用户名: 密码: 验证码:
新型人工中耳压电振子听力补偿的理论与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
听力损伤是社会上最常见的疾病之一,随着听力学及耳显微外科手术的迅速发展,绝大多数传导性听力损伤已能通过手术提高听力。但大部分感音神经性听力损伤目前仍缺乏具有针对性的有效治疗,常规的还是采用佩戴传统助听器的方式来改善听力。而传统助听器具有输出增益小、伴有声反馈及耳道堵塞等不足。针对助听器的这些问题,通过直接机械激振听骨链运动,进而对听力损伤进行高效补偿的中耳植入式助听装置(人工中耳)成为近年来国际上的一个研究热点。现有的人工中耳,根据其植入振子驱动原理的不同,可分为压电式和电磁式两种。其中,压电式人工中耳具有频带宽、功耗小、制造成本低、抗电磁干扰等优点。但现有压电式人工中耳的压电振子通常采用压电双晶片结构,输出增益较小,不能补偿较高程度的感音神经性听力损伤。
     针对以上问题,论文密切结合开发新型压电式人工中耳的需要,在国家自然科学基金的资助下,以通过机械激振听骨链而补偿听力损伤的新型人工中耳压电振子为研究对象,系统地进行了人耳传声的生物力学模拟、人工中耳的振子各设计参数对中耳传声特性影响分析、听骨链有效激振的压电振子设计,并最终通过人体颞骨实验,验证了所设计的砧骨激励式压电振子在听力损伤补偿上的有效性和可行性。论文的主要研究工作和创新性成果如下:
     1.基于三维人体耳蜗宏观力学模型,提取了耳蜗等效输入阻抗。通过近似处理,采用解析法建立了三维耳蜗宏观动力学模型,将计算结果与实验所测数据进行对比,验证了模型的可信度。基于该模型,分析了基底膜的动态特性,特别是其选频特性。再在模型中,将耳蜗内行波和压缩波同时考虑,对蜗内压强进行了计算并结合实验加以验证。最终,基于人体耳蜗解析三维模型,提取了耳蜗等效输入阻抗,为中耳建模提供了耳蜗处边界条件。
     2.建立了高精度的三维人体中耳有限元模型,并对其传声力学特性进行模拟和分析。基于Micro-CT扫描和逆向成型技术,建立了高精度三维人体中耳有限元模型。为了真实模拟听小骨空间支撑框架的边界条件,模型中韧带、肌腱也采用逆向成型建成。为了保证模型不失中耳的个体样本特性,采用模态与运动位移综合的方法,对现有报道偏差较大的中耳组织材料特性进行优选。最终,通过对比镫骨足板位移、镫骨速度传递函数、鼓膜脐部位移、听骨链杠杆比率,对所建模型的可信度进行了验证。并基于该模型,分析了听骨链杠杆系统比率在2000 Hz处突变的可能原因。
     3.研究了振子主要设计参数对正常人耳传声特性的影响。基于所建的中耳有限元力学模型,分析了激振部位对振子听力补偿效果的影响,提出了振子的最佳激振位置。考虑到悬浮式振子惰性易影响患者的残余听力,建立了带有悬浮质量块的中耳力学模型,并由该模型系统研究了悬浮式振子质量、振子驱动力、振子植入位置等设计参数对中耳传声特性的影响。研究结果表明:针对悬浮式压电振子,其质量不宜过大,增加该质量将恶化患者高频残余听力;振子植入位置靠近镫砧关节,听力补偿效果更好;植入的振子驱动力为89μN、驱动位移为100 nm便能激起相应于鼓膜处100 dB声压激励的效果。补偿同样程度的听力损伤,砧骨长突所需的激振力小于激励砧骨体所需的力,且激振效果不敏感于植入手术误差。
     4.基于相应的压电振子-中耳耦合力学模型,提出并设计了两款能对听骨链有效激振的新型压电振子。针对现有人工中耳的感音神经性听力损伤高频段补偿能力不足的问题,综合考虑了中耳内部解剖结构、中耳传声的动态特性,提出了两款利用压电叠堆逆压电效应驱动的新型人工中耳压电振子(悬浮式压电振子、砧骨激励式压电振子)。就这两款压电振子,分别建立了相应的压电振子-中耳耦合动力学模型。并基于这两个模型,分别对相应振子进行设计,分析了其功耗及听力补偿能力。结果表明:相对于人工中耳电磁式振子,所设计的两款压电振子均能够以较低的功耗量对听力损伤进行补偿;且这两款压电振子的高频听力补偿能力较强,特别适合感音神经性听力损伤的补偿。相比较而言,砧骨激励式压电振子的制造成本较低,因其对振子质量限制较小。
     5.设计并搭建了颞骨实验台,对砧骨激励式压电振子在听力损伤补偿上的性能进行了实验研究和评价。搭建了自行设计的可用于人工中耳测试的颞骨实验平台,并基于该实验平台对所设计的砧骨激励式压电振子的听力损伤补偿能力进行实验研究。为了研究人工中耳听力补偿时的清晰度,将助听器规范中的谐波失真要求引入到人工中耳。实验结果表明,砧骨激励式压电振子在低功耗、低电压下,便能对听力损伤进行有效的补偿。此外,它在高频段表现出更优异的补偿能力:一方面其高频段输出增益较大;另一方面,其高频段谐波失真更小。该压电振子高频优异的特性与理论分析相符,特别适合感音神经性听力损伤的治疗。
Hearing impairment is one of the most common diseases in our society. With the development of audiology and otology micro-surgery, most of the conductive hearing loss can benefit from operation. Whereas, there still lack of effective treatment to sensorineural hearing loss. The majority of these hearing-impaired individuals can only turn to traditional hearing aids. However, traditional hearing aids have several inherent disadvantages, such as sound distortion, limited amplification, noise and ringing, discomfort and cosmetic appearance. To overcome these shortcomings of traditional hearing aids, middle ear implants (MEI), which compensate hearing loss by direct mechanical stimulation to the ossicular chain, become a dynamic area of research. Until now, two types of vibrator have been developed for middle ear implant: piezoelectric vibrator and electromagnetic vibrator. In contrast, the piezoelectric vibrator has demonstrated many advantages including ease of fabrication, wider bandwidth, lower power consumption and more compatibility with external magnetic environment. But, most of developed piezoelectric vibrators using bimorphic principle, which makes them have small output gain and can’t compensate effectively for severe sensorineural hearing loss.
     Accordingly, to invent a new piezoelectric MEI, this work was carried out to study the possibility of a novel piezoelectric vibrator. A human ear mechanical model, which can reflect the sound transmission process, was established. The coupling characteristics of the vibrator and the human auditory system were investigated and used to help the design of two types of piezoelectric vibrators, which can be implanted by a simple surgical operation. And finally, the capability of the incus driving type piezo-vibrator's hearing loss compensation was verified, based on a human temporal bone experiment. The main work and innovative contributions of this dissertation are as follows:
     1. A three dimensional model of the human cochlea at macroscopic level was established and used to calculate cochlear equivalent input impedance. First, a simplified three dimensional human cochlear model was developed and used to calculate basilar membrane velocity. And the model derived results were compared with reported experimental data to confirm the model's validity. Then, the intracochlear pressure consists of both the travelling wave and the compressive wave was analyzed. Finally, the cochlear input impedance was calculated, and a single mass-spring- damper equivalent model of the cochlea was derived.
     2. A high quality three dimensional human middle ear finite element model was constructed and used to analyze its sound transmission properties. A high quality three-dimensional finite element model of the human middle ear was constructed, based on microcomputer tomography and reverse engineering technology. To model the boundary condition of the ossicular suspension veritably, the solid models of ligaments and tendons were also established by reverse engineering technology. The elastic modulus values of the ligaments and tendons in the present FE model were calibrated by mode analysis and dynamic responses comparisions, so that the individual dynamic characteristic of the middle ear was retained. The validity of this model was confirmed by comparing the stapes displacement, stapes velocity transfer function, umbo displacement and ossicular lever ratio obtained by this model with published experimental measurements on human temporal bones. The reason of the lever ratio’s sudden change at 2000 Hz was also analyzed by this FE model.
     3. The effects of the vibrator's main design parameters on human ear sound transmission were investigated. Based on the previous established human middle ear mechanical model, the influence of the vibrator's stimulation sites on its hearing loss compensation effect was investigated. A middle ear finite element model with a floating mass block clamped was constructed, given that the floating mass type vibrator likely to worsen patients’residual hearing. Then the mechanical model was used to study effects of the vibrator's main design parameters on human ear sound transmission. The results show that, floating vibrator produces mass loading effect prominently at high frequencies, the force needed to drive the incus to the equivalent of 100 dB SPL is about 89μN, and placing the clamp point of the floating vibrator close to the incudostapedial joint enhances the driving effect. Besides, incus long process is an ideal attachment point for vibrator as only a small excitation force is required to compensate a same level of hearing loss, and its compensation effect is less sensitive to surgical error.
     4. Based on corresponding piezoelectric vibrator-human middle ear coupling mechanical model, two types of piezoelectric vibrator which can efficiently stimulate the ossicular chain were proposed and designed. Aiming at the problem that existing middle ear implants can not compensate high frequency hearing loss properly, the author put forward two types of piezoelectric vibrator utilizing piezo-stack's inverse piezoelectric effect. Accordingly, two sets of the corresponding piezoelectric vibrator-human middle ear coupling mechanical models were construced. The final constructed coupling models were used to aid the design process of these proposed two types of piezoelectric vibrators: the floating mass type and the incus driving type. In addition, the hearing loss compensation performance and power consumption of these two types of vibrators were analyzed, respectively. The results show that: these two types of piezoelectric vibrators can compensate hearing loss efficiently by lower power consumption, comparing with electromagnetic vibrator. And they both perform well at high frequency which is a valuable aspect of their performance, given that the most commonly encountered pattern of sensorineural hearing loss affects the high frequencies more than the low frequencies.
     5. The performance of the designed incus driving type piezoelectric vibrator was evaluated using human temporal bone experiment. A human temporal bone experimental plateform, which used for middle ear implants' performance test, was self-designed and built. And the hearing loss compensation capability of the designed incus driving type piezoelectric vibrator was tested on this plateform. Besides, to classify the intelligibility of middle ear implants' hearing loss compensation, the specification of hearing aids characteristics on harmonic distortion was brought in middle ear implants' test. The results show that, the incus driving type piezoelectric vibrator can compensate hearing loss efficiently under lower power consumption and lower voltage. Besides, it demonstrates high performance at high frequencies. On one hand, it has high output gain at high frequencies. On the other hand, it has small harmonic distortion at high frequencies.
引文
[1] International A. F2504-05. Standard Practice for Describing System Output of Implantable Middle Ear Hearing Devices. ASMT, Philadelphia: 2005
    [2] Rosowski J J, Chien W, Ravicz M E, et al. Testing a method for quantifying the output of implantable middle ear hearing devices. Audiol Neurootol, 2007, 12(4): 265~276
    [3]第二次全国残疾人抽样调查办公室.第二次全国残疾人抽样调查资料.北京:中国统计出版社, 2007.
    [4] Meister H, Lausberg I, Kiessling J, et al. Determining the importance of fundamental hearing aid attributes. Otol Neurotol, 2002, 23(4): 457~462
    [5] Kim M K, Yoon Y H, Park I Y, et al. Design of differential electromagnetic transducer for implantable middle ear hearing device using finite element method. SENSORS AND ACTUATORS A-PHYSICAL, 2006, 130(Sp. Iss. SI): 234~240
    [6] Davis A. Population study of the ability to benefit from amplification and the provision of a hearing aid in 55-74-year-old first-time hearing aid users. Int J Audiol, 2003, 42(Suppl 2): 2S~39S
    [7] Counter P. Implantable hearing aids. Proc Inst Mech Eng H, 2008, 222(6): 837~852
    [8] Hong E P, Kim M K, Park I Y, et al. Vibration Modeling and design of piezoelectric floating mass transducer for Implantable middle ear hearing devices. IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2007, E90A(8): 1620~1627
    [9]余力生.各种植入性助听装置特点比较及适应证选择.中国医学文摘(耳鼻咽喉科学), 2009, 24(2): 75~76
    [10] Kuk F. Maximum usable insertion gain with various earmold configurations. Journal of the American Academy of Audiology, 1994, 5: 44~51
    [11] Kuk F, Ludvigsen C, Kaulberg T. Understanding feedback and digital feedback cancellation strategies. The Hearing Review, 2002, 9(2): 36~43
    [12] Ball G R. The vibrant soundbridge: design and development. Adv Otorhinolaryngol, 2010, 69: 1~13
    [13] Luetje C M, Brackman D, Balkany T J, et al. Phase III clinical trial results with the Vibrant Soundbridge implantable middle ear hearing device: a prospective controlled multicenter study. Otolaryngol Head Neck Surg, 2002, 126(2): 97~107
    [14] Truy E, Philibert B, Vesson J F, et al. Vibrant soundbridge versus conventional hearing aid in sensorineural high-frequency hearing loss: a prospective study. Otol Neurotol, 2008, 29(5): 684~687
    [15] Kiefer J, Arnold W, Staudenmaier R. Round window stimulation with an implantable hearing aid (Soundbridge) combined with autogenous reconstruction of the auricle - a new approach. ORL J Otorhinolaryngol Relat Spec, 2006, 68(6): 378~385
    [16] Fayad J N, Bassim M K, Barreiro K. Implantation of a round window stimulator in a radical mastoidectomy cavity. Otolaryngol Head Neck Surg, 2009, 140(2): 267~269
    [17] Colletti V, Carner M, Colletti L. TORP vs round window implant for hearing restoration of patients with extensive ossicular chain defect. Acta Otolaryngol, 2009, 129(4): 449~452
    [18] Beltrame A M, Martini A, Prosser S, et al. Coupling the Vibrant Soundbridge to cochlea round window: auditory results in patients with mixed hearing loss. Otol Neurotol, 2009, 30(2): 194~201
    [19] Hough J V, Dyer R J, Matthews P, et al. Semi-implantable electromagnetic middle ear hearing device for moderate to severe sensorineural hearing loss. Otolaryngol Clin North Am, 2001, 34(2): 401~416
    [20] Hough J V, Matthews P, Wood M W, et al. Middle ear electromagnetic semi-implantable hearing device: results of the phase II SOUNDTEC direct system clinical trial. Otol Neurotol, 2002, 23(6): 895~903
    [21] Silverstein H, Atkins J, Thompson J J, et al. Experience with the SOUNDTEC implantable hearing aid. Otol Neurotol, 2005, 26(2): 211~217
    [22] Gan R Z, Dai C K, Wang X L, et al. A totally implantable hearing system - Design and function characterization in 3D computational model and temporal bones. HEARING RESEARCH, 2010, 263(1-2): 138~144
    [23] Jenkins H A, Pergola N, Kasic J. Intraoperative ossicular loading with the Otologics fully implantable hearing device. Acta Otolaryngol, 2007, 127(4): 360~364
    [24] Lefebvre P P, Martin C, Dubreuil C, et al. A pilot study of the safety and performance of the Otologics fully implantable hearing device: transducing sounds via the round window membrane to the inner ear. Audiol Neurootol, 2009, 14(3): 172~180
    [25] Yanagihara N, Aritomo H, Yamanaka E, et al. Implantable hearing aid. Report of the first human applications. Arch Otolaryngol Head Neck Surg, 1987, 113(8): 869~872
    [26] Yanagihara N, Sato H, Hinohira Y, et al. Long-term results using a piezoelectric semi-implantable middle ear hearing device - The Rion Device E-type. OTOLARYNGOLOGIC CLINICS OF NORTH AMERICA, 2001, 34(2): 389~400
    [27] Yanagihara N, Sato H, Hinohira Y. Partially implantable hearing aid using piezoelectric ceramic ossicular vibrator. Results of the implant operation and assessment of the hearing afforded by the device. Otolaryngol Clin North Am, 1995, 28(1): 85~97
    [28]孔维佳,汪吉宝,胡钰娟.植入式助听装置研究进展.临床耳鼻咽喉头颈外科杂志, 2007, 21(14): 632~635
    [29] Backous D D, Duke W. Implantable middle ear hearing devices: current state of technology and market challenges. Curr Opin Otolaryngol Head Neck Surg, 2006, 14(5): 314~318
    [30] Maurer J, Savvas E. The Esteem System: a totally implantable hearing device. Adv Otorhinolaryngol, 2010, 69: 59~71
    [31] Kroll K, Grant I, Javel E. The Envoy? Totally Implantable Hearing System, St. Croix Medical. Trends Amplif, 2002, 6(2): 73~80
    [32] Haynes D S, Young J A, Wanna G B, et al. Middle ear implantable hearing devices: an overview. Trends Amplif, 2009, 13(3): 206~214
    [33] Chen D A, Backous D D, Arriaga M A, et al. Phase 1 clinical trial results of the Envoy System: a totally implantable middle ear device for sensorineural hearing loss. Otolaryngol Head Neck Surg, 2004, 131(6): 904~916
    [34] Barbara M, Manni V, Monini S. Totally implantable middle ear device for rehabilitation of sensorineural hearing loss: preliminary experience with the Esteem, Envoy. Acta Otolaryngol, 2009, 129(4): 429~432
    [35] Zenner H P, Leysieffer H. Total implantation of the Implex TICA hearing amplifier implant for high frequency sensorineural hearing loss: the Tubingen University experience. Otolaryngol Clin North Am, 2001,34(2): 417~446
    [36]赵守琴,韩德民.植入式助听器.中国耳鼻咽喉头颈外科, 2008, 15(4): 193~196
    [37]郭继周,汪若峰,刘莎,等.植入式人工中耳听器-GWⅠ型的研制及动物实验研究.耳鼻咽喉头颈外科, 1994, 1(4): 237~240
    [38] Hausler R, Stieger C, Bernhard H, et al. A novel implantable hearing system with direct acoustic cochlear stimulation. Audiol Neurootol, 2008, 13(4): 247~256
    [39] Kim M K, Park I Y, Song B S, et al. Fabrication and optimal design of differential electromagnetic transducer for implantable middle ear hearing device. Biosens Bioelectron, 2006, 21(11): 2170~2175
    [40] Helmholtz H F L. The mechanics of the ossicles and the membrane Tympani. New Sydenham Society, 1874, 62: 97~155
    [41] Zwislocki J. The role of the external and middle ear in sound transmission.in: The Nervous System. New York: Raven Press, 1975. 45~55
    [42] Kringlebotn M. Network model for the human middle ear. Scand Audiol, 1988, 17(2): 75~85
    [43] Goode R L, Killion M, Nakamura K, et al. New knowledge about the function of the human middle ear: development of an improved analog model. Am J Otol, 1994, 15(2): 145~154
    [44] Rosowski J J. Models of external and middle ear function.in: Auditory Computation. Springer Handbook Of Auditory Research. New York: Springer, 1996.
    [45] Hudde H, Weistenhofer C. A three-dimensional circuit model of the middle ear. ACUSTICA, 1997, 83(3): 535~549
    [46] Eiber A, Schiehlen W. Reconstruction of hearing by mechatronical devices. ROBOTICS AND AUTONOMOUS SYSTEMS, 1996, 19(2): 199~204
    [47] Eiber A. Mechanical problems in human hearing. Stud Health Technol Inform, 2008, 133: 83~94
    [48] Eiber A, Freitag H G. On simulation models in otology. MULTIBODY SYSTEM DYNAMICS, 2002, 8(2): 197~217
    [49] Zhao F, Koike T, Wang J, et al. Finite element analysis of the middle ear transfer functions and related pathologies. Med Eng Phys, 2009, 31(8): 907~916
    [50] Gan R Z, Feng B, Sun Q. Three-dimensional finite element modeling of human ear for sound transmission. ANNALS OF BIOMEDICAL ENGINEERING, 2004, 32(6): 847~859
    [51] Gan R Z, Sun Q L, Dyer R K, et al. Three-dimensional modeling of middle ear biomechanics and its applications. OTOLOGY & NEUROTOLOGY, 2002, 23(3): 271~280
    [52] Sun Q, Chang K H, Dormer K J, et al. An advanced computer-aided geometric modeling and fabrication method for human middle ear. Med Eng Phys, 2002, 24(9): 595~606
    [53] Funnell W R, Laszlo C A. Modeling of the cat eardrum as a thin shell using the finite-element method. J Acoust Soc Am, 1978, 63(5): 1461~1467
    [54] Funnell W R. On the undamped natural frequencies and mode shapes of a finite-element model of the cat eardrum. J Acoust Soc Am, 1983, 73(5): 1657~1661
    [55] Funnell W R, Decraemer W F, Khanna S M. On the damped frequency response of a finite-element model of the cat eardrum. J Acoust Soc Am, 1987, 81(6): 1851~1859
    [56] Funnell W R. Low-frequency coupling between eardrum and manubrium in a finite-element model. J Acoust Soc Am, 1996, 99(5): 3036~3043
    [57] Stuhmiller J H. Use of modeling in predicting tympanic membrane rupture. Ann Otol Rhinol Laryngol Suppl, 1989, 140: 53~60
    [58] Lesser T H, Williams K R. The tympanic membrane in cross section: a finite element analysis. J Laryngol Otol, 1988, 102(3): 209~214
    [59] Lesser T H, Williams K R, Skinner D W. Tympanosclerosis, grommets and shear stresses. Clin Otolaryngol Allied Sci, 1988, 13(5): 375~380
    [60] Lesser T H, Williams K R, Blayney A W. Mechanics and materials in middle ear reconstruction. Clin Otolaryngol Allied Sci, 1991, 16(1): 29~32
    [61] Williams K R, Lesser T H. A finite element analysis of the natural frequencies of vibration of the human tympanic membrane. Part I. Br J Audiol, 1990, 24(5): 319~327
    [62] Willianms K R, Lesser T H J. A dynamic and natural frequency analysis of the FISCH II spandrel using the finite element method. Clin Otolaryngol, 1992, 17(3): 261~270
    [63] Williams K R, Lesser T H. Natural frequencies of vibration of a fibre supported human tympanic membrane analysed by the finite element method. Clin Otolaryngol Allied Sci, 1993, 18(5): 375~386
    [64] Williams K R, Blayney A W, Lesser T H. Mode shapes of a damaged and repaired tympanic membrane as analysed by the finite element method. Clin Otolaryngol Allied Sci, 1997, 22(2): 126~131
    [65] Williams K R, Blayney A W, Lesser T H. A 3-D finite element analysis of the natural frequencies of vibration of a stapes prosthesis replacement reconstruction of the middle ear. Clin Otolaryngol Allied Sci, 1995, 20(1): 36~44
    [66] Willianms K R, Blayney A W, Rice H J. Middle ear mechanics as examined by the finite element method.in: Proceeding of the international workshop on middle ear mechanics in research and otosurgery. Dresden, Germany: 1996. 67~74
    [67] Blayney A W, Williams K R, Rice H J. A dynamic and harmonic damped finite element analysis model of stapedotomy. Acta Otolaryngol, 1997, 117(2): 269~273
    [68] Wada H, Metoki T, Kobayashi T. Analysis of dynamic behavior of human middle ear using a finite-element method. J Acoust Soc Am, 1992, 92(6): 3157~3168
    [69] Wada H, Koike T, Kobayashi T. Finite-element method(FEM) analysis of the human middle ear.in: Proceedings of the international workshop in middle ear mechanics in research and otosurgery. Dresden, Germany: 1996. 76~80
    [70] Koikem T, Wada H, Kobayashi T, et al. Finite element method(FEM) analysis of human middle-ear.in: Proceedings of the ARO meeting. 1996.
    [71] Koike T, Wada H, Kobayashi T. Analysis of the finite-element method of transfer function of reconstructed middle ear and their postoperative changes.in: The function and mechanics of normal, diseased and reconstructed middle ears. Kugler Publication, 2000. 309~320
    [72] Beer H J, Bornitz M, Drescher J, et al. Finite element modeling of the human eardrum and applications.in: Proceedings of the international workshop in middle ear mechanics in research and otosurgery. Dresden, Germany: 1996. 40~47
    [73] Drescher J, Schmidt R, Hardtke H J. Finite element modeling and simulation of the human tympanic membrane. HNO, 1998, 46(2): 129~134
    [74] Beer H J, Bornitz M, Hardtke H J, et al. Modelling of components of the human middle ear andsimulation of their dynamic behaviour. Audiol Neurootol, 1999, 4(3-4): 156~162
    [75] Prendergast P J, Ferris P, Rice H J, et al. Vibro-acoustic modelling of the outer and middle ear using the finite-element method. Audiol Neurootol, 1999, 4(3-4): 185~191
    [76] Ferris P, Prendergast P J. Middle-ear dynamics before and after ossicular replacement. J Biomech, 2000, 33(5): 581~590
    [77] Takagi A, Sando I. Computer-aided three-dimensional reconstruction: a method of measuring temporal bone structures including the length of the cochlea. Ann Otol Rhinol Laryngol, 1989, 98(7 Pt 1): 515~522
    [78] Fujiyoshi T, Mogi G, Watanabe T, et al. Undecalcified temporal bone morphology: a methodology useful for gross to fine observation and three-dimensional reconstruction. Acta Otolaryngol Suppl, 1992, 493: 7~13
    [79] Weistenhofer C, Hudde H. Determination of the shape and inertia properties of the human auditory ossicles. Audiol Neurootol, 1999, 4(3-4): 192~196
    [80] Mcavoy G J. The development of a vibro- acoustic model of the human ear:[Universtiy of Dublin], 1995
    [81] Kelly D J, Prendergast P J, Blayney A W. The effect of prosthesis design on vibration of the reconstructed ossicular chain: a comparative finite element analysis of four prostheses. Otol Neurotol, 2003, 24(1): 11~19
    [82]朱翊洲,陈力奋,张天宇,等.基于组织切片数据的中耳鼓膜有限元分析.振动与冲击, 2010, 29(4): 117~121
    [83]张官萍,巫爱霞,戴朴,等.中耳三维有限元模型的建立与中耳实体模型质量属性分析.中华耳鼻咽喉头颈外科杂志, 2007, 42(5): 357~361
    [84] Gan R Z, Reeves B P, Wang X. Modeling of sound transmission from ear canal to cochlea. Ann Biomed Eng, 2007, 35(12): 2180~2195
    [85] Lee C F, Chen P R, Lee W J, et al. Three-dimensional reconstruction and modeling of middle ear biomechanics by high-resolution computed tomography and finite element analysis. Laryngoscope, 2006, 116(5): 711~716
    [86]刘迎曦,李生,孙秀珍.人耳传声数值模型.力学学报, 2008, 40(1): 107~113
    [87] Liu Y X, Li S, Sun X Z. Numerical analysis of ossicular chain lesion of human ear. ACTA MECHANICA SINICA, 2009, 25(2): 241~247
    [88]孙秀珍,李生,刘迎曦.人耳鼓膜穿孔对中耳传声影响的数值模拟.计算力学学报, 2010, 27(6): 1102~1106
    [89]黄新生,姚文娟,付黎杰,等.不同材料镫骨赝复体术后听力效果的有限元分析.复旦学报:医学版, 2008, 35(6): 815~818
    [90]黄新生,姚文娟,刘骏帧,等.人工听骨传声特性的有限元分析.中国临床医学, 2008, 15(2): 236~238
    [91]姚文娟,黄新生,李武,等.人工听骨不同接入方式对耳结构动力响应的影响.医用生物力学, 2010, 25(3): 175~181
    [92]姚文娟,李晓青,李武,等.中耳病变及人工镫骨形体研究.医用生物力学, 2009, 24(2): 118~122
    [93]谢友舟,王正敏,张天宇,等.基于Micro-CT成像的听骨链有限元建模方法.中国眼耳鼻喉科杂志, 2009, 9(2): 83~85
    [94]杨琳,张天宇,陈力奋,等.镫骨固有三维运动模式的有限元分析.解剖学杂志, 2009, 32(5): 583~587
    [95]王振龙,王学林,胡于进,等.基于中耳与耳蜗集成有限元模型的耳声传递模拟.中国生物医学工程学报, 2011, 30 (1): 60~66
    [96] Mehrgardt S, Mellert V. Transformation characteristics of the external human ear. J Acoust Soc Am, 1977, 61(6): 1567~1576
    [97] Shaw E A. Transformation of sound pressure level from the free field to the eardrum in the horizontal plane. J Acoust Soc Am, 1974, 56(6): 1848~1861
    [98] Wiener F M. The Pressure Distribution in the Auditory Canal in a Progressive Sound Field. J Acoust Soc Am, 1946, 18(2): 401~408
    [99] Blackstock D T. Fundamentals of physical acoustics. New York: Wiley, 2000. 541
    [100] Clark G. Cochlear implants :fundamentals and applications. New York: Springer, 2003. 830
    [101] Helmholtz H. Die Mechanik der Geh?rkn?chelchen und des Trommelfells. Arch Gesamte Physiol Menschen Tiere, 1868, 1: 1~60
    [102] Puria S. Measurements of human middle ear forward and reverse acoustics: Implications for otoacoustic emissions. JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2003, 113(5): 2773~2789
    [103] Von Be? ke? sy G. Experiments in hearing. New York: McGraw-Hill, 1960. 745
    [104] Kringlebotn M, Gundersen T, Krokstad A, et al. Noise-induced hearing losses. Can they be explained by basilar membrane movement? Acta Otolaryngol Suppl, 1979, 360: 98~101
    [105] Johnstone B M, Patuzzi R, Yates G K. Basilar membrane measurements and the travelling wave. Hear Res, 1986, 22: 147~153
    [106] Neely S T, Kim D O. An active cochlear model showing sharp tuning and high sensitivity. Hear Res, 1983, 9(2): 123~130
    [107] Ashmore J F, Geleoc G S, Harbott L. Molecular mechanisms of sound amplification in the mammalian cochlea. Proc Natl Acad Sci U S A, 2000, 97(22): 11759~11764
    [108] Brownell W E, Spector A A, Raphael R M, et al. Micro- and nanomechanics of the cochlear outer hair cell. Annu Rev Biomed Eng, 2001, 3: 169~194
    [109] Sellick P M, Patuzzi R, Johnstone B M. Measurement of basilar membrane motion in the guinea pig using the Mossbauer technique. J Acoust Soc Am, 1982, 72(1): 131~141
    [110] Sudhoff H, Bernal-Sprekelsen M, Hildmann H. Middle ear surgery. Berlin: Springer, 2006.
    [111] Clark J G. Uses and abuses of hearing loss classification. ASHA, 1981, 23(7): 493~500
    [112] Lund V, Stennert E, Anniko M. Otorhinolaryngology, Head and Neck Surgery. New York: Springer, 2009.
    [113] Lim K M, Steele C R. A three-dimensional nonlinear active cochlear model analyzed by the WKB-numeric method. HEARING RESEARCH, 2002, 170(1-2): 190~205
    [114] Yoon Y J, Puria S, Steele C R. Intracochlear pressure and organ of corti impedance from a linear active three-dimensional model. ORL-JOURNAL FOR OTO-RHINO-LARYNGOLOGY AND ITS RELATED SPECIALTIES, 2006, 68(6): 365~372
    [115] Deo N. Micro and macro-mechanics of the mammalian cochlea:[Ph.D.学位论文]. United States -- Michigan: University of Michigan, 2006
    [116] Steele C R, Lim K M. Cochlear model with three-dimensional fluid, inner sulcus and feed-forward mechanism. AUDIOLOGY AND NEURO-OTOLOGY, 1999, 4(3-4): 197~203
    [117] Holmes M H. A mathematical model of the dynamics of the inner ear. 1982, 116: 59~75
    [118] Manoussaki D, Dimitriadis E K, Chadwick R S. Cochlea's graded curvature effect on low frequency waves. Phys Rev Lett, 2006, 96(8): 88701
    [119] Cai H, Manoussaki D, Chadwick R. Effects of coiling on the micromechanics of the mammalian cochlea. J R Soc Interface, 2005, 2(4): 341~348
    [120] Manoussaki D, Chadwick R S, Ketten D R, et al. The influence of cochlear shape on low-frequency hearing. Proc Natl Acad Sci U S A, 2008, 105(16): 6162~6166
    [121] Adjemian B C. A THREE-CHAMBER HYDROELASTIC MODEL OF THE COCHLEA:[Ph.D.学位论文]. United States -- California: University of California, Los Angeles, 1981
    [122] Batchelor G K. An introduction to fluid dynamics. Cambridge: University Press, 1973.
    [123] Holmes M H, Cole J D. Cochlear mechanics: analysis for a pure tone. J Acoust Soc Am, 1984, 76(3): 767~778
    [124] Olson E S. Intracochlear pressure measurements related to cochlear tuning. J Acoust Soc Am, 2001, 110(1): 349~367
    [125] Graff K F. Wave motion in elastic solids. [Columbus]: Ohio State University Press, 1975. 649
    [126] Woinowsky-Krieger S, Timoshenko S. Theory of plates and shells. New York: McGraw-Hill, 1959.
    [127] Yoon Y J, Puria S, Steele C R. Intracochlear pressure and derived quantities from a three-dimensional model. JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2007, 122(2): 952~966
    [128] Bohnke F, Arnold W. 3D-finite element model of the human cochlea including fluid-structure couplings. ORL J Otorhinolaryngol Relat Spec, 1999, 61(5): 305~310
    [129] Ishii T, Takayama M, Takahashi Y. Mechanical properties of human round window, basilar and Reissner's membranes. Acta Otolaryngol Suppl, 1995, 519: 78~82
    [130] Skrodzka E B. Modelling of some mechanical malfunctions of the human basilar membrane. APPLIED ACOUSTICS, 2005, 66(9): 1007~1017
    [131] Gan R Z, Reeves B P, Wang X L. Modeling of sound transmission from ear canal to cochlea. ANNALS OF BIOMEDICAL ENGINEERING, 2007, 35(12): 2180~2195
    [132] Thorne M, Salt A N, Demott J E, et al. Cochlear fluid space dimensions for six species derived from reconstructions of three-dimensional magnetic resonance images. Laryngoscope, 1999, 109(10): 1661~1668
    [133] Stenfelt S, Puria S, Hato N, et al. Basilar membrane and osseous spiral lamina motion in human cadavers with air and bone conduction stimuli. Hear Res, 2003, 181(1-2): 131~143
    [134] Gundersen T, Skarstein O, Sikkeland T. A study of the vibration of the basilar membrane in human temporal bone preparations by the use of the Mossbauer effect. Acta Otolaryngol, 1978, 86(3-4): 225~232
    [135] Peterson L C, Bogert B P. A dynamic theory of the cochlea. J Acoust Soc Am, 1950, 22: 369~381
    [136] Nakajima H H, Dong W, Olson E S, et al. Differential intracochlear sound pressure measurements in normal human temporal bones. J Assoc Res Otolaryngol, 2009, 10(1): 23~36
    [137] Olson E S. Observing middle and inner ear mechanics with novel intracochlear pressure sensors. JAcoust Soc Am, 1998, 103(6): 3445~3463
    [138] Igarashi M, Ohashi K, Ishii M. Morphometric comparison of endolymphatic and perilymphatic spaces in human temporal bones. Acta Otolaryngol, 1986, 101(3-4): 161~164
    [139] Aibara R, Welsh J T, Puria S, et al. Human middle-ear sound transfer function and cochlear input impedance. Hear Res, 2001, 152(1-2): 100~109
    [140] Zwislocki J. Analysis of Some Auditory Characteristics. Handb. Math. Psycol., 1965, 3: 66
    [141] Puria S, Allen J B. A parametric study of cochlear input impedance. J Acoust Soc Am, 1991, 89(1): 287~309
    [142] Shera C A, Zweig G. A symmetry suppresses the cochlear catastrophe. J Acoust Soc Am, 1991, 89(3): 1276~1289
    [143] Feng B, Gan R Z. Lumped parametric model of the human ear for sound transmission. Biomech Model Mechanobiol, 2004, 3(1): 33~47
    [144] Prendergast P J, Ferris P, Rice H J, et al. Vibro-acoustic modelling of the outer and middle ear using the finite-element method. Audiol Neurootol, 1999, 4(3-4): 185~191
    [145]刘后广,塔娜,饶柱石.人体中耳有限元法数值仿真.系统仿真学报, 2009, 21(24): 7899~7901
    [146] Zwislocki J. Analysis of the Middle-Ear Function. Part I: Input Impedance. 1962, 34(9B): 1514~1523
    [147] Guinan J J, Peake W. Middle ear characteristics of an esthetized cats. J. Acoust. Soc. Am., 1967, 41(5): 1237~1261
    [148] Fung Y C. Foundations of Solid Mechanics. Prentice Hall, 1965.
    [149] Funnell W R. A theoretical study of eardrum vibrations using the finite-element method:[Ph.D.学位论文]. McGill University, 1975
    [150] Bathe K J. Finite Element Procedures in Engineering Analysis. Prentice Hall, 1982.
    [151] Sun Q, Gan R Z, Chang K H, et al. Computer-integrated finite element modeling of human middle ear. Biomech Model Mechanobiol, 2002, 1(2): 109~122
    [152] Kirikae I. The structure and function of the middle ear. Tokyo: Tokyo University Press, 1960.
    [153] Homma K, Du Y, Shimizu Y, et al. Ossicular resonance modes of the human middle ear for bone and air conduction. J Acoust Soc Am, 2009, 125(2): 968~979
    [154] Koike T, Wada H, Kobayashi T. Modeling of the human middle ear using the finite-element method. JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2002, 111(3): 1306~1317
    [155] Homma K, Shimizu Y, Kim N, et al. Effects of ear-canal pressurization on middle-ear bone- and air-conduction responses. Hear Res, 2010, 263(1-2): 204~215
    [156] Homma K, Du Y, Shimizu Y, et al. Ossicular resonance modes of the human middle ear for bone and air conduction. J Acoust Soc Am, 2009, 125(2): 968~979
    [157] Merchant S N, Ravicz M E, Rosowski J J. Acoustic input impedance of the stapes and cochlea in human temporal bones. Hear Res, 1996, 97(1-2): 30~45
    [158] Nishihara S, Aritomo H, Goode R L. Effect of changes in mass on middle ear function. Otolaryngol Head Neck Surg, 1993, 109(5): 899~910
    [159] Gan T Z, Wood T W, Dormer T J. Human middle ear transfer function measured by double laser interferometry system. OTOLOGY & NEUROTOLOGY, 2004, 25(4): 423~435
    [160] Stieger C, Bernhard H, Waeckerlin D, et al. Human temporal bones versus mechanical model toevaluate three middle ear transducers. J Rehabil Res Dev, 2007, 44(3): 407~415
    [161] Mills R P, Wang Z G, Abel E W, et al. In vitro study of a multi-layer piezoelectric crystal attic hearing implant. JOURNAL OF LARYNGOLOGY AND OTOLOGY, 2001, 115(5): 359~362
    [162]谢晓凤,黄新生,姚文娟,等.镫骨赝附体与砧骨长突连接方式对声音传导的有限元分析.中国临床医学, 2008, 15(3): 397~399
    [163] Gan R Z, Dyer R K, Wood M W, et al. Mass loading on the ossicles and middle ear function. Ann Otol Rhinol Laryngol, 2001, 110(5 Pt 1): 478~485
    [164] Gyo K, Aritomo H, Goode R L. Measurement of the ossicular vibration ratio in human temporal bones by use of a video measuring system. Acta Otolaryngol, 1987, 103(1-2): 87~95
    [165] Goode R L, Killion M, Nakamura K, et al. New knowledge about the function of the human middle ear: development of an improved analog model. Am J Otol, 1994, 15(2): 145~154
    [166] Tringali S, Pergola N, Ferber-Viart C, et al. Fully implantable hearing device as a new treatment of conductive hearing loss in Franceschetti syndrome. Int J Pediatr Otorhinolaryngol, 2008, 72(4): 513~517
    [167] Hato N, Stenfelt S, Goode R L. Three-dimensional stapes footplate motion in human temporal bones. Audiol Neurootol, 2003, 8(3): 140~152
    [168] Ko W H, Zhu W L, Maniglia A J. Engineering principles of mechanical stimulation of the middle ear. Otolaryngol Clin North Am, 1995, 28(1): 29~41
    [169]王荣津.水声材料手册.北京:科学出版社, 1983.
    [170] Needham A J, Jiang D, Bibas A, et al. The effects of mass loading the ossicles with a floating mass transducer on middle ear transfer function. Otol Neurotol, 2005, 26(2): 218~224
    [171] Park S, Lee K C. Design and analysis of a microelectromagnetic vibration transducer used as an implantable middle ear hearing aid. JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2002, 12(5): 505~511
    [172] Hong E P, Kim M K, Park I Y, et al. Vibration Modeling and design of piezoelectric floating mass transducer for Implantable middle ear hearing devices. IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2007, E90A(8): 1620~1627
    [173] Ko W H, Zhu W L, Kane M, et al. Engineering principles applied to implantable otologic devices. Otolaryngol Clin North Am, 2001, 34(2): 299~314
    [174] Ostergaard D F, Pawlak T P. Three-dimensional finite elements for analyzing piezoelectric structures: IEEE Ultrasonics Symposium. Williamsburg, USA: 1986, 639~644
    [175] Wong H T, Kwok K W, Chan H L. Study of PMN-PT single crystals for resonator applications: International Frequency Control Symposium and Exposition. Miami, USA: 2006
    [176] Ghasemi-Nejhad M N, Pourjalali S, Uyema M, et al. Finite element method for active vibration suppression of smart composite structures using piezoelectric materials. 2006, 19(3): 309~352
    [177] Laursen W. Breaking the sound barrier. Engineering & Technology, 2006, 1(3): 38~41
    [178] Leysieffer H, Baumann J W, Muller G, et al. An implantable piezoelectric hearing aid transducer for sensorineural hearing loss .1. Development of a prototype. HNO, 1997, 45(10): 792~800
    [179] Wang Z G, Abel E W, Mills R P, et al. Assessment of multi-layer piezoelectric actuator technology for middle-ear implants. MECHATRONICS, 2002, 12(1): 3~17
    [180] Leysieffer H, Baumann J W, Muller G, et al. An implantable piezoelectric hearing aid transducer forsensorineural hearing loss .2. Clinical implant. HNO, 1997, 45(10): 801~815
    [181] International A. F2504-05. Standard Practice for Describing System Output of Implantable Middle Ear Hearing Devices. ASMT, Philadelphia: 2005
    [182] Rosowski J J, Huber A M, Ravicz M E, et al. Are Temporal Bones Useful Models of Human Middle-Ear Mechanics: Twenty-Seventh Meeting of the Association for Research in Otolaryngology. 2004
    [183] Lysons K. Hearing impairment :a guide for people with auditory handicaps and those concerned with their care and rehabilitation. Cambridge [Cambridgeshire]: Woodhead-Faulkner, 1984. 196
    [184] Min Xiao Feng, Liu Hou Guang, Ta Na, et al. Wavelet frequency-division based signal processing module design for a new type of middle ear implant: 2010 International Conference on Mechanic Automation and Control Engineering, MACE2010. Wuhan, China: 20105282~5286
    [185] Ansi A N S I. ANSI S3.22-2003. Specification of Hearing Aid Characteristics. 2003

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700