用户名: 密码: 验证码:
基于超临界CO_2强化溶液分散法制备营养素脂质体前体的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脂质体前体以固体形态存在,能有效地解决脂质体液态时易出现的聚集沉降、磷脂氧化水解以及包封药物泄漏等物化稳定性差的问题。它是一种带有有效成份的干燥的流动性好的颗粒,临用前分散于水中即可得到脂质体悬浮液。但是,目前常规的制备方法还存在稳定性差、制备耗时、溶剂残留等问题,无法满足工业生产需要。超临界CO_2强化溶液分散法不仅工艺简单,而且整个生产过程溶剂残留低,绿色环保无污染,在制备脂质体前体方面有巨大应用前景。目前,还没有超临界CO_2强化溶液分散法制备脂质体前体的系统研究,只有少量文献进行相关报道,对于超临界CO_2强化溶液分散法制备脂质体前体的影响因素的研究,制备过程中各因素的影响规律的研究仍很缺乏。
     本课题利用超临界CO_2与有机溶剂互溶性强,制备的微粒粒度分布窄等特性,提出了超临界CO_2强化溶液分散法制备脂质体前体,然后水化脂质体前体制备脂质体的绿色工艺路线,构建了脂质体前体制备的绿色新工艺。建立了高压相平衡测定装置,为研究脂质体前体制备的影响因素与规律提供了理论依据。并对超临界抗溶剂法过程中涉及到的影响因素和规律进行了深入研究,为脂质体前体的工业化生产提供了理论依据和技术参数。对制备的脂质体前体进行了动物实验效果评价,为脂质体前体的临床应用提供了实验依据。主要结论如下:
     1.通过测定CO_2+DCM+EtOH,CO_2+EtOH+C_6H_(14)以及HPC+EtOH+CO_2三种三元体系在不同温度和组成下的浊点和泡点压力,对超临界CO_2强化溶液分散法过程的相平衡进行研究。组成不变时,随着温度的升高,体系泡点压力增大;温度不变时,随着CO_2量的增大,体系泡点压力增大。极性较强的溶剂对体系相平衡的影响比极性较弱的溶剂要大。用PR-EOS方程成功对体系CO_2 +EtOH+ C_6H_(14)的相平衡数据进行了拟合。该研究为脂质体前体制备奠定了理论基础。
     2.以辅酶Q10为辅酶类模型,粉末磷脂、胆固醇为壁材,考察了体系温度、压力、组成等对脂质体载药量的影响,用SEM, XRD, DLS和TEM对脂质体前体和脂质体进行了表征。确定了用超临界CO_2强化溶液分散法制备辅酶Q10脂质体前体的最佳条件:以体积比13:12的二氯甲烷和无水乙醇为混合溶剂,压力8.0MPa,温度35℃, CoQ10和PC质量比为1:10,胆固醇和PC的质量比为1:3。在此条件下,CoQ10载药量为8.92%。脂质体前体水化后可得到单分散粒径为50nm左右的脂质体悬浮液。说明通过超临界CO_2强化溶液分散法制备辅酶Q10脂质体前体,并通过脂质体前体水化得到脂质体的工艺路线可行。
     3.以维生素D3为维生素模型药物,氢化磷脂为壁材,确定了最佳条件:压力8.0MPa,温度45℃, VD_3和HPC质量比为1.5:10, VD_3载药量为12.89%。在此条件下,VD_3载药量为12.89%,包埋率接近100%。通过与薄膜分散法制得的脂质体进行比较,发现脂质体前体水化后得到的脂质体粒径更小,粒度分布更均匀。说明该工艺路线相对常规方法薄膜分散法具有一定优势。通过SEM、TEM、XRD和DLS对脂质体前体和脂质体的表征,对脂质体前体水化得到脂质体的水化机理进行了研究,发现通过超临界CO_2强化溶液分散法得到的matrix结构对水化得到高包埋率的脂质体有促进作用。
     4.以叶黄素为植物营养素模型药物,氢化磷脂为壁材,详细考察了实验条件对脂质体前体形貌、载药量的影响,确定了制备脂质体前体的最佳条件:压力8.0MPa,温度35℃,溶液流速1ml/min。在此条件下,叶黄素载药量为55mg/g,脂质体包埋率达90%以上,二氯甲烷溶剂残留量极低,为7.2ppb。通过动物实验发现,叶黄素脂质体的抗氧化活性较好,并且有明显的剂量依赖性。说明本文提出的将活性物制备成脂质体前体,临用前水化成脂质体的过程,对活性物的生物活性没有破坏,且溶剂残留量低,该工艺路线为脂质体前体工业化生产提供了新思路。
The concept of proliposomes is introduced to solve problems caused by the liquid form of liposomes, such as aggregation, fusion, hydrolysis of lipid, and so on. Proliposomes are defined as a kind of dry and free-flowing particles with loading ingredients. The liposome suspension can be easily obtained from proliposomes when they are dispersed in water. However, there are some shortcomings in the traditional methods: such as proper cryoprotectants needed, many steps involved, and high processing temperatures, which limit their wide application. To solve the problems above, solution enhanced dispersion by supercritical CO_2 widely used in food industry should be developed to prepare proliposomes, because of its lower residual solvents, simpler steps and mild operation temperatures. In the aspect of the preparation of proliposomes using supercritical CO_2 technique, limited papers are published. A few papers just involved in the preparation of phospholipid powders by supercriticalCO_2. Only one paper involved in the preparation of proliposomes containing miconazole by the aerosol solvent extraction system (ASES) process.
     This research was to prepare proliposomes using solution enhanced dispersion by supercritical CO_2 (SEDS) and to make liposomes via the hydration of the proliposomes. Effects of the process parameters were investigated, and the animal experiments were introduced to determine the antioxidant activity of the liposomes. The purpose of our study was to provide the technical parameters and the theory basis for the industrialization of the liposomes. The conclusions were as follows:
     1. Experimental data for the phase behavior of the four systems CO_2 + DCM + EtOH (ethanol), CO_2 + EtOH + C_6H_(14) (n-hexane) and HPC + EtOH + CO_2 (dichloromethane) with different compositions at temperatures from 308.5K to 328.5K were investigated. The bubble point pressure increases with increasing temperature at constant CO_2 mass fraction. In addition, the modeling results indicate that PR-EOS (Peng-Robinson equation of state) with one interaction parameter can correlate the experimental data for the bubble points of the system CO_2 + EtOH + C_6H_(14) (n-hexane).
     2. The coenzyme Q10 was chosen as the model drug. The mixture of cholesterol and soybean phosphatidylcholine (PC) was chosen as wall materials. The effects of operation conditions (temperature, pressure and components) on the recovery of CoQ10 and the CoQ10 loading in CoQ10 proliposomes were studied. At the optimum conditions of pressure of 8.0MPa, temperature of 35℃, the weight ratio of 1/10 between CoQ10 and PC, and the weight ratio of 1/3 between cholesterol and PC, the CoQ10 loading reached 8.92%. CoQ10 liposomes were obtained by hydrating CoQ10 proliposomes and the entrapment efficiency of CoQ10 reached 82.28%. The morphology of CoQ10 proliposomes were characterized by SEM, and their solid state was characterized by XRD. The structure of CoQ10 liposomes were characterized by TEM. The particle size distribution of CoQ10 liposomes was determined by DLS. The results indicate that CoQ10 liposomes with particle sizes about 50nm can be easily got from hydrating CoQ10 proliposomes prepared by SEDS.
     3. Vitamin D3 (VD_3) proliposomes, consisted of hydrogenated phosphatidycholine (HPC) and VD_3, were prepared using SEDS. The effects of operation conditions (temperature, pressure and components) on the VD_3 loading in VDP were studied. At the optimum conditions of pressure of 8.0MPa, temperature of 45℃, and the weight ratio of 15.0% between VD_3 and HPC, the VD_3 loading reached 12.89%. VD_3 liposomes were obtained by hydrating VD_3 proliposomes and the entrapment efficiency of VD_3 in VD_3 liposomes reached 98.5%. The morphology and structure of proliposomes and liposomes were characterized by SEM, TEM and XRD. The structure of VD_3 nanoparticles in HPC matrix was formed. The size of liposome was determined by Dynamic Light Scattering instrument (DLS). The average diameter of liposomes was about 1μm. The results indicate that VDP can be made by SEDS and liposomes with high entrapment efficiency can be formed easily via the hydration of proliposomes.
     4. Proliposomes composed of lutein and hydrogenated phosphatidylcholine were prepared using SEDS. The effects of the process parameters on the lutein loading and the particle sizes of the proliposomes were investigated. HPLC was applied to determine the content of lutein in the samples. At the optimum conditions—temperature of 35℃, pressure of 8MPa and the solution flow rate of 1 ml/min—the lutein loading of the proliposomes reached 55mg/g. The images characterized by SEM were evaluated for the different proliposomes samples in order to study the influences of operational conditions on the particle sizes and morphology. When proliposome was hydrated, the lutein liposome suspensions were formed automatically. The crystallinity of proliposomes was analyzed using DSC to analyze the distribution of lutein in proliposomes. The structure of proliposomes and the lutein liposome was detected by TEM. The results indicate that proliposomes with the high lutein loading was made successfully and the lutein liposome was obtained with the encapsulation efficiency of more than 90% after hydrating proliposomes. The animal experiment results show that there is dose dependence on the lutein liposomes. These results demonstrate that SEDS technique is a simple and effective process for the preparation of proliposomes from which liposome can be easily formed.
引文
[1]周瑞华,徐应军,刘辉.现代营养学与食品卫生学研究进展(一)[J].中国煤炭工业医学杂志. 2004, 7(3): 197-199.
    [2] Kr?ber, H., Teipel, U. Microencapsulation of particles using supercritical carbon dioxide [J]. Chemical Engineering and Processing. 2005, 44(2):215- 219.
    [3] Arien, A., Dupuy, B. Encapsulation of calcitonin in liposomes depends in the vesicle preparation method [J]. J. Microencapsul. 1997, 14: 753-760.
    [4] Jonasdottir, T.J., Fisher, D.R., Borrebeak J., Bruland, O. S., Larsen R. H. First in vivo evaluation of liposome-encapsulated 223Ra as a potential alpha-particle-emitting cancer therapeutic agent [J]. Anticancer Res. 2006, 26(4B): 2841-2848.
    [5] Bangham, A.D., Standish, M.M., tkins, J.C. Diffusion of univalent ions across the lamellae of swollen phospholipids [J]. J Mol Biol. 1965, 13: 238-252.
    [6] Strauss, G., Schurtenberger, P., Hauser, H. The Interaction of Saccharides with Lipid Bilayer Vesicles: stabilization During Freeze-thawing and Freeze-drying [J]. Biochim Biophys. ACTA. 1986, 858: 169–180.
    [7] Glass, R.L. Effect of Herbicides on Phase Transition of DPPC Vesicles [J]. Chem Phys Lip. 1999, 59: 91–95.
    [8] Mayer, L.D., Baly, M.B., Hope, K.J., Cullis, P.R. Techniques for encapsulating bioactive agents into liposomes [J]. Chem. Phys. Lipids. 1986, 40 (2-4), 333–345.
    [9] Katare, O.P., Vyas, S.P., Dixit, V.K. Preparation and performance evaluation of plain proliposomal systems cytoprotection [J]. J Microencapsul. 1991, 8(3):295-300.
    [10] Zhang, J.H., Zhu, J.B. A novel method to prepare liposomes containing amikacin [J]. J. Microencapsul. 1999, 16: 511–516.
    [11] Yang, Z.J., Hino, T., Kawashima, Y. Studies on the size of rehydrated new liposome from scutellaria proliposome [J]. J. Chin. Pharm. Univ. 1993, 24, 161–164.
    [12]陈骐,黄芸,顾学裘,陈春在,黄东妮。喷雾干燥法制备前体脂质体的基础研究。沈阳药科大学学报。1997; 14: 166–169.
    [13]叶志伟,胡巧红,梁文权.粉末床研磨法制备干扰素-α脂质体[J].浙江大学学报(医学版). 2002, 31: 433–436.
    [14]魏农农,陆彬.结肠定位壳聚糖包衣氟尿嘧啶脂质体的制备、形态与体外释放[J].药学学报Acta Pharmaceutiea Sinica. 2003: 38: 53–56.
    [15] Xiao, Y.Y., Song, Y.M., Peng, C.Z., Ping, Q.N. Preparation of silymarin proliposome: A new way to increase oral bioavailability of silymarin in beagle dogs [J]. Int. J. Pharm. 2006, 319 (1-2): 162–168.
    [16] Xu, H.T., He, L., Nie, S.F., Guan, J., Zhang, X.N., Yang, X.G., Pan, W.S. Optimized preparation of vinpocetine proliposomes by a novel method and in vivo evaluation of its pharmacokinetics in New Zealand rabbits [J]. J. Control. Release. 2009, 140: 61-68.
    [17] Badens, E., Magnan, C., Charbit, G. Microparticles of soy lecithin formed by supercritical processes [J]. Biotech Bioeng. 2001, 72: 194–204.
    [18] Bridson, R.H., Santos, R.C.D., Al-Duri, B., McAllister, S.M., Robertson, J., Alpar, H.O. The preparation of liposomes using compressed carbon dioxide: strategies, important considerations and comparison with conventional techniques [J]. J Pharm Pharmacol. 2006, 58(6): 775-785.
    [19] Magnan, C., Badens, E., Commenges, N. Soy lecithin micronization by precipitation with a compressed fluid antisolvent influence of process parameters [J]. J Supercrit Fluids, 2000, 19: 69–77.
    [20] Kunastitchai, S., Pichert, L., Sarisuta, N. Application of aerosol solvent extraction system (ASES) process for preparation of liposomes in a dry and reconstitutable form [J]. Int J Pharm. 2006, 316: 93–101.
    [21]金宗镰.全球功能性食品的市场及其发展趋势[J].食品工业科技. 2005, 9 (24): 35.
    [22] Ernster, L., Dallner, G. Biochemical, physiological and medical aspects of ubiquinone function [J]. Biochimica et Biophysica Acta. 1995, 1271 (1): 195–204.
    [23] Fuller, B., Smith, D., Howerton, A., Kern, D. Anti-in?ammatory effects of CoQ10 and colorless carotenoids [J]. J. Cosmet. Dermatol. 2006, 5: 30–38.
    [24] Crestanello, J.A., Doliba, N.M., Natalia, M.D., Babsky, A.M., Niborii, K., Osbakken, M.D., Glenn, J.R., Whitman, M.D. Effect of coenzyme Q10 supplementation on mitochondrial function after myocardial ischemia reperfusion [J]. JSurgRes. 2002, 102:221–228.
    [25]祝青哲,辅酶Q10纳米脂质体的应用及辅酶Q10前体脂质体的研究[硕士论文].无锡:江南大学.2008.
    [26] Seize,Jonzthan.Coenzyme Q10 dietary supplement [P]. US Patent,6652891,2003-9-25.
    [27]关于征求《以辅酶Q10为原料生产的保健食品申报与审评规定(征求意见稿)》意见的通告[EB/OL].
    [28] Grant, W.B., Holick, M.F. Benefits and requirements of vitamin D for optimal health: a review [J]. Alternative medicine review. 2005, 10 (2), 94–111.
    [29] Perales, S., Alegría, A., Barberá, R., Farré, R. Review: Determination of Vitamin D in Dairy Products by High Performance Liquid Chromatography [J]. Food Sci Tech Int. 2005, 11(6): 451–462.
    [30] Wald, G. Human vision and the spectrum [J]. Science. 1945, 101: 653-658.
    [31] Bone, R.A., Landrum, J.T., Fernandez, L., Tarsis, S.L. Analysis of the macular pigment by HPLC: retina distribution and age study [J]. Invest. Ophthalmol. Vis. Sci. 1988, 29: 843-849.
    [32] Yeum, K.J., Taylor, A., Tang, G., Russell, R.M. Measurement of carotenoids, retinoids, and tocopherols in human lenses [J]. Invest. Ophthalmol. Vis. Sci. 1995, 36: 2756-2761.
    [33] Bernstein, P.S., Khachik, F., Carvalho, L.S., Muir, G.J., Zhao, D.Y., Katz, N.B. Identification and quantitation of carotenoids and their metabolites in the tissues of the human eye. Exp. Eye Res. 2001, 72: 215-223.
    [34] Khachik, F., Beecher, G.R., Smith, J.C.Jr. Lutein, lycopene, and their oxidative metabolites in chemoprevention of cancer [J]. J Cell Biochem Suppl. 1995, 22: 236–246.
    [35] Jarvinen, R. Carotenoids, retinoids, tocopherols and tocotrienols in the diet: the Finnish Mobile Clinic Health Examination Survey [J]. Int J Vitam Nutr Res 1995, 65: 24–30.
    [36] Chopra, M., Willson, R.L., Thurnham, D.I. Free radical scavenging of lutein in vitro [J]. Ann Acad Sci. 1993, 691: 246–249.
    [37] Clinton, S.K. Lycopene: chemistry, biology, and implications for human health and disease [J]. Nutrition Reviews. 1998, 56 (2): 35–51.
    [38] Rao, A.V., Agarwal, S. Role of lycopene as antioxidant carotenoid in the prevention of chronic diseases: a review [J]. Nutrition Research. 1999, 19 (2): 305–323.
    [39] Stahl, W., Sies, H. Lycopene: a biologically important carotenoid for human [J]. Archives of Biochemistry and Biophysics. 1996, 336 (1): 1–9.
    [40] Martin, K.R., Failla, M.L., Smith, J.C.Jr. Carotene and lutein protect Hep G2 human liver cells against oxidant-induced damage [J]. J Nutr. 1996, 126:2098–2106.
    [41] Park, J.S., Chew, B.P., Wong, T.S. Dietary lutein from marigold extract inhibits mammary tumor development in BALB/c mice [J]. J Nutr. 1998, 128: 1650–1656.
    [42] Chew, B.P., Wong, M.W., Wong, T.S. Effects of lutein from marigold extract on immunity and growth of mammary tumors in mice [J]. Anticancer Res. 1996, 16:3689–3694.
    [43] Zhang, S., Hunter, D.J., Forman, M.R., Rosner, B.A., Speizer, F.E., et al. Dietary carotenoids and vitamins A, C, and E and risk of breast cancer [J]. JNCI. 1999, 91: 547–556.
    [44] LeMarchand, L., Hankin, J.H., Bach, F., Kolonel, L.N., Wilkens, L.R., et al.: An ecological study of diet and lung cancer in the South Pacific [J]. Int J Cancer. 1995, 63: 18–23.
    [45] Junghans, A., Sies, H., Stahl, W. Macular pigments lutein and zeaxanthin as bule light filters studied in liposomes [J]. Arch Bioche Biophys , 2001, 391:160-164.
    [46] Santocono, M., Zurria, M., Berrettini, M., Fedeli, D., Falcioni, G. Influence astaxanthin, zeaxanthin and lutein on DNA damage and repair in UV irradiated cells [J]. J Photoch Photobio B, 2006, 85:205-215.
    [47] Bressler, N.M. Age-related macular degeneration is the leading cause of blindness [J]. JAMA. 2004, 291:1900–1901.
    [48] Beatty, S., Boulton, M., Henson, D., Koh, H.H., Murray, U. Macular pigment and age related macular degeneration [J]. Br. J. Ophthalmol. 1999, 83: 867-877.
    [49] Bone, R.A., Landrum, J.T., Mayne, S.T., Gomez, C.M., Tibor, S.E., Twaroska, E.E. Macular pigment in donoreyes with and without AMD: a case-control study [J]. Invest. Ophthalmol. Vis. Sci. 2001, 42: 235-240.
    [50] Bernstein, P.S. New insights into the role of the macular carotenoids in age-related macular degeneration. Resonance raman studies [J]. Pure Appl. Chem. 2002, 74: 1419-1425.
    [51] Seddon, J.M., Ajani, U.A., Sperduto, R.D. Dietary carotenoids, vitamins A, C, and E, and advanced age-related macular degeneration [J]. Eye Disease Case-Control Study Group. JAMA. 1994, 272: 1413-1420.
    [52] Curran-Celentano, J., Hammond, B.R. Jr., Ciulla, T.A., Cooper, D.A., Pratt, L.M.,Danis, R.B. Relation between dietary intake, serum concentrations, and retinal concentrations of lutein and zeaxanthin in adults in a Midwest population [J]. Am. J. Clin. Nutr. 2001, 74: 796-802.
    [53] Mares-Perlman J.A., Fisher, A.I., Klein, R., Palta, M., Block, G., Millen, A.E., Wright, J.D. Lutein and zeaxanthin in the diet and serum and their relation to age-related maculopathy in the third national health and nutrition examination survey [J]. Am J Epidemiol. 2001, 153: 424–432.
    [54] Snellen, E.L., Verbeek, A.L., Van Den Hoogen, G.W., Cruysberg, J.R., Hoyng, C.B. Neovascular age-related macular degeneration and its relationship to antioxidant intake [J]. Acta Ophthalmol Scand. 2002, 80:368–371.
    [55] Richer, S., Stiles, W., Statkute, L., Pulido, J., Frankowski, J., Rudy, D., Pei, K., Tsipursky, M., Nyland, J. Double-masked, placebo-controlled, randomized trial of lutein and antioxidant supplementation in the intervention of atrophic age-related macular degeneration: the Veterans LAST study (Lutein Antioxidant Supplementation Trial) [J]. Optometry. 2004, 75: 216–230.
    [56] Moeller, S.M., Parekh, N., Tinker, L., Ritenbaugh, C., Blodi, B., Wallace, R.B., Mares, J.A. Associations between intermediate age-related macular degeneration and lutein and zeaxanthin in the Carotenoids in Age-related Eye Disease Study (CAREDS): ancillary study of the Women’s Health Initiative [J]. Arch Ophthalmol. 2006, 124:1151–1162.
    [57] Huck, C.W., Popp, M., Scherz, H., and Bonn, G.K. Development and evaluation of a new method for the determination of the carotenoid content in selected vegetables by HPLC and HPLC-MS-MS [J]. J. Chromatogr. Sci. 2000, 38: 441-449.
    [58] Kiokias, S., Oreopoulou, V. Antioxidant properties of natural carotenoid extracts against the AAPH-initiated oxidation of food emulsions [J]. Innov. Food Sci. Emer. Technol. 2006, 7 (1-2): 132–139.
    [59] Nishino H., Tokude H., Murakoshi M., Satomi Y., Masuda M., Onozuka M., Yamaguchi S., Takayasu J., Tsuruta J., Okuda M., Khachik F., Narisawa T., Takasuka N., Yanom M. Cancer prevention by natural carotenoids [J]. BioFactors. 2000, 13 (1-4): 89–94.
    [60] Mathiowitz, E., Jacob, J.S., Jong, Y.S., Carino, G.P., Chickering, D.E., Chaturvedi, P., Santos, C. A., Vijayaraghavan, K., Montgomery, S., Bassett, M., Morrell, C.Biologically erodible microspheres as potential oral drug delivery systems [J]. Nature. 1997, 386 (6623): 410–414.
    [61] Kommuru, T.R., Ashraf, M., Khan, M.A., Reddy, I.K. Stability and bioequivalence studies of two marketed formulations of coenzyme Q10 in beagle dogs [J]. Chemical & pharmaceutical bulletin. 1999, 47 (7): 1024–1028.
    [62] Gomez-Hens, A., Fernandez-Romero, J.M. Analytical methods for the control of liposomal delivery systems [J]. Trends Anal Chem. 2006. 25: 167–178.
    [63]许士婴,张晓鸣,夏书芹,张文斌.微胶囊技术——原理与应用.北京:化学工业出版社.2006: 93-100.
    [64] Bangham, A.D., Standish, M.M., tkins, J.C. Diffusion of univalent ions across the lamellae of swollen phospholipids [J]. J Mol Biol. 1965, 13: 238-252.
    [65] Gregoriadis, G., Ryman, E.B. Liposomes as carriers of enzymes or drugs: a new approach to the treatment of storage diseases [J]. Biochem. J. 1971, 124(5): 58.
    [66] Rensen, P.C.N, Schiffelers, R.M., Versluis, A.J., Bijsterbosch, M.K., Van Kuijk Meuwissen, M.E.M.J., Van Berkel, T.J.C. Human recombinant apolipoprotein E-enriched liposomes can mimic low-density lipoproteins as carriers for the site-specific delivery of antitumor agents[J]. Mol. Pharmacol. 1997, 52:445-455.
    [67] Miller, C.R., Bondurant, B., McLean, S.D., McGovern, K.A., O’Brien, D.F. Liposome-cell interactions in vitro: effect of liposome surface charge on the binding and endocytosis of conventional and sterically stabilized liposomes [J]. Biochemistry. 1998, 37:12875-12883.
    [68] Batzri, S., Korn, E.D., Single bilayer liposomes prepared without sonication [J]. Biochimica et Biophysica Acta. 1973, 298:1015-1019.
    [69] Szoka, F., Papahadjopoulos, D. Procedure for preparation of liposomes with large internal aqueous space and high capture by reverse phase evaporation [J]. Biochemistry. 1978, 75:4194-4198.
    [70] Ohsawa, T., Miura, H., Harada, K. A novel method for preparing liposome with a high capacity to encapsulate proteinous drugs: freeze-drying method [J]. Chemical and Pharmaceutical Bulletin (Tokyo). 1984, 32(6): 2442-2445.
    [71] Pajeam, M., Herbage, D. Effect of collagen on liposome permeability [J]. Int J Pharm. 1993, 91(4): 209-216.
    [72] Pietzyk, B., Henschke, K. Degradation of phosphatidylcholine in liposomescontaining carboplatin in dependence on composition and storage conditions [J]. Int J Pharm. 2000, 196 (2): 215-218.
    [73] Pajean, M., Huc, A., Herbage, D. Stabilization of liposomes with collagen [J]. Int J Pharm. 1991, 77(1): 31-40.
    [74] Crommelin, D.J.A., Grit, M., Talsma, H., Zuidam, J.N. Liposomes as carries for drugs and antigens: approaches to preserve their long term stability [J]. Drug Dev Ind Pharm. 1994, 20(4):547-556.
    [75] Lee, C.H., Measuring the bending rigidity of giant unilamellar liposomes with differential confocal microscopy [J]. Cleo. 2000, 28(5): 1-3.
    [76] Kronberg, B., Dahlman, A., Carlfors, J., Karlsson, J., Artursson, P. Preparation and evaluation of sterically stabilized liposomes: colloidal stability, serum stability, macrophage uptake, and toxicity [J]. J Pharm Sci. 1990, 79(8):667-671.
    [77] Mayer, L.D., Baly, M.B., Hope, K.J., Cullis, P.R. Techniques for encapsulating bioactive agents into liposomes [J]. Chem. Phys. Lipids. 1986, 40 (2-4), 333–345.
    [78] Wei, N.N., Lu, B.I. Preparation, morphology and in vitro release of chitosan coated liposomes of fluorouracil for colon targeting [J]. Acta. Pharm. Sinica. 2003, 38: 53–56.
    [79] Payne, N.I., Cosgrove, R.F., Green, A.P., Liu, L. In-vivo studies of amphotericin B liposomes derived from proliposomes: effect of formulation on toxicity and tissue disposition of the drug in mice [J].J Pharm Pharmacol.1987, 39(1): 24-28.
    [80] Park, J.M., Ahn, B.N., Yoon, E.J. The Pharmacokinetics of methotrexate after intravenous of administration of methotrexate-loaded proliposomes to rats [J].Biopharm Drug Disposit, 1994, 15: 391-407.
    [81] Byung-Nak Ahn, Kim, S.K., Shim, C.K. Preparation and evaluation of proliposomes containing propranolol hydrochloride [J]. J Microencapsu. 1995, 12 (4): 363-375.
    [82] Hwang, B.Y., Jung, B.H., Chung, Sj, Lee, Mh, Shim, Ck. In vitro skin permeation of nicotine from proliposomes [J]. J control Rel. 1997, 49: 177-184.
    [83] Wang, J.Y., Xu, Y.R., Huang, K et al. Proliposomes targeting to rabbit brain tissue [J]. J Pharm Pharmacol. 1995, 47: 1053-1054.
    [84] Rojanarat, W., Changsan, N., Tawithong, E., Pinsuwan, S., Chan, Hak-Kim, Srichana, T. Isoniazid Proliposome Powders for Inhalation—Preparation, Characterization andCell Culture Studies [J]. International Journal of Molecular Sciences. 2011, 12(7): 4414-4434.
    [85]王俊平,顾学裘,苏德森.喷雾干燥法制备阿霉素前体脂质体的研究[J].中国药学杂志.1994,29(3):149-151.
    [86]杨志军,日野知证,川岛嘉明.黄芩前体脂质体再复水后的新脂质体粒径研究[J].中国药科大学学报.1993,24(3):161-164.
    [87] Zhang, J.H., Zhu, J.B. A novel method to prepare liposomes containing amikacin [J]. J. Microencapsul. 1999, 16: 511–516.
    [88]韩布兴等.超临界流体科学与技术[M].北京:化学工业出版社. 2005: 2-4.
    [89] Eckert, C.A., Knutson, B.L., Debendetti, P.G. Supercritical fluids as solvents for chemical and materials processing [J]. Nature. 1996, 383:313.
    [90]韩布兴等.超临界流体科学与技术[M].北京:化学工业出版社. 2005: 2-4.
    [91]韩布兴等.超临界流体科学与技术[M].北京:化学工业出版社. 2005: 175-186.
    [92]朱自强等.超临界流体技术——原理和应用.北京:化学工业出版社.2000:517-519.
    [93] Matson, D.W., Petersen, R.C., Smith, R.D. Production of powders and films by the rapid expansion of supercritical fluid solutions [J]. Journal of materials science. 1987, 22: 1919-1928.
    [94] Williams, J.R., Clifford, A.A., Bartle, K.D., Kee, T.P. The production of fine particles of metal complexes using supercritical fluids [J]. Powder Technol. 1988, 96:158-162.
    [95] Tom, J.W., Debenedetti, P.G. Formation of bioerodible polymeric microspheres and microparticles by rapid expansion of supercritical solutions [J]. Biotechnol. Prog. 1991, 7:403-411.
    [96] Lele, A.K., Shine, A.D. Morphology of polymer precipitated from a supercritical solvent [J]. AIChE J. 1992, 38:742-752.
    [97] Mawson, S., Johnston, K.P., Combes, J.R., DeSimone, J.M. Formation of poly (1,1,2,2-tetrahydroperfluorodecyl acrylate) submicron fibers and particles from supercritical carbon dioxide solutions [J]. Marcomol. 1995(28): 3182-3191.
    [98] Reverchon, E., Della Porta, G., Taddeo, R., Pallado, P., Stassi, A., Solubility and micronization of griseofulvin in supercritical CHF3 [J]. Ind. Eng. Chem. Res. 1995, 34:4087-4091.
    [99] Alessi, P., Cortesi, A., Kikic, I., Foster, N.R., Macnaughton, S.J., Colombo, I. Particle production of steroid drugs using supercritical fluid processing [J]. Ind. Eng. Chem.Res. 1996, 35:4718-4726.
    [100] Kim, J.-H., Paxton, T.E., Tomasko, D.L. Microencapsulation of naproxen using rapid expansion of supercritical solutions [J]. Biotechnol. Prog. 1996, 12:650-661.
    [101] Debenedetti, P.G., Tom, J.W., Yeo, S.D., Lim, G.B. Application of supersaturation fluids for the production of sustained delivery devices [J]. J. Control. Release. 1993, 24: 27–44.
    [102] Tom, J.W., Debenedetti, P.G., Jerome, R. Precipitation of poly (l-lactic acid) and composite poly (l-lactic acid)–pyrene particles by rapid expansion of supercritical solution [J]. J. Supercrit. Fluids. 1994, 7: 9–29.
    [103] Kim, J., Paxton, T.E., Tomasko, D.L. Microencapsulation of naproxen using rapid expansion of supercritical solutions [J]. Biotechnol. Prog. 1996, 12: 650–661.
    [104] Fredriksen, L., Anton, K., Van Hoogevest, P., Keller, H.R., Leuenberger, H. Preparation of liposomes encapsulating water-soluble compounds using supercritical carbon dioxide [J]. J. Pharm. Sci. 1997, 86: 921–928.
    [105] Mishima, K., Matsuyama, K, Tanabe, D., Yamauchi, S. Microencapsulation of proteins by rapid expansion of supercritical solution with a nonsolvent [J]. AIChE J. 2000, 46: 857–865.
    [106] Matsuyama, K., Mishima, K., Hayashi, K., Matsuyama, H. Microencapsulation of TiO2 nanoparticles with polymer by rapid expansion of supercritical solution [J]. J. Nanopart. Res. 2003, 5: 87–95.
    [107] Matsuyama, K., Mishima, K., Hayashi, K., Ishikawa, H., Matsuyama, H., Harada, T. Formation of microcapsules of medicines by the rapid expansion of a supercritical solution with a nonsolvent [J]. J. Appl. Polym. Sci. 2003, 89: 742–752.
    [108] Wang, Y., Wei, D., Dave, R., Pfeffer, R., Sauceau, M., Letourneau, J.J., Fages, J. Extraction and precipitation particle coating using supercritical CO2 [J]. Powder Technol. 2002, 127: 32–44.
    [109] Tsutsumi, A., Ikeda, M., Chen, W., Iwatsuki, J. Anano-coating process by the rapid expansion of supercritical suspensions in impinging-stream reactors [J]. Powder Technol. 2003, 138: 211–215.
    [110] Perrut, M., Jung, J., Leboeuf, F. Enhancement of dissolution rate of poorly soluble active ingredients by supercritical fluid processes, Part II: preparation of composite particles [J]. Int. J. Pharm. 2005, 288: 11–16.
    [111] Yeo, S.-D., Lim, G.-B., Debenedetti, P.G., Bernstein, H. Formation of microparticulate protein powders using a supercritical fluid antisolvent [J]. Biotech. Bioeng. 1993, 41:341.
    [112] Warwick, B., Dehghani, F., FosterInd, N.R. Synthesis, Purification, and Micronization of Pharmaceuticals Using the Gas Antisolvent Technique [J]. Eng. Chem. Res. 2000, 39:4571-4579.
    [113] Moneghini, M., Kikic, I., Voinovich, D., Perissutti, B., Filipovic?-Grcˇic?, J. Processing of carbamazepine–PEG 4000 solid dispersions with supercritical carbon dioxide: preparation, characterisation, and in vitro dissolution [J]. Int. J. Pharm. 2001, 222: 129–138.
    [114] Bleich, J., Kleinebudde, P., Müller, B.W. Influence of gas density and pressure on micro particles produced with the ASES process [J]. Int. J. Pharm. 1994, 106: 77–84.
    [115] Bleich, J., Müller, B.W. Production of drug loaded micro particles by the use of supercritical gases with the aerosol solvent extraction system (ASES) process [J]. J. Microencapsulation. 1996, 13: 131–139.
    [116] Bodmeier, R., Wang, H., Dixon, D.J., Mawson, S., Johnston, K.P. Polymeric microspheres prepared by spraying into compressed carbon dioxide [J]. Pharm. Res. 1995, 12: 1211–1217.
    [117] Engwicht, A., Girreser, U., Müller, B.W. Critical properties of lactide-coglycolide polymers for the use in microparticle preparation by the aerosol solvent extraction system [J]. Int. J. Pharm. 1999, 185: 61–72.
    [118] Sze Tu, L., Dehghani, F., Foster, N.R. Micronisation and microencapsulation of pharmaceuticals using a carbon dioxide anti-solvent [J]. Powder Technol. 2002, 126: 134–149.
    [119] Miguel, F., Martín, A., Cocero, M.J. Supercritical anti solvent precipitation of lycopene: Effect of the operating parameters [J]. J.of Supercritical Fluids. 2006,36:225-235.
    [120] Boutin, O., Badens, E., Carretier, E., Charbit, G. Co-precipitation of a herbicide and biodegradable materials by the supercritical anti-solvent technique [J]. J. Supercrit. Fluids. 2004, 31:89-99.
    [121] Taki, S., Badens, E., Charbit., G. Controlled release system formed by supercriticalanti-solvent coprecipitation of a herbicide and a biodegradable polymer [J]. J.Supercrit.Fluids. 2001, 21:61-70.
    [122] Elvassore, N., Bertucco, A., Caliceti, P. Production of protein-loaded poly-meric microcapsules by compressed CO2 in a mixed solvent [J]. Ind. Eng. Chem. Res. 2001, 40: 795–800.
    [123] Elvassore, N., Bertucco, A., Caliceti, P. Production of insulin-loaded poly (ethylene glycol) / poly (l-lactide) (PEG/PLA) nanoparticles by gas anti-solvent techniques [J]. J. Pharm. Sci. 2001, 90: 1628–1636.
    [124] Caliceti, P., Salmaso, S., Elvassore, N., Bertucco, A. Effective protein release from PEG/PLA nano-particles produced by compressed gas anti-solvent precipitation techniques [J]. J. Control. Release 2004, 94: 195–205.
    [125] Corrigan, O.I., Crean, A.M. Comparative physicochemical properties of hydrocortisone–PVP composites prepared using supercritical carbon dioxide by the GAS anti-solvent recrystallization process, by coprecipitation and by spray drying [J]. Int. J. Pharm. 2002, 245: 75–82.
    [126] Wang, Y., Dave, R.N., Pfeffer, R. Polymer coating/encapsulation of nanoparticles using a supercritical anti-solvent process [J]. J. Supercrit. Fluids. 2004, 28: 85–99.
    [127] Perrut, M., Jung, J., Leboeuf, F. Enhancement of dissolution rate of poorly soluble active ingredients by supercritical ?uid processes, Part II: preparation of composite particles [J]. Int. J. Pharm. 2005, 288: 11–16.
    [128] Ghaderi, R., Artursson, P., Carlfors, J. A new method for preparing biodegradable microparticles and entrapment of hydrocortisone in dl-PLG microparticles using supercritical ?uids [J]. Eur. J. Pharm. Sci. 2000, 10: 1–9.
    [129] Tservistas, M., Levy, M.S., Lo-Yim, M.Y.A., O’Kennedy, R.D., York, P. The formation of plasmid DNA loaded pharmaceutical powder using supercritical ?uid technology [J]. Biotechnol. Bioeng. 2001, 72: 12–18.
    [130] Chattopadhyay, P., Gupta, R.B. Supercritical CO2 based production of magnetically responsive micro- and nano-particles for drug targeting [J]. Ind. Eng. Chem. Res. 2002, 41: 6049–6058.
    [131] Lee, L.Y., Wang, C.H., Smith, A.K. Supercritical antisolvent production of biodegradable micro- and nanoparticles for controlled delivery of paclitaxel [J]. Journal of Controlled Release. 2008, 125: 96–106.
    [132] Reverchon, E. Supercritical antisolvent precipitation of micro- and nano- particles [J]. J. Supercrit. Fluids. 1999, 15(1):1-21.
    [133] Gao, Y., Mulenda, T.K., Shi, Y.-F., Yuan, W.-K. Fine particles preparation of red lake C pigment by supercritical fluid [J]. J. Supercrit. Fluids. 1998, 13: 369-374.
    [134] Mawson, S., Kanakia, S., Johnston, K.P. Coaxial nozzle for control of particle morphology in precipitation with a compressed fluid antisolvent [J]. J. Appl. Polym. Sci. 1997, 64:2105-2118.
    [135] Randolph, T.W., Randolph, A.D., Mebes, M., Yeung, S. Sub-micrometer-sized biodegradable particles of poly (L-lactic acid) via the gas antisolvent spray precipitation process [J]. Biotechnol. Prog. 1993, 9:429-435.
    [136] Dixon, D.J., Johnston, K.P. Formation of microporous polymer fibers and oriented fibrils by precipitation with a compressed fluid antisolvent [J]. J. Appl. Polym. Sci. 1993, 50:1929-1942.
    [137] Dixon, D.J., Luna-Barcenas, G., Johnston, K.P. Microcellular microspheres and microballoons by precipitation with a vapour-liquid compressed fluid antisolvent [J]. Polymer. 1994, 35:3998-4005.
    [138] Bodmeier, R., Wang, H., Dixon, D.J., Mawson, S., Johnston, K.P. Polymeric microspheres prepared by spraying into compressed carbon dioxide [J]. Pharm. Res. 1995, 12:1211-1217.
    [139] Luna-Barcenas, G., Kanakia, S.K., Sanchez, I.C., Johnston, K.P. Semicrystalline microfibrils and hollow fibers by precipitation with a compressed-fluid antisolvent [J]. Polymer. 1995, 36: 3173-3182.
    [140] Dixon, D.J., Johnston, K.P., Bodmeier, R.A. Polymeric materials formed by precipitation with a compressed fluid antisolvent [J]. AIChE J. 1993, 39: 127-139.
    [141] Schmitt, W.J., Salada, M.C., Shook, G.G., Speaker, S.M. Finely-divided powders by carrier solution injection into a near or supercritical fluid [J]. AIChE J.1995, 41: 2476-2486.
    [142] Heater, K.J., Tomasko, D.L. Processing of epoxy resins using carbon dioxide as an antisolvent [J]. J. Supercrit. Fluids. 1998, 14:55-65.
    [143] Reverchon, E., Della Porta, G., Di Trolio, A., Pace, S. Supercritical antisolvent precipitation of nanoparticles of superconductor precursors. Ind. Eng. Chem. Res. 1998, 37: 952.
    [144] Dixon, D.J., Johnston, K.P. Molecular thermodynamics of solubilities in gas antisolvent crystallization [J]. AIChE J. 1991, 37:1441-1449.
    [145] Kikic, I., Lora, M., Bertucco, A. A Thermodynamic analysis of three phase equilibria in binary and ternary systems for applications in rapid expansion of a supercritical solution (RESS), particles from gas-saturated solutions (PGSS), and supercritical antisolvent (SAS) [J]. Ind. Eng-Chem. Res. 1997, 36: 5507-5515.
    [146] Bertucco, A., Lora, M., Kikic, I. Fractional crystallization by gas antisolvent technique: theory and experiments [J]. AIChE J. 1998, 44: 2149.
    [147] De La Fuente Badilla, J.C., Peters, C.J., De Swaan Arons, J. Volunme expansion in relation to the gas-antisolvent process [J]. J. Supercrit. Fluids. 2000, 17:13-23.
    [148]陈钟秀、顾飞燕、胡望明.化工热力学.北京:化学工业出版社.2000, 2:159-160.
    [149]陈钟秀、顾飞燕、胡望明.化工热力学.北京:化学工业出版社.2000, 2:6-7.
    [150] Takishima, S., Saiki, K., Arai, K., Saito, S. Phase equilibria for CO2-C2H5OH-H2O [J]. J. Chem. Eng. JPN. 1986, 19(1):48-56.
    [151] Yao, S., Guan, Y., Zhu, Z. Investigation of phase equilibrium for ternary systems containing ethanol water and carbon dioxide at elevated pressures [J]. Fluid Phase Equilibria. 1994, 99:249-259.
    [152] Huang, S., Radosz, M., Equation of State for Small, Large, Polydisperse, and Associating Molecules: Extension to Fluid Mixtures [J]. Ind. Eng. Chem. Res. 1991, 30(7):1994-2005.
    [153] Thomas, G., Rolf, M., High-pressure phase equilibria of the binary systems carvone–carbon dioxide and limonene–carbon dioxide at 30, 40 and 50°C [J]. Fluid Phase Equilibria. 2000, 171(1):165~174.
    [154] Corazza, M.L., Filho, C. Lúcio, Antunes, A.C. Octávio, Dariva Cláudio. High Pressure Phase Equilibria of the Related Substances in the Limonene Oxidation in Supercritical CO2 [J]. J. Chem. Eng. Data. 2003, 48: 354-358.
    [155] Tsuji, T., Honda, S., Hiaki, T., Hongo M. Measurement of the PVT relationship for carbon dioxide + n-butane and carbon dioxide + i-butane in the vicinity of the critical point [J]. J.Supercritical fluid. 1998, 13(1):15-21.
    [156] Lazzaroni, J.M., Bush, D., Brown, S. J., Eckert, A.C. High-Pressure Vapor-Liquid Equilbria of Some Carbon Dioxide + Organic Binary Systems [J]. J. Chem. Eng. Data. 2005, 50: 60-65.
    [157] Gonzalez, V. A., Tufeu, R., Subra, P. High-Pressure Vapor-Liquid Equilibrium for the Binary Systems Carbon Dioxide + Dimethyl Sulfoxide and Carbon Dioxide +Dichloromethane [J]. J. Chem. Eng. Data. 2002, 47: 492-495.
    [158] Chang, J. Chiehming, Day, Chany-Yih, Ko, Ching-Ming, Chiu, N Kou-Lung. Densities and P-x-y diagrams for carbon dioxide dissolution in methanol, ethanol, and acetone mixtures [J]. Fluid Phase Equilibria. 1997, 13:243-258.
    [159] Lay, E.N., Taghikhani, V., Ghotbi, C. Measurement and Correlation of CO2 Solubility in the Systems of CO2 +Toluene, CO2 + Benzene, and CO2 + n-Hexane at Near-Critical and Supercritical Conditions [J]. J. Chem. Eng. Data. 2006, 51: 2197-2200.
    [160] Jennlngs, W.D., Lee, RongJwyn, Teja, S.A. Vapor-Liquid Equilibria in the Carbon Dioxide + Ethanol and Carbon Dioxide + l-Butanol Systems [J]. J. Chem. Eng. Data. 1991, 36: 303-307.
    [161] Wang, B., Wu, W., Chen, J., Han, B., Zhang, Z., Shen, D., Zhang, R. Phase Behavior, Densities, and Isothermal Compressibility of the CO2 + Ethanol + Dichloromethane Ternary System in Different Phase Regions [J]. J. Chem. Eng. Data 2005, 50: 1153-1156.
    [162] Hegel, P., Mabe, G., Zabaloy, M., Pereda, S., Brignole, A.E. Liquid-Liquid-Supercritical Fluid Equilibria for Systems Containing Carbon Dioxide, Propane, and Triglycerides [J]. J. Chem. Eng. Data. 2009, 54: 2085–2089.
    [163] Cheng, C.-H., Chen,Y.-P. Vapor–liquid equilibria for the ternary system of carbon dioxide + ethanol + ethyl acetate at elevated pressures. Fluid Phase Equilibria. 2006, 242:169–175.
    [164] Kalogiannis, G.C., Panayiotou, G.C. Bubble and Cloud Points of the Systems Poly (ε-caprolactone) + Carbon Dioxide+ Dichloromethane or Chloroform [J]. J. Chem. Eng. Data. 2006, 51:107-111.
    [165] Lee, B.C., Kuk, Y.M. Phase behavior of Poly (L-lactide) in Supercritical Mixtures of Dichloromethane and Carbon Dioxide [J]. J. Chem. Eng. Data. 2002, 47: 367-370.
    [166] Kalogiannis, G.C., Panayiotou, G.C. Bubble and Cloud Points of the System Poly (L-lactic acid) + Carbon Dioxide + Dichloromethane [J]. J. Chem. Eng. Data. 2005, 50: 1442-1447.
    [167] Lee, J.M., Lee, B.-C., Hwang, S.-J. Phase Behavior of Poly (L-lactide) inSupercritical Mixtures of Carbon Dioxide and Chlorodifluoromethane [J]. J. Chem. Eng. Data. 2000, 45: 1162-1166.
    [168] Byrappa, K., Ohara, S., Adschiri, T. Nanoparticles synthesis using supercritical fluid technology towards biomedical applications [J]. Adv. Drug Delivery. Rev. 2008, 60: 299-327.
    [169] Reverchon, E., Caputo, G., Marco, De I. Role of phase behavior and atomization in the supecritical antisolvent precipitation [J]. Ind. Eng. Chem.Res. 2003, 42: 6406–6414.
    [170] Reverchon, E., Marco, De I., Caputo, G., Porta, Della G. Pilot scale micronization of amoxicillin by supercritical antisolvent precipitation [J]. J. Supercrit. Fluids. 2003, 26: 1.
    [171] Wu, W. Z., Ke, J., Poliakoff, M. Phase Boundaries of CO2 + Toluene, CO2 + Acetone, and CO2 + Ethanol at High Temperatures and High Pressures [J]. J. Chem. Eng. Data 2006, 51: 1398-1403.
    [172] Andresen T. L., Jensen S. S., Jorgensen K. Advanced strategies in liposomal cancer therapy: Problems and prospects of active and tumor specific drug release [J]. Prog. Lipid Res. 2005.44: 68-97.
    [173] Barani, H.; Montazer, M. A Review on Applications of Liposomes in Textile Processing [J]. J. Liposome Res. 2008, 18: 249-262
    [174] Mozafari, M.R.; Johnson, C.; Hatziantoniou, S.; Demetzos, C. Nanoliposomes and their applications in food nanotechnology [J]. J. Liposome Res. 2008, 18: 309-327.
    [175] Suzuki, K., Sue, H. Isothermal vapor-liquid equilibrium data for binary systems at high pressures: carbon dioxide-methanol, carbon dioxide-ethanol, carbon dioxide- 1-propanol, methane-ethanol, methane-1-propanol, ethane-ethanol, and ethane 1-propanol systems [J]. J. Chem. Eng. Data. 1990, 35: 63-66.
    [176] Kodama, D., Kato, M. High-pressure phase equilibrium for carbon dioxide ethanol at 291.15 K [J]. J. Chem. Eng. Data. 2005, 50: 16-17.
    [177] Yoon, J.-H., Lee, H.-S., Lee, H. High-pressure vapor liquid equilibria for carbon dioxide-methanol, carbon dioxide-ethanol, and carbon dioxide-methanol-ethanol [J]. J. Chem. Eng. Data. 1993, 38: 53-55.
    [178] Lay, N. E. Measurement and Correlation of Bubble Point Pressure in (CO2+C6H6), (CO2+CH3C6H5), (CO2 +C6H14), and (CO2 +C7H16) at Temperatures from (293.15 to313.15) K [J]. J. Chem. Eng. Data. 2010, 55: 223–227.
    [179] Peng, D., Robinson, D. B. A New Two-Constant Equation of State. Ind. Eng. Chem. Fundam [J]. 1976, 5: 59–64.
    [180] Mariana, B. O., Queimada, A. J., Georgios, M. K., Jo?o, A. P. C. Evaluation of the CO2 behavior in binary mixtures with alkanes, alcohols, acids and esters using the Cubic-Plus-Association Equation of State [J]. J. Supercrit. Fluids 2011, 55, 876–892.
    [181] Góral, M. Cubic equation of state for calculation of phase equilibria in association systems [J]. Fluid Phase Equilib. 1996, 118, 27–59.
    [182] Ernster, L., Dallner, G. Biochemical, physiological and medical aspects of ubiquinone function [J]. Biochimica et Biophysica Acta. 1995, 1271 (1): 195–204.
    [183] Fuller, B., Smith, D., Howerton, A., Kern, D. Anti-in?ammatory effects of CoQ10 and colorless carotenoids [J]. J. Cosmet. Dermatol. 2006, 5: 30–38.
    [184] Crestanello, J.A., Doliba, N.M., Natalia, M.D., Babsky, A.M., Niborii, K., Osbakken, M.D., Glenn, J.R., Whitman, M.D. Effect of coenzyme Q10 supplementation on mitochondrial function after myocardial ischemia reperfusion [J]. JSurgRes. 2002, 102:221–228.
    [185] Xia, S., Xu, S. Improved assay of coenzyme Q10 from liposomes by Tween 80 solubilisation and UV spectrophotometry [J]. J Sci Food Agric. 2006; 86:2119–2127.
    [186] Juan, A., Crestanello, M.D. Effect of Coenzyme Q10 Supplementation on Mitochondrial Function after Myocardial Ischemia Reperfusion [J]. Journal of Surgical Research. 2002, 102(2): 22 1-228.
    [187]易德平,田治科,侯国枝,徐亚婷.辅酶Q10制剂新技术研究进展[J].中国药业. 2007, 16(22): 23-25.
    [188] Niibori, K., Yokoyama, H., Crestanello, J.A., Whitman, G.J.R. Acute administration of liposomal coenzyme Q10 increases myocardial tissue levels and improves tolerance to ischemia reperfusion injury [J]. J Surg Res. 1998, 79:141–145.
    [189]张灵芝.脂质体制备及其在生物医学中的应用【M】.北京:北京医科大学。中国协和医科大学联合出版社。1998.
    [190] Matteaa, F., Martín,ángel, Cocero, JoséMaría. Carotenoid processing with supercritical fluids [J]. Journal of Food Engineering. 2009, 93(3): 255-265.
    [191] Matias, A. A., Nunes, V.M.A. Casimiro, T., Duarte M.M.C. Solubility of coenzymeQ10 in supercritical carbon dioxide [J]. J. of Supercritical Fluids. 2004, 28: 201–206.
    [192] Zhang, L., Pornpattananangkul, D., Hu, C.M.J., Huang, C.M. Development of Nanoparticles for Antimicrobial Drug Delivery [J]. Current Medicinal Chemistry. 2010, 17: 585-594.
    [193] Manosroi, A., Chutoprapat, R., Abe, M., Manosroi, J. Characteristics of niosomes prepared by supercriticalcarbon dioxide (scCO2) ?uid [J]. International Journal of Pharmaceutics. 2008, 352: 248–255.
    [194] Otake, K., Goto, T., Imura, T., Furiya, T., Yoda, S., Takebayashi, Y., Sakai, H., Abe, M. Preparation of liposomes using an improved supercritical reverse phase evaporation [J]. Langmuir. 2006, 22: 2543–2550.
    [195] Van, H.D.A., Bouwstra, J.A., Van, R.A., Jeremiasse, E., De, V.T., Junginger, H.E. Preparation and characterization of nonionic surfactant vesicles. J. Colloid Interface Sci. 1996, 178: 263–273.
    [196] Indyk, H., Littlejohn, V., Woollard, D.C. Stability of vitamin D3 during spray-drying of milk [J]. Food Chemistry. 1996, 57 (2): 283–286.
    [197]刘元法,王兴国.大豆磷脂的精制与改性研究[J].中国油脂, 2000,25(6): 146-147.
    [198] Ran, Y., Yalkowsky, S.H., Halothane. Halothane, a Novel Solvent for the Preparation of Liposomes Containing 2-4'-Amino-3'-Methylphenyl Benzothiazole (AMPB), an Anticancer Drug: A Technical Note [J]. AAPS PharmSciTech. 2003, 4 (2): 1-5.
    [199] Chattopadhyay, P., Shekunov, B.Y., Yim, D. Production of solid lipid nanoparticles suspensions using supercritical fluid extraction of emulsions (SFEE) for pulmonary delivery using the AERx system [J]. Adv Drug Delivery Rev. 2007, 59: 444-453.
    [200] Polozova, A., Li, X., Shangguana, T., Meers, P., Schuette, D.R., Ando, N., Gruner, S.M. Perkins WR. Formation of homogeneous unilamellar liposomes from an interdigitated matrix [J]. Biochimica et Biophysica Acta. 2005, 1668: 117–125.
    [201] Bone, R.A., Landrum, J.T., Guerra, L.H., Ruiz, A.C. Lutein and zeaxanthin dietary supplements raise macular pigment density and serum concentrations of these carotenoids in humans [J]. J Nutr. 2003, 133(4): 992-998.
    [202] Fernandez, A., Torres-Giner, S., Lagaron, M. J. Novel route to stabilization of bioactive antioxidants by encapsulation in electrospun fibers of zein prolamine [J]. Food Hydrocolloids. 2009, 23: 1427–1432.
    [203] Sohal, R.S., Mockett, R.J. and Orr, W.C. Mechanisms of aging: an appraisal of theoxidative stress hypothesis [J]. Free Radic. Biol. Med. 2002, 33(5): 575-586.
    [204] Skibola, C.F., Smith, M.T., Potential health impacts of excessive flavonoid intake [J]. Free Radic Biol Med. 2000, 29(3-4): 375-383.
    [205] Formica, J.V., Regelson, W. Review of the biology of quercetin and related bioflavonoids [J]. Fd Chem. Toxic. 1995, 33(12): 1061-1080.
    [206] Gaetani, G., Ferraris, A., Rolfo, M., Mangerini, R., Arena, S., Kirkman, H. Predominant role of catalase in the disposal of hydrogen peroxide within human erythrocytes [J]. Blood. 1996, 87 (4): 1595–1599.
    [207] Galantig, Sabzevari, O., Wilson, J.X. Prooxidant activity and cellular effects of the phenoxyl radicals of dietary flavonoids and other polyphenolics [J]. Toxicology. 2002, (1):91-104.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700