用户名: 密码: 验证码:
特种车辆高性能轻质复合构件的加工技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现代战争对特种车辆的机动性和防护能力提出了更高的要求,以工程陶瓷、纤维增强复合材料为核心的高性能复合构件具有密度低、防护性能好的特点,在特种车辆上有着广泛的应用前景。高性能复合构件在制作成型以后,需要根据现场装配要求进行二次加工,如钻削、铣削等。工程陶瓷以及纤维增强复合材料均为难加工材料,在制作形成复合构件后更是由于组份材料加工性能的迥异,使加工更加困难。论文通过理论分析及试验研究,对特种车辆高性能轻质复合构件的加工技术进行深入研究,为其推广和应用提供技术支撑。
     首先对复合构件的刀具研制及加工工艺进行了分析。针对陶瓷复合构件,从刀具材料、刀具结构、刀具制作工艺、金刚石参数设计等方面阐述了烧结、电镀、钎焊金刚石工具的研制过程;针对玻璃钢复合构件,研制了包括涂层TiN、多刃尖、S刃、PCD在内的多材料多刃型麻花钻头,同时,通过设计预紧力装置,优化构件加工顺序,选择冷却方式等提高了复合构件的加工质量。
     从理论分析和试验研究两个方面对复合构件的加工机理及刀具磨损进行了研究。采用压痕断裂力学模型及切削加工模型对装甲陶瓷的磨削机理进行了分析,建立了烧结金刚石钻头单颗磨粒的平均切削载荷及切削深度的计算公式;通过试验观察,进一步分析了装甲陶瓷的材料去除机理。结果表明:陶瓷材料的去除方式以脆性断裂去除为主,也存在部分塑性变形去除,是一种混合型的去除模式;对玻璃钢(GFRP)的磨削及切削表面的扫描电镜观察表明:玻璃钢的磨削加工是玻璃纤维在多磨粒多刃口作用下的剪切、弯曲及拉伸断裂,纤维断口可分为平滑断口、两平面及多平面断口、倾斜断口、多平面剪切断口、剥层断裂面断口五种形貌;切削加工是玻璃纤维在主切削刃作用下的剪切、弯曲、拉伸断裂,纤维断口可分平滑断口、弯曲断口、倾斜断口三种形貌;磨削表面和切削表面均由玻璃纤维和树脂涂附表面组成;分析了金刚石磨粒、烧结、电镀、钎焊金刚石工具及麻花钻头的磨损特征及机理。结果表明:金刚石磨损是切削力和切削热共同作用的结果;烧结金刚石钻头因内外径切削线上金刚石磨粒的的切削负荷不同,导致内喇叭状磨损变相;金刚石磨粒大量磨平磨钝导致钻头打滑;烧结金刚石钻头的胎体磨损成“流沙型”模式,而电镀、钎焊金刚石钻头的磨损未呈现“流沙型”特征;麻花钻因刀具材料不同及切削刃各点负荷不均匀,其中的高速钢以及S刃钻头主要为后刀面磨损,多刃尖钻头为刃尖磨损,PCD钻头磨损较为轻微。
     针对氧化铝陶瓷复合构件,从金刚石品级、结合剂设计两个方面,对烧结金刚石工具的胎体性能进行了优化,并结合正交试验,对工具的结构参数(粒度、浓度、水口数、壁厚)进行了优化;采用胎体性能优化后的金刚石钻铣刀对复合构件进行了铣削试验,分析了主轴转速、背吃刀量、进给速度对加工效率的影响;采用烧结、钎焊、电镀三种钻头对碳化硅装甲陶瓷进行加工,优选出适合的加工工工具,并通过单因素试验,分析了主轴转速及轴向力对加工效率的影响。结果表明:采用SMD40品级金刚石和结合剂Cu50Co25Sn18Ti7(wt%)胎体以及壁厚2.5mm、金刚石粒度35/40、浓度100%,水口数为3的金刚石薄壁钻头可以实现氧化铝陶瓷复合构件的高效率高质量孔加工;加工工艺参数对铣削效率影响大小的顺序为进给力、背吃刀量和主轴转速;电镀金刚石钻头在轴向力800N左右,主轴转速2600r/min左右,采用双面加工工艺可以实现碳化硅装甲陶瓷的高效率高质量孔加工
     针对玻璃钢复合构件,分析了预紧力、横刃、TiN涂层、直径对轴向力及分层的影响,建立了进给速度、主轴转速、钻头直径等因素对轴向力影响的经验公式;选用S刃TiN涂层钻头及PCD钻头,研究了其对轴向力及分层的影响,结合临界轴向力模型,确定了采用PCD钻头可以实现玻璃钢复合构件的高效率高质量孔加工
     对便携式孔加工设备进行了真空吸盘底座改进设计,并对底座吸盘密封材料及密封技术进行了研究;对真空吸盘密封结构进行了有限元接触分析,重点分析了橡胶硬度对接触的影响,并结合加工试验,对其可靠性进行了验证。结果表明:采用硬度HA=60的丁腈橡胶真空吸盘底座便携式孔加工设备,可以实现不破损待加工材料表面的孔加工,可靠性好,满足现场加工要求。
Special vehicles have demanded higher mobility and barrier properties for the development of offense weapons in modern conflict. Since engineering ceramics and fibre reinforced composites are characterized of low density and excellent barrier propterties, high performance lightweight composite components made of them have wide application prospect. Usually, after the composite components are manufactured, secondary machining processes such as drilling, slotting are required for the purpose of joining and assembling. Engineering ceremics and fibre reinforced composite are belong to "difficult to cut" materials and the composite components made of the two will be more difficult to cut for their totally different machinability. The difficulty has limited their application. This paper is devoted to study intensive and systematical technologies to process the high performance composite components, which could provide technical supports for its broader application.
     Firstly, cutting tools and processing technology were analized. For the ceramic composite component, manufacturing technology of diamond tools including sintering, electroplating and brazing was analyzed; for the glass fiber reinforced plastics (GFRP) composite component, twist drills inculing TiN-coating, multi-edge tip, S-shaped tip and PCD types were used to conduct the experiments. By designing a pretightening force component, optimizing processing sequence of the ceramic composite component and adopting different coolling methods, machining quality of the composite components is improved.
     Secondly, machining mechanisms of the composite components and tool wear were studied. By using indentation fracture mechanics and ceramic cutting model, examining the ground surfaces by scanning electron microscope (SEM), the ceramic removal mechanisms, machined surface characteristics of GFRP and tool wear were analized. The results show that the ground surface of the armor ceramic consists of fractured area and ductile streak area, which indicate that the material removal modes include brittle fracture and ductile cutting, which is called "mixed removal modes", and the brittle fracture removal is much more prevalent; for the grinding process of GFRP, fibers are broken by shear behavior of abrasive grain and six type of broken morphology are found; for the cutting process, fibers are broken by shear behavior of the main edge of the twist drill and three type of broken morphology are found; Both the surface consist of glass firber aera and resin coated area; diamond wear is caused by cutting force and cutting heat; sintering bit converting phase is caused by the difference of cutting load working on the bit outside and inside diameters; sintering bit skidding results from diamond wearing smoothly; sintering tools form wear topography of " drifting sand " mode, which does not present in electroplating and brazing ones.
     Thirdly, experimental researches were conducted for the composite components. For the alumina composite component, with diamond SMD40 and matrix Cu50Co25Sn18Ti7(wt%) being adopted, the matrix performance was improved, then bit structure parameters were optimized by an orthogonal experiment. The results show that the bit with wall thickness of 2.5mm, diamond grain of 35/40, diamond concentration of 100% and 3 of the slots can obtain a high drilling efficiency. Milling tests were conducted by using the performance improved diamond tools and the main influcing factors to the efficiency were analized. The results show that the ascending order is feeding force, milling depth and spindle speed. For the silicon carbide ceramic, sintering, brazing and electroplating diamond bits were used to conduct drill tests, with the best performing bit being chosed, and by conducting single factor experiments, the influence of axial force and spindle speed to the efficiency was analized. The results show that electroplating bits present the best performance,800N and 2600r/min are not suitable to exceed under the experimental conditions, and two side drilling could obtain qualified holes.
     For the GFRP composite components, the influence of the pretightening force, chisel edge, TiN coat and drill diameter to the thrust force and delamination was analized, thrust force empirical equations of feed rate, spindle speed and drill diameter were built. S shaped tip drill with TiN coated and PCD drills were also used to analyze their influence to the thrust force and delamination; with critical thrust force model being built, conclusions were made that PCD drill could obtain the best drilling quality and the longest tool life among the drills.
     Finally, portable hole-drilling equipment of diamond drill machine was modified. A kind of vacuum base to the machine was designed. Seal material and sealing technology were studied; sealing property of the vacuum base was analized by finite element methods; drilling tests were conducted to verify the reliability of the modified equipment. The results show that with using the vacuum base (seal material, nitrile rubber, hardness HA 60), the Portable hole-drilling equipment is dependable, and could realize the spot process with no destroying surface of the composite component.
引文
[1]张自强,赵宝荣,张锐生,等.装甲防护技术基础[M].北京:兵器工业出版社,2000.
    [2]郑慕侨,冯崇植,蓝祖佑.坦克装甲车辆[M].北京:北京理工大学出版社,2003.
    [3]张玉军,张伟儒.结构陶瓷材料及其应用[M].北京:化学工业出版社,2005.
    [4]刘薇,杨军.装甲防护材料的研究现状及发展趋势[J].材料热处理技术,2011,40(2):108-111.
    [5]张有凤,赵沛然,张国斌.高级材料在复合装甲上的应用[J].国外坦克,2009,6:48-53.
    [6]张玉龙,杨淑丽,郭斌.坦克装甲车辆用高新材料技术[J].车辆与动力技术,2004,93(1):56-62.
    [7]孙耀峰陶瓷装甲的发展(上)[J].军事技术,2010(9):32-34.
    [8]孙耀峰陶瓷装甲的发展(下)[J].军事技术,2010(10):26-27.
    [9]张卫东.装甲陶瓷材料的发展历程[J].国外坦克,2006(10):22-26,31.
    [10]康永,柴秀娟.陶瓷复合装甲材料的研究与发展[J].佛山陶瓷,2011(1):44-45.
    [11]叶鼎铨.玻璃纤维的防弹防爆应用[J].玻璃纤维,2008(3):43-47.
    [12]INASAKI I. Grinding of Hard Brittle Materials [J]. Annals of the CIRP,1987,36(21): 463-471.
    [13]Jianyi Chen, Jianyun Shen, Hui Huang, et al. Grinding characteristics in high speed grinding of engineeringnext termprevious termceramicsnext term with brazed diamond wheels [J]. Journal of Materials Processing Technology,2009,210(6-7):899-906.
    [14]罗志海,杨润泽.工程陶瓷材料加工技术的现状与发展[J].陶瓷,2010(10):7-10.
    [15]于思远,林彬.工程陶瓷材料的加工技术及其应用[M].北京:机械工业出版社,2008.
    [16]潘立,张国林,王磊,等.陶瓷磨削技术的研究进展[J].浙江工业大学学报[J],2003,31(6):641-646.
    [17]靳晓丽,袁军堂,肖冰.工程陶瓷材料孔加工技术的试验[J].工具技术,2004,38(5):22-24.
    [18]李泽印,陈建毅,黄辉,等.钎焊金刚石薄壁钻加工工程陶瓷的试验研究[J].工具技术,2006,40(9):10-12.
    [19]冯之敬,杨向东,潘尚峰,等.陶瓷内孔精细加工的实验研究[J].仪器仪表学报,1996,17(1):419-422.
    [20]A. Senthil Kumar, A. Raja Durai, T. Sornakumar. Development of alumina-ceria ceramic composite cutting tool [J]. International Journal of Refractory Metals and Hard Materials, 2004,22(1):17-20.
    [21]C. Kawai, A. Yamakawa. Machinability of high-strength porous silicon nitride ceramic [J]. Journal of the Ceramic Society of Japan,1998,106(1239):1135-1137.
    [22]Agarwal, Sanjay Venkateswara Rao, P.. Grinding characteristics, material removal and damage formation mechanisms in high removal rate grinding of silicon carbide [J]. International Journal of Machine Tools and Manufacture,2010,50(12):1077-1087.
    [23]王瑞刚,潘伟,蒋蒙宁,等.可加工陶瓷及工程陶瓷加工技术现状及发展[J].硅酸盐通报,2001(3):27-35.
    [24]Q.H. Zhang, J.H. Zhang, Z.X. Jia, et al. Material-removal-rate analysis in the ultrasonic machining of engineering ceramics [J] Journal of Materials Processing Technology, 1999,88(1):180-184.
    [25]C.Y. Ho, J.K. Lu. A closed form solution for laser drilling of silicon nitride and alumina ceramics. Journal of Materials Processing Technology [J],2003,140(1-3SPEC):260-263.
    [26]J.X. Deng, T.C. Lee. Surface integrity in electro-discharge machining, ultrasonic machining, and diamond saw cutting of ceramic composites [J]. Ceramics International, 2000,26(8):825-830.
    [27]Z.X. Jia, J.H Zhang, X. Ai. Ultrasonic vibration pulse electro-discharge machining of holes in engineering ceramics [J]. Journal of Materials Processing Technology, 1995,53(3-4):811-816.
    [28]P. Gudimetla, J. Wang, W. Wong. Kerf formation analysis in the abrasive waterjet cutting of industrial ceramics [J]. Journal of Materials Processing Technology, 2002,128(1-3):123-129.
    [29]Churi, Nikhil J.,Pei, Z.J., Shorter, Dustin C., et al. Rotary ultrasonic machining of dental ceramics [J]. International Journal of Machining and Machinability of Materials,2009,6(3-4):270-284.
    [30]张勤河,张建华,贾志新.金刚石工具钻削加工工程陶瓷孔的研究[J].磨床与磨削,1998(1):29-34.
    [31]原昭夫,中井哲男,等.工业材料,1983,31:55.
    [32]岩田一明,森胁俊道等.昭和60年度精机学会秋季大会学术讲演论文集,1985.
    [33]Inoue K, Sakai Y, Ono K, et al. Super high speed grinding for ceramics with vtrified diamond wheel [J]. International Journal of Japan Society for Precision Engineering, 1994,28 (4):45-48.
    [34]Kovch J A, Blau P J, Malkin S,et al. A feasibility investigation of high speed low damage grinding process for advanced ceramics [C].5th International Grinding Conference, 1993,(1):113-117.
    [35]Malkin S H, Wang T W. Grinding mechanisms for ceramics [J]. Annals of the CIRP, 1996,45(2):569-579.
    [36]Zhang, Q.H., Zhang, J.H., Sun, D.M., et al., Study on the diamond tool drilling of engineering ceramics [J]. Journal of Materials Processing Technology, 2002,122:232-236.
    [37]郑雷,袁军堂,李少华.孕镶金刚石钻头加工工程陶瓷的性能研究[J].南京理工大学学报(自然科学版),2007,31(5):574-578,584.
    [38]郑雷.高性能轻质材料及其复合构件的加工技术研究[D].南京:南京理工大学机械工程学院,2007.
    [39]Bifano T G. Ductile-Regime Grinding:A New Technology for Machining Brittle Materials[J]. ASME Journal of Engineering for Industry,1991,113:184-189.
    [40]Zhong Z, Venkatesh V C,Semi-Ductile Grinding and Polishing of Ophtalmic Aspherics and Spherics [J]. Annals of the CIRP,1995,44(1):339-442.
    [41]柯宏发,陈友良.陶瓷半延展性磨削试验研究[J].金刚石与磨料磨具工程,1998,1(103):25-28.
    [42]Lawn B R, Swain M V.Microfracture Beneath point Indentation in Brittle Solids[J].Journal of Material Science,1975,10:113-122.
    [43]Warnecke G, Barth C. Optimization fo the dynamic behavior of grinding wheels for grinding hard and brittle materials using the finite element method [J]. CIRP Annals of Manufacture Technology,1999,48:261-264.
    [44]Zhang Bi. Howes T D. Material-Removal Mechanisms in Grinding Ceramics[J], Annals of the CIRP,1994,43(1):305-308.
    [45]J.C. Conway Jr., H.P. Kirchner. Crack branching as a mechanism of crushing during grinding [J]. Journal of the American Ceramic Society,1986,69(8):603-607.
    [46]S. Malkin, J.E. Ritter. Grinding mechanisms and strength degradation for ceramics [J]. Transactions of the ASME, Journal of Engineering for Industry,1989,111(2):167-173.
    [47]K. Li, T.W. Liao. Surface/subsurface damage and the fracture strength of ground ceramics [J]. Journal of Materials Processing Technology,1996,57(3-4):207-220.
    [48]I. Regiani, C.A. Fortulan, B. De Moraes Purquerio. Abrasive machining of advanced ceramics [J]. Industrial Diamond Review,2000,60(1):37-42.
    [49]J.X. Zheng, J.W. Xu, Z.B. Lu. Grinding mechanism of ceramics in the ductile regime [J]. Journal of the Chinese Ceramic Society,2006,34(1):102-106.
    [50]K. Subramanian, S. Ramanath, M. Tricard. Mechanisms of material removal in the precision production grinding of ceramics [J]. Transactions of the ASME, Journal of Manufacture Science and Engineering,1997,119(4):509-519.
    [51]T.J. Larchuk, J.C. Conway Jr., H.P. Kirchner. Crushing as a mechanism of material removal during abrasive machining [J]. Journal of the American Ceramic Society, 1985,68(4):209-215.
    [52]J.A. Kovach, P.J. Blau, S. Malkin, et al. Feasibility investigation of high-speed, low damage grinding for advanced ceramics(C). SME Technical Paper (Series) MR,1993:1-16.
    [53]S. Gowri, B.K.A. Nqoi, K. Ramesh. Study on acoustic emission during high-speed grinding and ultraprecision grinding of advanced ceramics [J]. American Society of Mechanical Engineers, Manufacturing Engineering Division,1999,10:839-846.
    [54]田欣利,徐燕申,林彬,等.陶瓷精密加工表面完整性的研究进展[J].中国机械工程,1998,9(6):63-66.
    [55]邓建新.陶瓷材料加工表面完整性及其对材料可靠性的影响[J].硅酸盐通报,2001(5):38-42.
    [56]张航,何泽明.机械加工对陶瓷材料性能的影响[J].硅酸盐通报,1998(6):48-51.
    [57]张璧,孟鉴.工程陶瓷磨削加工损伤的探讨[J].纳米技术与精密工程,1998,1(1):48-56.
    [58]任敬心,康仁科,史兴宽.难加工材料的磨削[M].北京:国防工业出版社,1999.
    [59]李志强,樊锐,陈五一,等.纤维增强复合材料的机械加工技术[J].航空制造技术,2003(12):34-37.
    [60]杨广勇,李汉民,周渠,等.玻璃纤维强化复合材料的切削加工[J].电子工艺技术,1994(5):3-6.
    [61]徐勇华.高性能轻质复合材料加工技术的研究[D].南京理工大学硕士学位论文,2003.
    [62]袁军堂,马少杰,温玉林,等.高强有机纤维增强聚烯烃基复合材料加工技术.机械科学与技术,1999,8(2):283-285.
    [63]袁军堂,温玉林.柔性复合材料钻孔技术[J].新技术新工艺,1998(6):12-14.
    [64]袁军堂,张永刚.凯芙拉纤维复合材料的孔加工技术[J].机械制造,2002,,40(5):29-30.
    [65]靳晓丽.轻质特种防护材料加工技术的研究[D].南京理工大学硕士学位论文,2003.
    [66]D. Bhattacharyya, D.P.W. Horrigan. A study of hole drilling in Kevlar composites [J]. Composites Science and Technology,1998,58(2):267-283.
    [67]张伟,张林波,艾启兰.新型碳纤维复合材料孔加工刀具[J].工具技术, 1999,33(2):20-21.
    [68]张厚江.碳纤维复合材料(CFRP)钻削加工技术的研究[D].北京航空航天大学博士学位论文,1998.
    [69]张厚江,陈五一,陈鼎昌.碳纤维复合材料的钻削加工[J].新技术新工艺,1998(5):16-18.
    [70]张厚江,陈五一,樊锐,等.碳纤维复合材料高质量孔的钻削[J].航空制造技术,2004(3):55-57.
    [71]陈志华,林有希,高诚辉.树脂基纤维增强复合材料的激光钻削研究[J].机械制造,2005,43(10):55-57.
    [72]D.K. Shanmugam, et al. Comparative study of jetting machining technologies over laser machining technology for cutting composite materials [J]. Composite structures, 2002,57(1):289-296
    [73]王珉,W.S.Lau.碳纤维复合材料电火花加工(EDM)机理研究[J].航空学报,1991,12(12):651-654.
    [74]张宏,胡富强,陈焕春,等. SiCp/Al复合材料电火花加工技术研究现状及发展[J].机械制造,2009,47(4):44-46.
    [75]程轶伦.超高压水射流技术在航空工业中的应用[J].航空精密制造技术,2009,45(6):23.
    [76]H.Hocheng.A failure analysis of water jet drilling in composite laminates [J]. International Journal of Machine Tools & Manufacturing,1990,30(3):423-429.
    [77]张其馨,冯有彬,张广玉,等.碳纤维复合材料超声钻孔的研究[J].机械工程学报,1996,32(3):97-101.
    [78]H. Hocheng, C.C. Hsu. Preliminary study of ultrasonic drilling of fiber-reinforced plastics [J]. Journal of Materials Processing Technology,1995(48):255-266.
    [79]J.R. Ferreira, N.L. Coppini, G.W.A. Miranda. Machining optimisation in carbon fibre reinforced composite materials [J] Journal of Materials Processing Technology, 1999,92-93:135-140.
    [80]J.R. Ferreira, N.L. Coppini, F. Levy Neto. Characteristics of carbon composite turning [J]. Journal of Materials Processing Technology,2001,109:65-71.
    [81]M. Rahman, S. Ramakrishna, J.R.S. Prakash et al. Machinability study of carbon fiber reinforced composite [J] J Mater Process Technol,1999,89-90:292-297.
    [82]胡宝刚,杨志翔,杨哲.复合材料后加工技术的研究现状及发展趋势[J].宇航材料工艺,2000,30(5):24-27.
    [83]张厚江,陈五一,陈鼎昌.碳纤维复合材料钻孔分层的渗透检测[J].航空制造技术, 2004,12:78-80.
    [84]鲍永杰,高航,李凤全.电镀金刚石钻头钻削碳纤维复合材料研究[J].金刚石与磨料磨具工程,2009,171(3):38-42.
    [85]李凤全.碳纤维复合材料制孔缺陷及对策的试验研究[D].大连理工大学硕士学位论文,2008.
    [86]杨广勇,李汉民,周渠,等.玻璃纤维强化复合材料的切削加工[J].电子工艺技术,1994(5):3-6.
    [87]蒋海滨,魏伯荣,李名琦.薄层芳纶复合材料壳体的后加工研究[J].宇航材料工艺,2002(2):38-42.
    [88]Koplev A, Lystrup A. Vorm T. The cutting process chips and cutting forces in machining CFRP[J]. Composites,1983,14(4):371-376.
    [89]花崎伸作,野村昌孝.FEMによゐCFRPの切削机构の解析[M].日本机械学会论文集,1995,61(3):1163-1168.
    [90]花崎伸作,藤原顺介,野村昌孝.CFRP切削におけゐ工具摩耗机构[M].日本机械学会论文集,1994,60(1):297-302.
    [91]M.S. Won, C.K.H. Dharan. Chisel edge and pilot hole effects in drilling composite laminates [J]. Journal of Manufacturing Science and Engineering,2002,124:242-247.
    [92]J.Paulo Davim, Pedro Reisa, C.Conceicao Antonio. Experimental study of drilling glass fiber reinforced plastics (GFRP) manufactured by hand lay-up [J]. Composites Science and Technology,2004,64:289-297.
    [93]S. Arul, L. Vijayaraghavan, S.K. Malhotra, R. Krishnamurthy. Influence of tool material on dynamics of drilling of GFRP composites [J]. The International Journal of Advanced Manufacturing Technology,2006,29:655-662.
    [94]J. Ramkumara, S.K. Malhotra, R. Krishnamurthy. Effect of workpiece vibration on drilling of GFRP laminates [J]. Journal of Materials Processing Technology, 2004,152:329-332.
    [95]K. Palanikumar. Application of Taguchi and response surface methodologies for surface roughness in machining glass fiber reinforced plastics by PCD tooling [J]. The International Journal of Advanced Manufacturing Technology,2008,36:19-27.
    [96]E.S. Lee. Precision Machining of Glass Fibre Reinforced Plastics with respect to Tool Characteristics [J]. The International Journal of Advanced Manufacturing Technology, 2001,17:791-798.
    [97]I. Singh, N. Bhatnagar. Drilling-induced damage in uni-directional glass fiber reinforced plastic (UD-GFRP) composite laminates[J]. International Journal of Advanced Manufacturing Technology,2006,27:877-882.
    [98]全燕鸣,叶邦彦.复合材料的切削加工表面结构与表面粗糙度[J].复合材料学报,2001,18(4):35-38.
    [99]王金明,杨志翔.复合材料切削表面粗糙度测试方法的研究[J].宇航材料工艺,2004(4):59-62.
    [100]叶安柱.陶瓷/玻璃纤维复合构件的孔加工技术试验研究[D].南京理工大学硕士论文,2008.
    [101]王秦生.金刚石烧结制品[M].北京:中国标准出版社,2000.
    [102]张绍和.金刚石与金刚石工具[M].长沙:中南大学出版社,2005.
    [103]孙毓超,刘一波,王秦生。金刚石工具与金属学基础[M].北京:中国建材工业出版社,1999.
    [104]尚广庆,孙春华.电沉积金刚石钻削工具结构及参数优化[J].现代制造工程,2002(3):40-41.
    [105]张绍和.金刚石钻头设计与制造新理论新技术[M].武汉:中国地质大学出版社,2001.
    [106]郑玉琢.温度和加热时间对金刚石性能的影响[J].金刚石制品与石材加工信息通报,1994(3):36-40.
    [107]亓曾笃.金刚石的耐热性[J].工业金刚石,2001(1):14-15.
    [108]卢金斌,徐九华.Ag-Cu-Ti钎料钎焊金刚石的界面微观组织分析[J].焊接学报,2007,28(8):29-32.
    [109]姚正军,徐鸿钧,肖冰等.N i-Cr合金Ar气保护炉中钎焊金刚石砂轮的研究[J].中国机械工程,2001,12(8):956-958.
    [110]肖冰,徐鸿钧,武志斌等.Ni2Cr合金真空单层钎焊金刚石砂轮[J].焊接学报,2001,22(2):23-26.
    [111]邵浩明,王进保,孙浩.真空钎焊无镀覆和镀钛金刚石磨粒的实验研究[J].超硬材料工程,2008,20(4):7-10.
    [112]王艳辉,臧建兵,王明智.复合镀覆Ti-Ni金刚石的钎焊应用[J].金刚石与磨料磨具工程,2001(1):6-7.
    [113]李晋尧.金刚石表面镀对金刚石制品性能的影响[J].稀有金属材料与工程,1996,25(3):26-29.
    [114]卢金斌,穆云超.Ni-Cr合金钎焊镀钛金刚石的研究[J].金刚石与磨料磨具工程,2006(6):19-21.
    [115]李伯民,赵波.现代磨削技术[M].北京:机械工业出版社,2004.
    [116]胡凡,万德建.凯芙拉复合材料的加工及刀具研制[J].航空工艺技术,1990(6):2-4.
    [117]濮良贵,纪名刚.机械设计[M].北京:高等教育出版社,2006.
    [118]D.B. Marshall, B.R. Lawn, A.G. Evans. Elastic/plastic indentation damage in ceramics: the lateral crack system [J]. Journal of the American Ceramic Society, 1982,65(11):561-566.
    [119]B.R. Lawn. Fracture of brittle solids[M].2nd Editions, Cambridge University Press, 1993:249-306.
    [120]B.R. Lawn, R. Wilshaw. Review indentation fracture:principles and applications [J]. Journal of Materials Science,1975,10(6):1049-1081.
    [121]B.R. Lawn, A.G. Evans. Model for crack initiation in elastic/plastic indentation fields [J]. Journal of Materials Science,1977,12(11):2195-2199.
    [122]B.R. Lawn, A.G. Evans, D.B. Marshall. Elastic/plastic indentation damage in ceramics: the median/radial crack system [J]. Journal of the American Ceramic Society,1980,63 (9-10):574-581.
    [123]S.S. Chiang, D.B. Marshall, A.G. Evans. Response of solids to elastic/plastic indentation-2. fracture initiation [J]. Journal of Applied Physics,1982,53(1):312-317.
    [124]王西彬.结构陶瓷磨削及变质层的研究[D].西安交通大学博士论文,1994.
    [125]M.V. Swain. Microfracture about scratches in brittle solids[C]. Proceedings of the Royal Society of London, Series A:Mathematical and Physical Sciences, 1979,336(1727):575-597.
    [126]H.H.K. Xu, S. Jahanmir. Microfracture and material removal in scratching of alumina [J]. Journal of Materials Science,1995,30(9):2235-2247.
    [127]A.W. Ruff, H. Shin, C.J. Evans. Damage processes in ceramics resulting from diamond tool indentation and scratching in various environments [J]. Wear, 1995,181-183(2):551-562.
    [128]D.B. Marshall, A.G.Evans, B.T. Khuri Yakub, et al. Nature of machining damage in brittle materials[J]. Proceedings of the Royal Society of London, Series A: Mathematical and Physical Sciences,1983,385(1789):461-475.
    [129]J.C. Conway Jr., H.P. Kirchner. Mechanics of crack initiation and propagation beneath a moving sharp indentor [J]. Journal of Materials Science,1980,15(11):2879-2883.
    [130]B. Zhang, H. Tokura, M. Yoshikawa. Study on surface cracking of alumina scratched by single-point diamonds[J]. Journal of Materials Science,1988,23(9):3214-3224.
    [131]杨俊德.金刚石钻头和金刚石锯片磨损机理、设计及性能测试研究[D].中南大学博士学位论文,2004.
    [132]杨俊德,彭振斌,陈石林,等.金刚石钻头钻进过程中金刚石磨损规律试验研究 [J].矿冶工程,2003,23(4):64-66,70.
    [133]章兼植.孕镶工具中金刚石的失效和对策综述[J].珠宝科技,2003,15(1):1-3.
    [134]潘秉锁,史冬梅,杨凯华.金刚石粒度对孕镶金刚石钻头性能的影响[J].煤田地质与勘探,2002,30(3):62-64.
    [135]张绍和,鲁凡,杨凯华.金刚石钻头性能量化表示研究[J].探矿工程,2002(1):58-60.
    [136]张绍和,邵全军.钻头金刚石浓度设计的定量计算方法[J].地质与勘探,2000,36(5):79-83.
    [137]章兼植.孕镶工具唇面上金刚石颗粒量的探求[J].珠宝科技,2004,16(4):11-16.
    [138]D.N. Wright, H. Wapler. Investigations and prediction of diamond wear when sawing [J]. Annals of the CIRP,1986,35(1):239-244.
    [139]任敬心,华定安.磨削原理[M].西安:西北工业大学出版社,1988.
    [140]郑雷,冯宝富,王保卫,等.工程陶瓷的磨削钻孔及表面形成机理[J].粉末冶金技术,2009,27(5):351-355,360.
    [141]王西彬.磨削对结构陶瓷缺陷区域的损伤作用[J].兵工学报,2000,21(3):286-288.
    [142]王西彬,任敬心.结构陶瓷磨削表面损伤的研究[J].硅酸盐学报,1997,25(1):101-105.
    [143]王西彬,任敬心.结构陶瓷磨削表面微裂纹的研究[J].无机材料学报,1996,11(4):658-664.
    [144]H.H.K. Xu, S. Jahanmir, L.K. Ives. Material removal and damage formation mechanisms in grinding silicon nitride. Journal of Materials Research,1996, 11(7):1717-1724.
    [145]殷玲,陈日曜,刘忠.工程陶瓷磨屑形成机理与磨削模型.天津大学学报,1993(4):28-29.
    [146]K. Minowa, K. Sumino. Stress-induced amorphization of a silicon crystal by mechanical scratching. Physical Review Letters,1992,69(2):320-322.
    [147]王善元,张汝光.纤维增强复合材料[M].上海:中国纺织大学出版社,1998.
    [148]郑雷,袁军堂,汪振华.纤维增强复合材料磨削钻孔的表面微观研究[J].兵工学报,2008,29(12):1492-1496.
    [149]W. Koenig, P. Grab. Quality definition and assessment in drilling of fibre reinforced thermosets [J]. Annals of the CIRP,1989,38(1):119-124.
    [150]张厚江,陈五一,陈鼎昌.碳纤维复合材料(CFRP)孔壁的微观形态[J].复合材料学报,2000,17(2):98-101.
    [151]W. Polini, S. Turchetta. Test protocol for micro-geometric wear of sintered diamond tools [J].Wear,2004,257:246-256.
    [152]H.K. Tonshoff, et al. Diamond tools in stone and civil engineering industry:cutting principles wear and applications [J]. Diamond and Related Materials,2002,11:736-741.
    [153]杨伟光,李晨,吴振芳,等.金刚石工具磨损形式的观察与分析[J].粉末冶金技术,1995,13(1):14-20.
    [154]鲁凡.对孕镶金刚石钻头磨损规律的探讨[J].中南工业大学学报,1997,28(6):511-513.
    [155]刘银伟,靖向党.孕镶金刚石钻头工作层不均匀磨损原因的研究[J].探矿工程,2005(4):56-58.
    [156]孙毓超.钻头工作时唇面的压力状况分析[J].工业金刚石,2003(3):23-29.
    [157]于爱兵,王爱君,陈思夫.玻璃磨削中电镀金刚石工具的磨损[J].金刚石与磨料磨具工程,2004(4):10-12.
    [158]贺永明.工程陶瓷及其复合构件加工试验研究[D].南京理工大学硕士论文,2009.
    [159]Luo S Y,Liao Y S,Chou C C,et al. Analysis of the wear of a resin-bonded diamond wheel in the grinding of tungsten carbide [J]. Journal of Materials Processing Technology,1997,69:289-296.
    [160]项东,李木森,许斌等.镀覆金刚石技术的研究进展[J].超硬材料工程,2006,18(3):44-49.
    [161]宋月清,孙毓超.非金属粉末添加剂在弱研磨性石材切割工具中的应用[J].工业金刚石,2005(2):26-35.
    [162]鲁凡.超硬地层钻头为什么仍会有相当高的寿命[J].超硬材料与工程.1997(2):28-30,24.
    [163]黄漫,赵同春,罗锡裕.金刚石冲击强度及其影响因素[J].粉末冶金工业,2003,13(6):1-7.
    [164]宋月清,甘长炎,夏志华,等.金刚石工具胎体性能的弱化问题研究[J].人工晶体学报,1998,27(4):368-372.
    [165]吴贵生.试验设计与数据处理.北京:冶金工业出版社,1997.
    [166]张绍和,鲁凡.金刚石钻头参数设计规律[J].中南大学学报:自然科学版,2004,35(2):195-200.
    [167]赵尔信.金刚石钻头与扩孔器[M].北京:地质出版社,1982.
    [168]罗超,李世忠,李砚藻,等.人造金刚石孕镶钻头唇面状态与钻进的关系[J].地球科学-中国地质大学学报,1994,19(6):831-837.
    [169]方啸虎,刘瑞平,温简杰.钎焊金刚石工具制备的研究现状和进展[J].超硬材料工程,2009,21(2):28-32.
    [170]Shaw, M. C and Oxford, Jr., C. J. On the Drilling of Metals:Part2-The Torque and Thrust in Drilling [J]. Trans. ASME,1957,79:139-148.
    [171]C.Dandekar, E.Orady, P.K.Mallick. Drilling Characteristics of an E-Glass Fabric-Reinforced Polypropylene Composite and an Aluminum Alloy:A Comparative Study[J]. Trans. ASME,2007,129:1080-1087.
    [172]王耀先.复合材料结构设计[M].北京:化学工业出版社,2001.
    [173]H.Hocheng, C.K.H. Dharan. Delamination during drilling in composite laminates [J] Journal of Engineering for Industry,1990,112:236-239.
    [174]Putman D.. Seven versatile sealing materials[J]. Machine Design International, 2007,79(3):62-68.
    [175]俞鲁五.介绍一种静密封用密封件——矩形密封圈[J].流体传动与控制,2006(5):44-46.
    [176]张洪信.有限元基础理论与ANSYS应用[M].北京:化学工业出版社,2009.
    [177]王勖成.有限单元法[M].北京:清华大学出版社,2003.
    [178]余会凌.真空吸夹具中的非线性有限元分析及应用研究[D].东南大学硕士论文,2006.
    [179]宋勇,艾宴清,梁波.精通ANSYS 7.0有限元分析[M].北京:清华大学出版社,2003.
    [180]易太连.不可压缩弹性体静态性能分析[J].海军工程大学学报,2002,14(1):76-80.
    [181]Fired I., Johonson A. R.. Nonlinear computation of axisymmetric solid rubber deformation[J]. Computer Methods in Applied Mechanics and Engineering,1998,67: 241-253.
    [182]穆志韬,邢耀国.密封结构中超弹性问题的有限元分析方法[J].航空计算技术,2003,3(4):44-47.
    [183]孙健,迟可伟,冯茂林,等.流体密封橡胶圈密封性能分析[J].润滑与密封,2006,1:102-105.
    [184]徐秉业,刘信声.应用弹塑性力学[M].北京:清华大学出版社,2008.
    [185]张洪雁,曹寿德,王景鹤.高性能橡胶密封材料[M].北京:化学工业出版社,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700