bianchi E. immobilised laccase for phenolic removal in must and wine. Biotechnology Letters 1994,16:35-40.
    Bumpus JA,Tien M, Wright D, Aust SD. Oxidation of persistent environmental pollutants by a white rot fungi. Science 1985,228:1434-1436.
    Burton S.G.. Laccases and Phenol Oxidases in Organic Synthesis-a Review. Current Organic Chemistry 2003,7:1317-1331.
    Buswell JA, Cai Y, Chang St. Effect of nutrient nitrogen and manganese on manganese peroxidase and laccase production by Lentinula (Lentinus) edodes. FEMS Microbiology Letters 1995,128:81-87.
    Buswell JA, Odier E. Lignin biodegradaton. Critical Reviews in Biotechnology 1985, 6:1-60.
    Camarero S, Garcia O, Vidal T, Colom J, Rio JCD, Gutitrrez A, Gras JM, Monje R, Martinez MJ, Martinez AT. Efficient bleaching of non-wood high-quality paper pulp using Incense-mediator system. Enzyme Microb Technol 2004,35: 113-120.
    Caparros-Ruiz D, Fornale S, Civardi L, Puigdomenech P, Rigau J. Isolation and characterisation of a family of laccases in maize. Plant Science 2006,171: 217-225.
    Carol AC. Bacterial Associations with Decaying Wood:a Review. International Biodetertoration & Biodegradation 1996,37:101-107.
    Ceylan H, Kubilay S, Aktas N, Sahiner N. An approach for prediction of optimum reaction conditions for laccase-catalyzed bio-transformation of 1-naphthol by response surface methodology (RSM). Bioresource Technology 2008,99: 2025-2031.
    Chang VS, Holtzapple MT. Fundamental factors affecting biomass enzymatic reactivity. Applied Biochemistry and Biotechnology 2000,84:5-37.
    Chefetz B, Chen Y, Hadar Y. Purification and Characterization of Laccase from Chaetomium thermophilium and Its Role in Humification. Appl Environ Microbio 1998,64:3175-3179.
    Chen CL, Potthast A, Rosenau T, Gratzl JS, Kirkman AG, Nagai D, Miyakoshi T. Laccase-catalyzed oxidation of 1-(3,4-dimethoxyphenyl)-1-propene using ABTS as mediator. J Mol Catal B:Enzyme 2000,8:213-219.
    Christiernin M. Lignin composition in cambial tissues of poplar. Plant Physiology et Biochemistry 2006,44:700-706.
    Christopher F. The structure and function of fungal laccase. Microbiology 1994, 140:9-26.
    Cluterbuek AJ. Absence of lacease from yellow spored mutants of Aspergillus Nidulans. J Gen Microbiol 1972,70:423-435.
    Colberg P. Anaerobic microbial degradation of cellulose, lignin, oligolignols, and monoaromatic lignin derivatives. Biology of anaerobic microorganisms 1988, 333-372.
    Coll PM, Fernandez-Abalos JM, Villanueva JR, Santamaria R, Perez P. Purification and characterization of a phenoloxidase (laccase) from the lignindegrading basidiomycete PM1 (CECT 2971). Appl. Environ. Microbiol.1993,59: 2607-2613.
    Crestini C, Jurasek L, Argyropoulos DS. On the mechanism of the laccase-mediator system in the oxidation of lignin. Chem Eur J 2003,9:5371-5378.
    Croteau R, Kutchan TM, Lewis NG. Natural products (secondary metabolites). Biochemistry and molecular biology of plants 2000,1250-1318.
    Cuissinat C, Navard P, Heinze T. Swelling and dissolution of cellulose. Part Ⅳ:Free Floating cotton and wood fibres in ionic liquids. Carbohydrate Polymers 2008, 72:590-596.
    Davin LB, Lewis NG. Lignin primary structures and dirigent sites. Current Opinion in Biotechnology 2005,16:407-415.
    De Stefano G, Piacqiladio P, Sciancalepore V. Metalehelate regenerable carriers in food processing. Biotechnology Techniques 1996,10:857-860.
    De Obeso M, Caparros-Ruiz D, Vignols F, Puigdomenech P, Rigau J. Characterisation of maize peroxidases having differential patterns of mRNA accumulation in relation to lignifying tissues. Genetics 2003,309:23-33.
    Dias AA, Bczerra Rm, Percira AN. Activity and elution profile of laecase during biological dccolorization and dephenolization of olive mill wastewater. Bioresource Technology,2004,92:7-13.
    D'Souza-Ticlo D, Sharma D, Raghukumar C. A Thermostable Metal-Tolerant Laccase with Bioremediation Potential from a Marine-Derived Fungus. Mar Biotechnol 2009,11:725-737.
    Dubernet M, Ribereau GP, Lemer HR, Harel E, Mayer A. Purification and properties of laccase from Botrytis cinema. Phytochemistry 1977,16:191-193.
    Ducros V, Brzozowski AM, Wilson KS, Brown SH, Ostergamd P, Schneider P, Yaver DS, Pedersen AH, Davies GJ. Crystal structure of the type-2 Cu depleted laccase from coprinus cinereus at 2.2A resolution. Nature Structural Biology 1998, 5:310-316.
    Dumonceaux T, Bartholomew K, Charles T, Moukha S, Archibald F. Cloning and sequencing of a gene encoding cellobiose dehydrogenase from Trametes versicolor 1. Gene 1998,10:211-219.
    Durante D, Casadio R, Martelli L, Tasco G, Portaeeio M, De Luca P, Bencivenga U, Rossi S, Di Martino S, Orano V, Diano N, Mita DG. Isothermal and non isothermal bioreactors in the detoxification ofwaste waters polluted by aromatic compounds by mealls of immobilised laecase from Rhus vernicifera. Journal ofMolecular Catalysis B:Enzymatic,2004,27:191-206.
    Durao P, Bento I, Fernandes AT, Melo EP, Lindley PF, Martins LO. Perturbations of the T1 copper site in the CotA laccase from Bacillus subtilis:structural, biochemical, enzymatic and stability studies. Journal of Biological Inorganic Chemistry 2006,11:514-526.
    Durrens P. The phenoloxidases of the ascomyccte Podospora anserina:the three forms ofthe major laecase activity. Arch Microbial 1981,130:121-124.
    Eckenrode F, Peczynska-Czoch W, Rosazza J. Microbial transformations of natural anitumor agents XVIII:conversions of vindoline with copper oxidases. J Pharm Sci 1982,71:1246-1250.
    Eckstein M, Sesing M, Kragl U, Adlercreutz P. At low water activity a-chymotrypsin is more active in an ionic liquid than in non-ionic organic solvents. Biotechnology letters 2002,24:867-872.
    Edwards w, Leukes WD, BEzuidenhout JJ. Ultrafiltration of petrochemical industrial wastewater using immobilised manganeseperoxidase and laccase:application in the defouling of polysulphone membranes. Desalination 2002,149:275-278.
    Eggert C, Lafayette PR, Temp U, Eriksson KE, Dean JF. Molecular Analysis of a lacease Gene from the white rot fungus Pycnoporus cinnabarinus. Appl Environ Microbiol 1998,64:1766-1772.
    Enguita FJ, Martins LO, Henriques AO, Carrondo MA. Crystal structure of a bacterial endospore coat component. A laccase with enhanced thermostability properties. J Biol Chem 2003,278:19416-19425.
    Eriksson KE. Fungal degradation of wood components. Pure Appl Chem,1981, 53:33-43.
    Fabbrini M, Galli C, Gentili P. Radical or electron- transfer mechanism of oxidation with some laccase/mediator systems. J Mol Caml B:Enzym 2002,18:169-171.
    Fang J, Huang F, Gao P.. Optimization of cellobiose dehydrogenase production by Schizophyllum commune and effect of the enzyme on kraft pulp bleaching by ligninases. Process Biochemistry 1999a,34:957-961.
    Faure D, Bouillant ML, Bally R. Isolation of Azospirillum lipoferum 4T Tn5 Mutants Affected in Melanization and Laccase Activity. Applied and Environmental Microbiology 1994,60:3413-3415.
    Forootanfar H, Faramarzi MA, Shahverdi AR, Yazdi MT. Purification and biochemical characterization of extracellular laccase from the ascomycete Paraconiothyrium variabile. Bioresour. Technol.2011,102:1808-1814.
    Fort DA, Remsing RC, Swatloski RP, Moyna P, Moyna G, Rogers RD. Can ionic liquids dissolve wood? Processing and analysis of lignocellulosic materials with 1-n-butyl-3-methylimidazolium chloride. Green Chemistry 2007,9:63-69.
    Froehner SC, Eriksson KE. Purification and properties of Neurospora crassa laecase. J Bacteriol 1974,120:458-465.
    Fujita M, Harada H. "Ultrastructure and formation of wood cell wall" in Wood and cellulosic chemistry. Marcel Dekker, New York,2001, pp.1-50.
    Fu SY, Yu HS, Buswell JA. Effect of nutrient nitrogen and manganese on manganese peroxidase and laccase production by Pleurotus sajor-caju. FEMS Microbiology Letters 1997,147:133-137.
    Gamelas JAF, Tavares APM, Evtuguin DV, Xavier AMB. Oxygen bleaching of kraft pulp with polyoxometalates and laecase applying a novel multi-stage process. J Molecular Catalysis B:Enzymatic,2005,33:57-64.
    Genestar C, Palou J. SEM-FTIR spectroscopic evaluation of deterioration in an historic coffered ceiling. Anal. Bioanal. Chem.2006,384:987-993.
    Geng X, Li K. Degradation of non-phenolic lignin by the white-rot fungus Pycnoporus cinnabarinus. Appl. Microbiol. Biotechnol.2002,60:342-346.
    Goi M, Ruttenberg K, Eglinton T. Sources and contribution of terrigenous organic carbon to surface sediments in the Gulf of Mexico. Nature 1997,389:275-278.
    Gonzalez JM, Whitman WB, Hodson RE, Moran MA. Identifying numerically abundant culturable bacteria from complex communities:an example from a lignin enrichment culture. Applied and Environmental Microbiology 1996,62: 4433-4440.
    Grass G, Rensing C. CueO is a multi-copper oxidase that confers copper tolerance in Escherichia coli. Biochemical and Biophysical Research Communications 2001, 286:902-908.
    Grous WR, Converse AO, Grethlein HE. Effect of steam explosion pretreatment on pore size and enzymatic hydrolysis of poplar. Enzyme and Microbial Technology 1985,8:274-280.
    Hakulinen N, Kiiskinen LL, Kruus K, Saloheimo M, Paananen A, Koivula A, Rouvinen J. Crystal structure of a laccase from Melanocarpus albomyces with all intact trinuelear copper site. Nature structural biology 2002,9:601-605.
    Halaburgi V M, Sharma S, Sinha M, Singh TP, Karegoudar TB. Purification and characterization of a thermostable laccase from the ascomycetes Cladosporium cladosporioides and its applications. Process Biochem.2011,46:1146-1152.
    Han MJ, Choi HT, Song HG. Purification and Characterization of Laccase from the White Rot Fungus Trametes versicolor. J. Microbiol.2005,43:555-560.
    Hermann TE, Kurtz MB, Champe SP. Laecase localized in hullo cells and cleistothecial primordia of Aspergillus nidulans. J Bacteriol 1983,154:955-964.
    Hernandez M, Hernandez-Coronado MJ, Montiel MD, et al. Pyrolysis/gas chromato-graphy/mass spectrometry as a useful technique to evaluate the ligninolytic action of streptomycetes on wheat straw. Journal of Analytical andApplied Pyrolysis 2001,58-59:539-551.
    Himmel ME, Ding S-Y, Johnson DK, Andey WS, Nimlos MR, Brady JW, Foust TD. Biomass recalcitrance:Engineering plants and enzymes for biofuels production. Science 2007,315:804-807.
    Hopkins TL, Kramer KJ, Insect cuticle sclerotization. Annu Rev Entomol 1992, 37:273-302.
    Hoshida H, Nakao M, Kanazawa H, Kubo K Hakukawa T, Morimasa k, Akada R, Nishizawa Y. Isolation of five laccase gene sequences from the white-rot fungus Trametes sanguinea by PCK, and cloning,characterization and expression of the laecase cDNA in yeasts. J Biosci Bioeng 2001,92:372-380.
    Hullo MF, Moszer I, Danchin A, Martin-Verstraete I. CotA of Bacillus subtilis is a copper-dependent laccase. Journal of Bacteriology 2001,183:5426-5430.
    Huttermarm A, Mai C, Kharazipottr A. Modification of lignin for the production of new compounded materials. Appl Microbiol Biotechnol 2001,55:387-394.
    Itamar. Biomaterials for sensors, fuel cells and circuitry. Science 2002, 298:2047-2048.
    Jain N, Kumar A, Chauhan S, Chauhan SMS. Chemical and biochemical transformations in ionic liquids. Tetrahedron 2005,61:1015-1060.
    Jolivalt C, Brenon S, Caminade E, Mougin C, Pontie M. Immobilization of laccase from Trametes versicolor on a modified PVDF microfiltration membrane: characterization of the grafted support and application in removing a phenylurea pesticide in wastewater. J Membrane Science 2000,180:103-113.
    Karr WE, Holtzapple MT. The multiple benefits of adding non-ionic surfactant during the enzymatic hydrolysis of corn stover. Biotechnology and Bioengineering 1998, 59:419-427.
    Kersten P, Cullen D. Extracellular oxidative systems of the lignin-degrading Basidiomycete Phanerochaete chrysosporium. Fungal Genetics and Biology. 2007,44:77-87.
    Kilpelainen I, Xie H, King A, Granstrom M, Heikkinen S, Agrgyropoulos D S. Dissolution of wood in ionic liquids. Agric Food Chem 2007,55:9142-9148.
    Kirk TK, Croana S, Tien M, Murtagh KE, Farrell RL. Production of multiple ligninases by Phanerochaete chrysosporium:effect of selected growth conditions and use of a mutant strain. Enzyme and Microbial Technology 1986, 8:27-32.
    Kirk TK, Farrell RL. Enzymatic "combustion":The microbial degradation of lignin. Ann. Rev. Microbiol.1987,41:465.
    Kirk TK, Schultz E, Connors WJ, Lorenz LF, Zeikus JG. Influence of culture parameters on lignin metabolism by Phanerochaete chrysosporium. Achives of microbiology.1978,117:277-285.
    Ko E-M, Leem Y-E, Choi HT. Purification and characterization of laccase isozymes from the white-rot basidiomycete Ganoderma lucidum. Appl Microbiol Biotechnol 2001,57:98-102.
    Kragl U, Eckstein M, Kaftzik N. Enzyme catalysis in ionic liquids. Current Opinion in Biotechnology 2002,13:565-571.
    Kramer KL, Kanost MR, Hopkins TL, Jing H, Zhu YC, Xu R, Kerwin JL, Turecek F. Oxidative conjugation of catechols with proteins in insect skeletal systems. Tetrahedron 2001,57:385-392.
    Kubisa P. Application of Ionic Liquids as Solvents for Polymerization Processes. Progress in Polymer Science 2004,29:3-12.
    Kuhnigk T, Konig H.1997. Degradation of dimeric lignin model compounds by aerobic bacteria isolated from the hindgut of xylophagous termites. Journal of Basical Microbiology 37:205-211.
    Labbe N, Rials TG, Kelley SS, Cheng ZM, Kim JY, Li Y. FT-IR imaging and pyrolysis-molecular beam mass spectrometry:new tools to investigate wood tissues
    Labored J. Sur laccase desvies. C R Hebd Seaces Acad Sci 1896,123:1074-1075.
    Laemmli UK. Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4. Nature 1970,227:680-685.
    Lante A, Craposo A, Pasini G, et al. Immobilized laccase for must and wine processing. Annals of the New York Academy of Sciences 1992,672:558-562.
    Laser M, Schulman D, Aiien S, et al. A comparision of liquid hot water and steam pretreatmeng of sugar cane bagasse for biocoversion to ethanol. Bioresources technology 2002,81:33-44.
    Lau R M, van Rantwijk F, Seddon K R, Sheldon R A, Lipase-catalyzed reactions in ionic liquids. Organ Lett 2000,2:4189-4191.
    Li C, Wang Q, Zhao ZK. Acid in ionic liquid:An efficient system for hydrolysis of lignocellulose. Green Chem 2008,10:177-182.
    Li K, Xu F, Eriksson KE. Comparison of fungal laccases and redox mediators in oxidation of a nonphenolic lignin model compound. Appl Environ Microbiol 1999,65:2654-2660.
    Liers C, Ullrich R, Pecyna M, Schlosser D, Hofrichter M. Production, purification and partial enzymatic and molecular characterization of a laccase from the wood-rotting ascomycete Xylaria polymorpha. Enzyme Microb. Technol.2007, 41:785-793.
    Lozano P, De Diego T, Carrie D, Vaultier M, Iborra JL. Over-stabilization of Candida antarctica lipase B by ionic liquids in ester synthesis. Biotechnology letters 2001, 23:1529-1533.
    Lu XB, Hu JQ, Yao X, Wang ZP, Li JH. Composite System Based on Chitosan and Room-Temperature Ionic Liquid:Direct Electrochemistry and Electrocatalysis of Hemoglobin. Biomacromolecules 2006,7:975-980.
    Machczynski MC, Vijgenboom E, Samyn B, Canters GW. Characterization of SLAC: a small laccase from Streptomyces coelicolor with unprecedented activity. Protein Science 2004,13:2388-2397.
    Mayer AM, Staples RC. Laccase:new functions for an old enzyme. Phytochemistry 2002,60:551-565.
    Mayer F, Moran MA, Hodson RE, Whitman WB. Sagittula stellata gen. nov., sp. nov., a lignin-transforming bacterium from a coastal Environment. Int. Syst. Bacteriol. 1997,47:773-780.
    McGuirl MA, Dooley DM. Copper-containing oxidases. Current Opinion in Chemical Biology 1999,3:138-144.
    Mcmillan JD. Pretreatment of Lignocellulosic Biomass. American Chemical Society, Washington, DC.1995.
    Meentemeyer V. Macroclimate the Lignin Control of Litter Decomposition Rates. Ecology 1978,59:465-472.
    Methe BA, Nelson KE, Eisen JA, Paulsen IT, Nelson W, et. al. Genome of Geobacter sulfurreducens:metal reduction in subsurface environments. Science 2003,302: 1967-1969.
    Michizoe J, Ichinose H, Kamiya N, Mamyama T, Goto M. Biodegradation of phenolic environmental pollutants by a surfactant-laccase complex in organic media. J Biosci Bioeng 2005,99:642-647.
    Minussi RC, Miranda MA, Silva JA, Ferreira CV, Aoyama H, Marangoni HS, Rotilio D, Pastore GM, Duran N. Purification, characterization and application of laccase from Trametes versicolor for colour and phenolic removal of olive mill wastewater in the presence of 1-hydroxybenzotriazole. Afr. J. Biotechnol.2007,6: 1248-1254.
    Minussiy C, Pastore GM, Duran N. Potential applications of laccase in the food industry. Trends in Food Science & Technology 2002,13:205-216.
    Miyafuji H, Miyata K, Saka S, Ueda F, Mori M. Reaction behavior of wood in an ionic liquid, 1-ethyl-3-methylimidazolium Chloride. J Wood Sci 2009, 55:215-219.
    Montgomery DC, Runger GC. Applied statistics and probability for engineers. John Wiley & Sons, Inc. New York, NY, USA.2003.
    Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M. Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technology 2005,96:673-686
    Mougin C, Kollmann A, Jolivalt C. ErlllaIlced production of laccae in the fungus Trametes vercolor by the addition of xenobiotics. Biotechnology Lett 2002, 24:139-142.
    Mukherjee R, Nandi B. Improvement of in vitro digestibility through biological treatment of water hyacinth biomass by two Pleurotus species. Int Biodeterior Biodegrad 2004,53:7-12
    Myers RH, Montgomery DC. Response Surface Methodology:Process and Product in Optimization Using Designed Experiments. John Wiley & Sons, Inc. New York, NY, USA.1995.
    Nakashima K, Kubota F, Maruyama T and Goto M. Ionic Liquids as a Novel Solvent for Lanthanide Extraction Analytical Sciences. Analytical Sciences 2003, 19:1097-1098.
    Niku-Paavola ML, Fagerstrom R, Kruus K, Viikari L. Thermostable laccases produced by a white-rot fungus from Peniophora species. Enzyme Microb Technol 2004,35:100-102.
    Niladevi KN, Sukumaran RK, Prema P. Utilization of rice straw for laccase production by Streptomyces psammoticus in solid-state fermentation. J Ind Microbiol Biotechnol 2007,34:665-74.
    Nyanhongo GS, Gomes J, Gubitz GM, Zvauya R, Read J, Steiner W. Decolorization oftextile dyes by laceases from a newly isolated strain of Trametes modesta. Water Research 2002,36:1449-1456.
    Ohkuma M. Termite symbiotic systems:efficient bio-recycling of lignocellulose. Applied Microbiology and Biotechnology 2003,61:1-9.
    Ong E, Pollock WB, Smith M. Cloning and sequence analysis of two laccase complementary DNAs from the ligninolytic basidiomyeete Trametes versicolor. Gene 1997,196:113-119.
    Otterbein L, Record E, Longhli S, Asther M, Moukha S. Molecular cloning of the cDNA encoding laeease from Pycnoporus cinnabarinus 1-937 and expression in Pichiapastoris. Eur J Biochem 2000,267:1619-1625.
    Palmieri G, Giardina P, Bianco C, Scaloni A, Capasso A, Sannia G. A novel white laccase from Pleurotus ostreatus. The Journal of Biological Chemistry 1997,272: 31301-31307.
    Pandey A. Recent process developments in solid-state fermentation. Process Biochem 1992,7:109-117.
    Pandey A, Selvakumar P, Soccol CR, Nigam P. Solid state fermentation for the production of industrial enzymes. Curr Sci 1999,77:149-162.
    Parkinson NM, Conyers CM, Keen JN, MacNicoll AD, Smith I, Weaver RJ. cDNAs encoding large venom proteins from the parasitoid wasp Pimpla hypochondriaca identified by random sequence analysis. Comparative Biochemistry and Physiology Part C 2003,134:513-520.
    Pasti MB, Pometto AL,3rd, Nuti MP, Crawford DL. Lignin-solubilizing ability of actinomycetes isolated from termite (Termitidae) gut. Applied and Environmental Microbiology 1990,56:2213-2218.
    Piontek K, Antorini M, Choinowsld T. Crystal structure ofa laccase from the fungus Trametes versicolor at 1.9-A resolution containing a full complement of coppers. J Biol Chem 2002,277:37663-37669.
    Pozdnyakova NN, Rodakiewicz-Nowak J, Turkovskaya OV. Catalytic properties of yellow laccase from Pleurotus ostreatus D1. Journal of Molecular Catalysis B: Enzymatic 2004,30:19-24.
    Pozdniakova NN, Turkovskaia OV, Iudina EN, Rodakiewicz-Nowak Y. Yellow laccase from the fungus Pleurotus ostreatus D1:purification and characterization. Prikl Biokhim Mikrobiol 2006,42:63-69.
    Qiu W, Chen H. Solid state fermentation of a Mycelia Sterilia laccase using steam-exploded wheat straw. World Journal of Microbiology and Biotechnology 2008,24:219-224.
    Reinhammar B, Malmstrom BG. Laecase:In copper proteins and copper enzymes. Vol Ⅲ. R. Lontie. Ed. (CRC Press, Boca Raton, FL.) 1984:1-35.
    Reiss R, Ihssen J, Thony-Meyer L. Bacillus pumilus laccase:a heat stable enzyme with a wide substrate spectrum. BMC Biotechnol.2011,11:9.
    Revankar M, Lele SS. Increased production of extracellular laccase by the white rot fungus Coriolus versicolor MTCC 138. World Journal of Microbiology and Biotechnology 2006,22:921-926.
    Riva S. Laccases:blue enzymes for green chemistry. Trends Biotechnol 2006, 24:219-226.
    Rodriguez CS, Sanroman MA. Coconut flesh:a novel raw material for laccae production by Trametes hirsuta under solid-State conditions:Application to Lissamine Green B decolourization. Journal of Food Engineering 2005, 71:208-213.
    Ruijssenaars HJ, Hartmans S. A cloned Bacillus halodurans multicopper oxidase exhibiting alkaline laccase activity. Applied Microbiology and Biotechnology 2004,65:177-182.
    Ryden L. Evolution ofblue copper proteins. Prog Clin Biol Res 1988,274:349-366.
    Saito T, Kato K, Yokogawa Y, Nishida M, Yamashita N. Detoxifieation of bisphenol A and nonylphenol by purified extracellular laeease from a fungus isolated from soil. J Biosci Bioeng 2004,98:64-66.
    Sakurai T, Suzuki S. Spectroscopy ofcucumber ascorbate oxidase and fungal laccse. In:MesserscLunidt A Ed, Multi-toper oxidases. Singapore:World Sciencitific Press 1997,225-250.
    Sancheza OJ, Cardona CA. Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresource Technology 2008,99:5270-5295.
    Saparrat MCN, Guillen F, Arambarri AM, Marti'nez AT, Martinez MJ. Induction, Isolation, and Characterization of Two Laccases from the White Rot Basidiomycete Coriolopsis rigida. APPLIED AND ENVIRONMENTAL MICROBIOLOGY 2002,68:1534-1540.
    Schuckel J, Matura A, Pee KHV. One-copper laccase-related enzyme from Marasmius sp.:Purification,characterization and bleaching of textile dyes. Enzyme Microb Technol 2011,48:278-284.
    Scott CB, Hyug- Han K, Gary B, et al. The "Wired" laccase cathode:high current density electroreduction of O2 to water at +0.7 V (NHE) at pH 5. J Am Chem Soc 2001,123:5802-5803.
    Scott CB, Hyug-Han K, Gary B, et al. Electoreduction of O2 to water on the "wired" laccase cathode. Phys Chem B 2001,105:11917-11921.
    Selvakumar K, Zapf A, Beller M. New Palladium Carbene Catalysts for the Heck Reaction of Aryl Chlorides in Ionic Liquids. Organic letters 2002,4:3031-3033.
    Sheldon R. Catalytic reactions in ionic liquids. Chem. Commun.2001,2399-2407.
    Sheldon RA, Arends IWCE. Catalytic oxidations mediated by metal ions and nitroxyl radicals. J Mol Catal A:Chem 2006,251:200-214.
    Sheldon RA, Lau RM, Sorgedrager MJ, Rantwijk F and Seddon KR. Biocatalysis in Ionic Liquids.Green Chemistry 2002,4:147-151.
    Shiyu F, Pandeng Z.. Fungal Laccase and its Application of Polymerization of 4-Phenylphenol. Chemistry 2005,3:226-228.
    Sun N, Rahman M, Qin Y, Maxim ML, Rodriguez H, Rogers RD. Complete dissolution and partial delignification of wood in the ionic liquid 1-ethyl-3-methylimidazolium acetate. Green Chem.2009,11:646-655.
    Sun Y, Cheng JY. Hydrolysis of lignocellulosic materials for ethanol production:a review. Bioresource Technology 2002,83:1-11.
    Susana RC, Jose LTH. Tndustrial and biotechnological applications of laccases:A review. Biotechnology Advances 2006,24:500-513.
    Suzuki T, Endo K, Ito M, Tsujibo H, Miyamoto K, Inamori Y. A thermostable laccase from Streptomyces lavendulae REN-7:purification, characterization, nucleotide sequence, and expression. Bioscience Biotechnology & Biochemistry 2003,67: 2167-2175.
    Swatloski RP, Spear SK, Holbrey JD, et al. Dissolution of cellulose with ionic liquids. Journal of the American Chemical Society 2002,124:4974-4795.
    Teerapatsakul C, Parra R, Bucke C, Chitradon L. Improvement of laccase production from Ganoderma sp. KU-Alk4 by medium engineering. World Journal of Microbiology and Biotechnology 2007,23:1519-1527.
    Telke AA, Kadam AA, Jagtap SS, Jadhav JP, Govindwar SP. Biochemical Characterization and Potential for Textile Dye Degradation of Blue Laccase from Aspergillus ochraceus NCIM-1146. Biotechnol. Bioprocess Eng.2010, 15:696-703.
    Temp U, Zierold U, Eggert C. Cloning and characterization ofa second laccase gene from the lignin-degrading basidiomycete Pycnoporus cinnabarinus. Gene 1999, 236:169-177.
    Thurston CF, The structure and function of fungal laccase. Microbiology 1994, 140:19-26.
    Torres J, Svistunenko D, Karlsson B, Cooper CE, Wilson MT. Fast reduction of a copper center in laccase by nitric oxide and formation of a peroxide Intermediate. J Am Chem Soc.2002,124:963-967.
    Tuomela M, Vikman M, Hatakka A, Itavaara M. Biodegradation of lignin in a compost environment:a review. Bioresource Technology 2000,72:169-183.
    Turner MB, Rogers RD, Spear SS et al. Ionic liquid salt-induced inavtivation and unfolding of cellulose from Tichoderma ressei. Greeen Chemistry 2003,5: 443-447.
    Villas-Boas SG, Esposito E, Mitchell DA. Microbial conversion of lignocellulosic residues for production of animal feeds. Anim Feed Sci Technol 2002,98:1-12.
    Visser AE, Swatloski RP, Griffin ST, Hartman DH, Rogers RD. Liquid-liquid extraction of metal ions in room-temperature ionic liquids. Separation Science and Technology 2001,36:785-804.
    Vlasenko EY, Ding H, JM Labavitch JM. Enzymatic hydrolysis of pretreated rice straw. Bioresource technology 1997,59:109-119.
    Wahleithner JA, Xu F, Brown KM, Brown SH, Golightly EJ, Halkier T, Kauppinen S, Pedemon A, Schneider P. The identification and characterization of four laceases from the plant pathogenic fungus Rhizoctonia solani. Curr Genet 1995, 29:395-403.
    Wang GD, Li QJ, Luo B, Chen XY. Ex planta phytoremediation of trichlorophenol and phenolic allelochemicals via an engineered secretory laccase. Nature Biotechnology 2004,22:893-897.
    Wang ZX, Cai YJ, Liao XR, Tao GJ, Li YY, Zhang F, Zhang DB. Purification and characterization of two thermostable laccases with high cold adapted characteristics from Pycnoporus sp. SYBC-L1. Process Biochem 2010, 45:1720-1729.
    Wasserscheid P, Keim W. Ionic liquids-new "solutions" for transition metal catalysis, Angew. Chem. Int. Ed.2000,39:3772-3789.
    Welton T. Room-temperature ionic liquids. Solvents for synthesis and catalysis.Chem Rev 1999,99:2071-2083.
    Weuster-Botz D. Process intensification of whole-cell biocatalysis with ionic liquids. Chemical Record 2007,7:334-340.
    Wilkes JS. A short history of ionic liquids-from molten salts to neoteric solvents. Green Chem,2002,4:73-80.
    Wu YS, Sasaki T, Irie S, Sakurai K. A novel biomass-ionic liquid platform for the utilization of native chitin. Polymer 2008,49:2321-2327.
    Yang XX, Chen HZ, Gao HG, Li ZH. Bioconversion of corn straw by coupling ensiling and solid-state fermentation. Bioresour Technol 2001,78:277-80.
    Yaropolov AI, Skorobogatko OV, Vartanov SS, Varfolomeyev SD. Laeease properties, catalytic mechanism,and applicability. Appl Biochem Biotechnol 1994,49:257-278.
    Yaver DS, Xu F, Golightly EJ, Brown KM, Brown SH, Rey MW, Schneider P, Halkier T, Mondoff K. Purification, characterization, molecular cloning, and expression of two lacease genes from the white tot basidiomyeete Trametes villosa. Appl Environ Microbiol 1996,62:834-841.
    Zein El-Abedin S, Endres F. Electrodeposition of Metals and Semiconductors in Air-and Water-Stable Ionic Liquids. ChemPhysChem 2006,7:58-61.
    Zhang HB, Zhang YL, Huang F. Purification and characterization of a thermostable lacease with unique oxidative characteristics from Trametes hirsute. Biotechnol Lett 2009,31:837-843.
    Zhang X, Wang Y, Wang L, Chen G, Liu W, Gao P. Site-directed mutagenesis of manganese peroxidase from Phanerochaete chrysosporium in an in vitro expression system. Journal of Biotechnology 2009,139:176-178.
    Zhao H, Xia SQ, Ma PS. Use of ionic liquids as'green'solvents for extractions. Journal of Chemical Technology and Biotechnology 2005,80:1089-1096.
    Zheng W, Li Q, Su L, Yan Y, Zhang J, Mao L. Direct electrochemistry of multi-copper oxidases at carbon nanotubes noncovalently functionalized with cellulose derivatives. Electroanalysis 2006,18:587-594.
    Zhou G, Liu S, Li Z, Zhang D, Tang X, Zhou C, Yan J, Mo J. Old-growth forests can accumulate carbon in soils. Science 2006,314:1417.
    Zhu AD, Wu YX, Chen QC. Dissolution of cellulose with ionic liquids and its application:a mini-review. Green Chem 2006,8:325-327.
    Zulfiqar F, Kitazume T. One-pot aza-Diels-Alder reactions in ionic liquids. Green Chem 2000,2:137-139.
    曹治云,郑腾,谢必峰,等.漆酶工业应用的研究进展.生物技术通讯.2005,15:414-415.
    初华丽,梁宗琦.漆酶的潜在应用价值.山地农业生物学报.2004,23:529-533.
    付时雨,楮青峰,詹怀宇.漆酶/助剂体系降解苇浆残余木质素的研究.中国造纸.2001,20:17-20.
    甘景镐.生漆的化学.北京:科学出版社.1984:73-117.
    高恩丽.云芝漆酶的生产及其应用基础研究.[D].杭州:浙江大学,2007.
    高培基,许平.资源环境微生物技术.北京:化学工业山版社.2004.
    韩晓磊,严莲荷,周申范.漆酶分泌及其活性影响因素综述.化学与生物工程.2005,7:10-13.
    贺新强,崔克明,李正理.杜仲次生木质部分化过程中木质素与半纤维素组分在细胞壁中分布的动态变化.植物学报.2001,43:899-904.
    侯红漫,蒋姣姣.白腐菌Pleurotus ostrestus漆酶的生产及其最优诱导条件.大连轻工业学院学报.2003,22:29-32.
    黄乾明.漆酶高产菌株的诱变选育及其酶的分离纯化、性质和基因克隆研究.[D].雅安:四川农业大学,2006.
    姜标,徐向亚,李祖义.用于生物氧化的蓝色漆酶.有机化学.2008,28:1715-1723.
    靖德兵,李培军,台培东等.彩绒革盖菌固体发酵生产木质素酶工艺优化研究.微生物学通报.2004,31:19-23.
    康从宝,刘巧,李清心,曲音波,高培基.白腐菌产漆酶的纯化及部分酶学性质.中国生物化学与分子生物学报.2002,18:638-642.
    李慧蓉.白腐真菌生物学和生物技术.北京:化学工业出版社.2005.
    李洪臣,于秀俊,杨秀艳.漆酶及其应用.沧州师范专科学校学报.2005,21:91-92.
    李杨,段新源,刘稳,方靖,高培基.杂色云芝组成型漆酶的纯化和底物专一性.中国生物化学与分子生物学报.2002,18:737-740.
    芦国营,张朝晖,洪伟杰.固态发酵生产木质素酶研究进展.饲料工业.2005,26:29-33.
    罗鹏,刘忠.用纤维素物质生产乙醇的预处理工艺.酿酒科技.2005,134:42-47.
    宋安东,张百良,吴坤,等.杂色云芝产木质纤维素酶及对稻草秸秆的降解.过程工程学报.2005,5:414-419.
    宋美静.纸浆氯漂废水的处理.纤维素科学与技术.1999,2:22-25.
    王华,金大勇,赵建夫等.真菌漆酶及其在环境污染控制中的应用.环境科学与技术.2003,26:58-60.
    王璐.木腐真菌分泌的低分子量活性物质在木质素生物降解中作用的研究.[D].济南:山东大学,2008.
    魏华丽,石淑兰,裴继诚.13C-NMR分析漆酶处理木质素的结构特征.中国造纸学报.2004,19:109-112.
    吴坤,朱显峰,张世敏等.杂色云芝禅意酶的发酵条件研究.菌物系统.2001,34:345-356.
    徐清华.废新闻纸漆酶介体体系脱墨及其机理的研究.[D].天津:天津科技大学,2004.
    杨龙寿,张锦云.木质素资源的开发利用.化工进展.1994,1:47-49
    张海波.粗毛栓菌Trametes hirsuta 1g-9非典型漆酶的研究.[D].济南:山东大学,2010.
    中野準三著,高洁译.木质素的化学—基础与应用.北京:轻工业出版社.1980.
    朱陶,赵永芳.粗毛栓菌漆酶的分离纯化及部分性质研究.武汉大学学报(理学四川农业大学博士论文版).2002,48:209-212.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700