用户名: 密码: 验证码:
基于机器视觉的小麦并肩杂与不完善粒动态实时检测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国是世界上最大的小麦生产国和消费国,对小麦质量进行等级划分的重要意义不言而喻。目前依据国标对小麦并肩杂和不完善粒的检测仍采用人工方法,而基于机器视觉技术的动态实时检测能有效保障其结果的客观性,并提高检测精度和速度。本论文综合应用光学、高光谱、数字图像处理及模式识别技术,研究了基于机器视觉的小麦并肩杂与不完善粒动态实时检测方法,并结合机械、电子、计算机等技术进行样机研制。
     主要研究内容和结论如下:
     1.小麦高光谱实验与RGB图像采集系统构建。通过对高光谱数据做主成分分析,得到最有效主成分,由最有效主成分中各波段的贡献率确定最佳波段。针对小麦外观特征的有效提取,经研究630nnm波段的贡献率最大。根据该波段确定相机的波段光谱响应参数,构建了RGB图像采集系统。
     2.小麦动态图像预处理与特征提取。通过不同颜色背景下的小麦图像直方图和对比度分析,确定黑色不反光背景为小麦并肩杂与不完善粒检测的最佳背景。对采集到的小麦动态图像进行多余背景去除、同态滤波等图像预处理,并通过阈值分割和形态学处理进行形态特征描述、通过颜色空间变换进行颜色特征描述、通过二维小波变换进行纹理特征描述,分别提取了7个形态特征、27个颜色特征和144个纹理特征。
     3.小麦并肩杂和不完善粒识别算法研究。对1169个正常小麦、897个并肩杂、710个黑胚粒小麦和627个破损小麦样本所提取的特征数据,分别采用遗传算法与支持向量机(GA-SVM)、主成分分析与支持向量机(PCA-SVM)、偏最小二乘判别分析(PLS-DA)、偏最小二乘与支持向量机(PLS-SVM)、主成分分析与人工神经网络(PCA-ANN)和线性判别分析(LDA)算法进行模式识别比较分析,结果表明GA-SVM对小麦并肩杂的识别率最高可达99.34%,PCA-SVM对不完善粒中的黑胚粒、破损粒和正常小麦的识别率分别为97.2%、98.4%和97.9%。
     4.小麦并肩杂与不完善粒动态实时检测装置研制。采用旋转输送方式进行小麦单粒化喂入和下料分级,通过集成机械部分、电路模块和计算机视觉系统,将GA-SVM算法用于动态实时检测,实现了软件对相机设置、图像采集、图像处理、特征提取、模式识别、数据通讯和机构运动的实时控制,研制了小麦并肩杂与不完善粒动态实时检测装置。
China is the largest producer and consumer of wheat in the world, and the inspection of wheat quality is very important for the grain industry. Up to now, the inspection of Kernel-like Impurity and Unsound Kernel in wheat is rely upon manual method still, which is neither objective nor efficient. Machine vision provides a rapid and objective means for evaluating the appearance quality of wheat. The research integrates knowledge of optics, hyperspectral, image processing and pattern recognition to analyze the real-time detection of the Kernel-like Impurity and Unsound Kernels in wheat, and a prototype was explored utilizing with technologies of mechanism, electronic and computer. The main contents are as follows:
     1. Hyperspectral experiments and image acquisition system. Hyperspectral images were used to determine the optimal band according to each band's contribution to the most effective principal component. The study has found that the contribution of 630 nm band is the most useful band for morphological feature, which is right close to the wavelength of the red light used in this thesis.
     2. Real-time wheat image preprocessing and feature extraction. Through the image histograms and the contrast analysis of wheat under different color backgrounds, the black and opaque background turns out to be the best one for wheat identification. After pretreatment and some image process steps, including unnecessary background cutting, homomorphic filter, image threshold segmentation, morphological image processing, color space conversion and wavelet transform,7 morphological features,27 color features and 144 texture features were extracted.
     3. Comparison of different pattern recognition methods of Kernel-like impurity and Unsound Kernel in wheat. The samples include 1169 Sound Kernels,897 Kernel-like Impurities,710 Black Germ kernels, and 627 Damaged Kernels. There are several analysis algorithms used for data processing, such as genetic algorithm and the support vector machine (GA-SVM), principal component analysis and support vector machine (PCA-SVM), partial least squares discriminant analysis (PLS-DA), partial least squares and support vector machine(PLS-SVM), principal component analysis and artificial neural network (PCA-ANN), linear discriminant analysis(LDA). According to the research, combining genetic algorithm and the support vector machine (GA-SVM) is the best method, the accuracy of which was 99.34%; PCA-SVM gets the best accuracy:97.2%,98.4% and 97.9%for Black Germ Kernels, Broken Kernels and Sound Kernels.
     4. Prototype development for real-time detection of Kernel-like impurity and Unsound Kernel in wheat. The mechanical part mainly includes the main stents, the single graining device, the transmission device and the material feeding device. The circuits section of the machine (lower computer) consists of core chip of ATmega128, communication circuit chip and some peripheral circuits. According to the image processing and pattern recognition method determined in experiment, the code is realized with VC++ software. The Personal computer (upper computer) can control the camera setting, image acquisition, image processing, feature extraction, pattern recognication and communication directly. The hardware and software are collaboratively debugged, and finally all software used is packaged into a setup.exe bag. Users double-click setup.exe to complete software installation and then it will be ready to work.
引文
1 人民网.国务院法制办公布《粮食法(征求意见稿)》.2012;http://legal.people.com.cn/GB/188502/1719176.html
    2 童葶.澳大利亚粮食市场开放与中国粮食安全:[硕士学位论文].南京:南京农业大学,2008.
    3 孟凡军.2010年我国小麦市场分析与展望.2010;http://www.cnmf.net/pd/jingxiaoshang/echo.php?id=77132.
    4 李哲清,高翔.优质专用小麦生产现状与产业化前景分析.陕西农业科学.2009,03:74-77,105.
    5 李近人,国产小麦精选除杂技术探讨.粮油食品科技,2003.11(2):14-16.
    6 ANONYMOUS. New ways to class wheat. FGIS Updata.Federal Grain Inspection Sevice,U.S Department of Agriculture,Washionton, DC.,1984:3.
    7 Zayas, I., Y. Pomeranz, and F.S. Lai. Discrimination between Arthur and Arkan Wheats by Image-Analysis. Cereal Chemistry.1985,62(6):478-480.
    8 Zayas, I., F.S. Lai, and Y. Pomeranz. Discrimination between Wheat Classes and Varieties by Image-Analysis. Cereal Chemistry.1986,63(1):52-56.
    9 Thomson, W.H. and Y. Pomeranz.Classification of Wheat Kernels Using 3-Dimensional Image-Analysis. Cereal Chemistry.1991,68(4):357-361.
    10 Utku, H. and H. Koksel. Use of statistical filters in the classification of wheats by image analysis. Journal of Food Engineering.1998,36(4):385-394.
    11 Majumdar, S. and D.S. Jayas. Classification of bulk samples of cereal grains using machine vision. Journal of Agricultural Engineering Research.1999,73(1):35-47.
    12 Majumdar, S. and D.S. Jayas. Classification of cereal grains using machine vision:Ⅰ. Morphology models. Transactions of the Asae.2000,43(6):1669-1675.
    13 Majumdar, S. and D.S. Jayas. Classification of cereal grains using machine vision:Ⅱ. Color models. Transactions of the Asae.2000,43(6):1677-1680.
    14 Majumdar, S. and D.S. Jayas. Classification of cereal grains using machine vision:Ⅲ. Texture models. Transactions of the Asae.2000,43(6):1681-1687.
    15 Majumdar, S. and D.S. Jayas. Classification of cereal grains using machine vision:Ⅳ. Combined morphology, color, and texture models. Transactions of the Asae.2000,43(6): 1689-1694.
    16 Urena, R., F. Rodriguez, and M. Berenguel. A machine vision system for seeds germination quality evaluation using fuzzy logic. Computers and Electronics in Agriculture.2001,32(1): 1-20.
    17 Dubey, B., et al. Potential of artificial neural networks in varietal identification using morphometry of wheat grains. BIOSYSTEMS ENGINEERING.2006,95(01).
    18 Tahir, A., et al. Evaluation of the effect of moisture content on cereal grains by digital image analysis. Food Research International.2007,40(9):1140-1145
    19 Choudhary, R., J. Paliwal, and D.S. Jayas. Classification of cereal grains using wavelet, morphological, colour, and textural features of non-touching kernel images. Biosystems Engineering.2008,99(3):330-337.
    20 Douik, A. and M. Abdellaoui. Cereal varieties classification using wavelet techniques combined to multi-layer neural networks.2008 Mediterranean Conference on Control Automation.Vols 1-4,2008:1822-1827.
    21 Manickavasagan, A., et al. Wheat class identification using monochrome images. Journal of Cereal Science.2008,47(3):518-527.
    22 Marini, F., et al. Classification of 6 durum wheat cultivars from Sicily (Italy) using artificial neural networks. Chemometrics and Intelligent Laboratory Systems.2008,90(1):1-7.
    23 Amaral, A.L., et al. Application of image analysis to the prediction of EBC barley kernel weight distribution. Industrial Crops and Products.2009,30(3):366-371.
    24 Mebatsion, H.K., J. Paliwal, and D.S. Jayas. Evaluation of variations in the shape of grain types using principal components analysis of the elliptic Fourier descriptors. Computers and Electronics in Agriculture.2012,80:63-70.
    25 Shatadal, P., et al. Seed Classification Using Machine Vision. Canadian Agricultural Engineering.1995,37(3):163-167.
    26 Zayas, I.Y., et al. Wheat classification using image analysis and crush-force parameters. Transactions of the Asae.1996,39(6):2199-2204.
    27 Bacci, L., et al.Durum wheat quality evaluation software. Proceedings of the World Congress of Computers in Agriculture and Natural Resources.2001:49-55.
    28 Symons, S.J., L. Van Schepdael, and J.E. Dexter. Measurement of hard vitreous kernels in durum wheat by machine vision. Cereal Chemistry.2003,80(5):511-517.
    29 Zhang, G., D.S. Jayas, and N.D.G. White. Separation of touching grain kernels in an image by ellipse fitting algorithm. Biosystems Engineering.2005,92(2):135-142.
    30 Osborne, B.G., et al. Measurement of wheat grain thickness using profilometry. Cereal Chemistry.2007,84(3):282-284.
    31 Manuel, R.S.J., G.R. Mariana, and V.M.M. Alejandro, Use of Computer Vision During the Process of Quality Control in the Classification of Grain. Advances in Computer and Informatiom Sciences and Engineering, ed. T. Sobh.2008,213-217.
    32 Igathinathane, C., L.O. Pordesimo, and W.D. Batchelor. Major orthogonal dimensions measurement of food grains by machine vision using Image. Food Research International. 2009,42(1):76-84.
    33 Venora, G., O. Grillo, and R. Saccone. Quality assessment of durum wheat storage centres in Sicily:Evaluation of vitreous, starchy and shrunken kernels using an image analysis system. Journal of Cereal Science.2009,49(3):429-440.
    34 Guevara-Hernandez, F. and J. Gomez-Gil. A machine vision system for classification of wheat and barley grain kernels. Spanish Journal of Agricultural Research.2011,9(3):672-680.
    35 Zapotoczny, P. Discrimination of wheat grain varieties using image analysis:morphological features. European Food Research and Technology.2011,233(5):769-779.
    36 Luo, X., D.S. Jayas, and S.J. Symons. Identification of damaged kernels in wheat using a colour machine vision system. Journal of Cereal Science.1999,30(1):49-59.
    37 Paliwal, J., N.S. Shashidhar, and D.S. Jayas. Grain kernel identification using kernel signature. Transactions of the Asae.1999,42(6):1921-1924.
    38 El-Faki, M.S., N. Zhang, and D.E. Peterson. Factors affecting color-based weed detection. Transactions of the Asae.2000,43(4):1001-1009.
    39 Ruan, R., et al. Estimation of weight percentage of scabby wheat kernels using an automatic machine vision and neural network based system. Transactions of the Asae.2001, 44(4):983-988.
    40 Wang, N., F.E. Dowell, and N. Zhang. Determining wheat vitreousness using image processing and a neural network. Transactions of the Asae.2003,46(4):1143-1150.
    41 Zapotoczny, P. and K. Majewska. A Comparative Analysis of Colour Measurements of the Seed Coat and Endosperm of Wheat Kernels Performed by Various Techniques. International Journal of Food Properties.2010,13(1):75-89.
    42 Douik, A. and M. Abdellaoui. Cereal varieties classification using wavelet techniques combined to multi-layer neural networks.2008 Mediterranean Conference on Control Automation. Vols 1-4,2008:177-182.
    43 Luo, X. Colour image analysis for cereal grain classification, in Biosystems Engineering1997, University of Manitoba:Winnipeg, Canada, p.424.
    44. Nair, M. and D.S. Jayas. Dockage identification in wheat using machine vision. Canadian Agricultural Engineering.1998,40(4):293-298.
    45 Granitto, P.M., P.F. Verdes, and H.A. Ceccatto. Large-scale investigation of weed seed identification by machine vision. Computers and Electronics in Agriculture.2005, 47(1):15-24.
    46 Dubey, B.P., et al. Potential of artificial neural networks in varietal identification using morphometry of wheat grains. Biosystems Engineering.2006,95(1):61-67.
    47 Raudys, S., et al. Classifiers fusion in recognition of wheat varieties. Multiple Classifier Systems, Proceedings.2007,4472:62-71.
    48 Arefi, A., A.M. Motlagh, and R.F. Teimourlou. Wheat class identification using computer vision system and artificial neural networks. International Agrophysics.2011,25(4):319-325.
    49 Ruan, R., et al. Estimation of Fusarium scab in wheat using machine vision and a neural network. Cereal Chemistry.1998,75(4):455-459.
    50. Anami, B.S., D.G. Savakar, and V.S. Biradar. Identification of multiple grain image samples from tray. International Journal of Food Science and Technology.2009,44(12):2452-2458.
    51 Granitto, P.M., et al. Weed seeds identification by machine vision. Computers and Electronics in Agriculture.2002,33(2):91-103.
    52 Visen, N., J. Paliwal, and D.S. Jayas.Algorithm development for grain kernel identification. Ieee Ccec 2002:Canadian Conference on Electrcial and Computer Engineering, Vols 1-3, Conference Proceedings.2002:963-967.
    53 Paliwal, J., et al. Comparison of a neural network and a non-parametric classifier for grain kernel identification. Biosystems Engineering.2003,85(4):405-413.
    54 Douik, A. and M. Abdellaoui. Cereal Grain Classification by Optimal Features and Intelligent Classifiers. International Journal of Computers Communications & Control.2010, 5(4):506-516.
    55 Ooms, D. and M.F. Destain. Study of the potentialities of machine vision used for optical selection of immature seeds of industrial chicory (Cichorium intybus L.). Biotechnologie Agronomie Societe Et Environnement.2010,14(1):253-263.
    56 Anami, B.S. and D.G. Savakar. Suitability of Feature Extraction Methods in Recognition and Classification of Grains, Fruits and Flowers. International Journal of Food Engineering.2011, 7(1).
    57 Zayas, I.Y. and P.W. Flinn. Detection of insects in bulk wheat samples with machine vision. Transactions of the Asae.1998,41(3):883-888.
    58 Ridgway, C., et al. Rapid machine vision method for the detection of insects and other particulate bio-contaminants of bulk grain in transit. Biosystems Engineering.2002, 83(1):21-30.
    59 Davies, E.R., et al.Design of efficient line segment detectors for cereal grain inspection. Pattern Recognition Letters.2003,24(1-3):413-428.
    60 Jayas, D.S., et al. Detection techniques for stored-product insects in grain. Food Control.2007, 18(2):157-162.
    61 Jones, C.L., F. Ding, and P. Weckler. Detection and Identification of Stored-Grain Insects with Rf/Microwave and Neural Network Technology. Transactions of the Asabe.2009, 52(6):2105-2114.
    62 Xie, F., et al. Detecting vitreous wheat kernels using reflectance and transmittance image analysis. Cereal Chemistry.2004,81(5):594-597.
    63 Bacci, L., B. Rapi, and F. Colucci. An evaluation technique of yellow-berry in durum wheat seeds. Proceedings of the World Congress of Computers in Agriculture and Natural Resources. 2001:62-69.
    64 Paliwal, J., et al. feasibility of a machine vision based grain cleaner. American Society of Agricultural Engineers.2004,20(2):245-248.
    65 Delwiche, S.R. Improvements in optical sorting of mold-damaged wheat-art. no.63810A. Optics for Natural Resources, Agriculture, and Foods.2006,6381:A3810-A3810.
    66 Delwiche, S.R. Optical characterization of free-falling mold-damaged wheat kernels-art. no. 67610G. Optics for Natural Resources, Agriculture, and Foods Ii.2007,6761:7610-G7610.
    67 Jayas, D.S.A. Manickavasagan, and G. Sathya, Comparison of illuminations to identify wheat classes using monochrome images. Computers and Electronics in Agriculture.2008, 63(2):237-244.
    68 Manickavasagan, A., G. Sathya, and D.S. Jayas. Comparison of illuminations to identify wheat classes using monochrome images. Computers and Electronics in Agriculture. 2008,63(2):237-244.
    69 Yang, I.C., et al. Enhancement of Fusarium head blight detection in free-falling wheat kernels using a bichromatic pulsed LED design. Optical Engineering.2009,48(2).
    70 Majumdar, S. and D.S. Jayas. Single-kernel mass determination for grain inspection using machine vision. Applied Engineering in Agriculture.1999,15(4):357-362.
    71 Kruse, M. The effect of moisture content on linear dimensions in cereal seeds measured by image analysis. Seed Science and Technology.2000,28(3):779-791.
    72 Jayas, D.S., et al. Evaluation of the effect of moisture content on cereal grains by digital image analysis. Food Research International.2007,40(9):1140-1145.
    73 Shatadal, P., D.S. Jayas, and N.R. Bulley. Digital Image-Analysis for Software Separation and Classification of Touching Grains.1. Disconnect Algorithm. Transactions of the Asae.1995, 38(2):635-643.
    74 Shatadal, P., D.S. Jayas, and N.R. Bulley. Digital Image-Analysis for Software Separation and Classification of Touching Grains.2. Classification. Transactions of the Asae.1995, 38(2):645-649.
    75 Wan, Y.N. Kernel handling performance of an automatic grain quality inspection system. Transactions of the Asae.2002,45(2):369-377.
    76 Aguilera, J.M. and V. Briones. Computer vision and food quality. Food Australia.2005,57(3): 79-87.
    77 Pearson, T. Hardware-based image processing for high-speed inspection of grains. Computers and Electronics in Agriculture.2009,69(1):12-18.
    78 Anami, B.S. and D.G. Savakar. Influence of Light, Distance and Size on Recognition and Classification of Food Grains' Images. International Journal of Food Engineering.2010,6(2).
    79 Pearson, T. High-Speed Sorting of Grains by Color and Surface Texture. Applied Engineering in Agriculture.2010,26(3):499-505.
    80 Brosnan, T. and D.W. Sun. Inspection and grading of agricultural and food products by computer vision systems-a review. Computers and Electronics in Agriculture.2002, 36(2-3):193-213.
    81 Scanlon, M.G. and H.D. Sapirstein. Digital image analysis for quality assurance in the wheat-to-bread supply chain. Wheat Quality Elucidation:The Bushuk Legacy.2002:196-218.
    82 Davies, E.R. Design of real-time algorithms for food and cereals inspection. Imaging Science Journal.2003,51(2):63-78.
    83 Davies, E.R. The application of machine vision to food and agriculture:a review. Imaging Science Journal.2009,57(4):197-217.
    84 Karunakaran, C., D.S. Jayas, and N.D.G. White. X-ray image analysis to detect infestation due to Cryptolestes ferrrugineus in stored wheat. Ieee Ccec 2002:Canadian Conference on Electrcial and Computer Engineering. Vols 1-3, Conference Proceedings,2002:902-907.
    85 Jayas, D.S., et al. Assessment of soft X-ray imaging for detection of fungal infection in wheat. Biosystems Engineering.2009,103(1):49-56.
    86 Neethirajan, S., et al. Classification of vitreousness in durum wheat using soft X-rays and transmitted light images. Computers and Electronics in Agriculture.2006,53(1):71-78.
    87 Jayas, D.S., A. Manickavasagan, and N.D.G. White. Thermal imaging to detect infestation by Cryptolestes ferrugineus inside wheat kernels. Journal of Stored Products Research.2008, 44(2):186-192.
    88 Jayas, D.S., et al. Wheat Class Identification Using Thermal Imaging. Food and Bioprocess Technology.2010,3(3):450-460.
    89 Pearson, T.C., et al. Feasibility of impact-acoustic emissions for detection of damaged wheat kernels. Digital Signal Processing.2007,17(3):617-633.
    90 Pacheco, A.D., et al. Evaluation of Wheat and Maize Seeds by Photoacoustic Microscopy. International Journal of Thermophysics.2009,30(6):2036-2043.
    91 Ridgway, C. and J. Chambers. Detection of insects inside wheat kernels by NIR imaging. Journal of near Infrared Spectroscopy. Vol 6 1998,1998:115-119.
    92 Ridgway, C, J. Chambers, and I. A. Cowe. Detection of grain weevils inside single wheat kernels by a very near infrared two-wavelength model. Journal of near Infrared Spectroscopy. 1999,7(4):213-221.
    93 Delwiche, S.R. and M.S. Kim. Hyperspectral imaging for detection of scab in wheat.2000. Proc. SPIE, Vol.4203,13 (2000); doi:10.1117/12.411752
    94 Gorretta, N., et al. Determining vitreousness of durum wheat kernels using near infrared hyperspectral imaging. Journal of near Infrared Spectroscopy.2006,14(4):231-239.
    95 Koc, H., V. W. Smail, and D.L. Wetzel. Reliability of InGaAs focal plane array imaging of wheat germination at early stages. Journal of Cereal Science.2008,48(2):394-400.
    96 Choudhary, R., et al. Identification of wheat classes using wavelet features from near infrared hyperspectral images of bulk samples. Biosystems Engineering.2009,102(2):115-127.
    97 Wallays, C., et al. Hyperspectral waveband selection for on-line measurement of grain cleanness. Biosystems Engineering.2009,104(1):1-7.
    98 Jayas, D.S., et al. Detection of midge-damaged wheat kernels using short-wave near-infrared hyperspectral and digital colour imaging. Biosystems Engineering.2010,105(3):380-387.
    99 Jayas, D.S., et al. Identification of insect-damaged wheat kernels using short-wave near-infrared hyperspectral and digital colour imaging. Computers and Electronics in Agriculture.2010,73(2):118-125.
    100 Manley, M., G. du Toit, and P. Geladi. Tracking diffusion of conditioning water in single wheat kernels of different hardnesses by near infrared hyperspectral imaging. Analytica Chimica Acta.2011,686(1-2):64-75.
    101 Williams, P., et al. Maize kernel hardness classification by near infrared (NIR) hyperspectral imaging and multivariate data analysis. Analytica Chimica Acta.2009,653(2):121-130.
    102 何胜美,李仲来,何中虎.基于图像识别的小麦品种分类研究.中国农业科学.2005,38(9):1869-1875.
    103 周佳璐.基于机器视觉的小麦质量判别系统的研究:[硕士学位论文].上海:同济大学,2006.
    104 王志军,丛培盛,周佳璐,朱仲良.基于图像处理与人工神经网络的小麦颗粒外观品质评价方法.农业工程学报.2007,23(01):158-161.
    105 张恒敢,杨四军,顾克军,李智胜.应用数字图像处理获取小麦籽粒颜色特征参数.安徽农业科学.2008,36(9):3582-3583.
    106 毕昆,姜盼,唐崇伟,黄菲菲.干成基于麦穗特征的小麦品种BP分类器设计.中国农学通报.2011,27(6):464-468.
    107 杨蜀秦.大米外观品质计算机视觉检测的研究:[硕士学位论文].杨凌:西北农林科技大学,2005.
    108 刘兆艳.基于机器视觉的稻种品种识别研究:[硕士学位论文].杭州:浙江大学,2006.
    109 李天真,周柏清.基于计算机视觉技术的稻米检测研究.粮食与食品工业.2005,12(04):50-54.
    110 周福生.评价大米质量的基本内容.粮食科技与经济.1998,(05):35-36.
    111 田庆国.图像处理技术在大米碾白精度测定中的应用.粮食与饲料工业.1997,(10):10-11.
    112 钱前.杂交稻种子质量问题及其鉴定对策.中国稻米.1996,(03):10-11.
    113 张慧,张聪.大米粒形边缘检测算法研究.粮油食品科技.2008,(04):9-11.
    114 侯彩云,王一鸣,凌云,孙剑锋,孙明,贾贵儒.林夕垩白米粒的计算机图像识别.农业工程学报.2002,18(03):165-168.
    115 陈坤杰,夏建春.光谱分析检测大米加工精度等级.农业机械学报.2008,39(01):187-190.
    116 陈卫东,董卓莉,李研琰.基于Canny算子的大米边缘检测.河南工业大学学报(自然科学版).2008,29(3):55-58.
    117 凌云,王一鸣,孙明,张小超..基于分形维数的垩白米图像检测方法.农业机械学报.2005,36(07):91-95.
    1]8 陈建伟,刘璎瑛.基于机器视觉技术的大米品质检测综述.粮食与食品工业.2008,15(3):44-47.
    119 吴建国,刘长东,杨国花,任玉玲,石春海.基于计算机视觉的稻米垩白指标快速测定方法研究.作物学报.2005,31(5):670-672.
    120 孙明,王一鸣,凌云,张小超.基于色调的黄粒米检测方法.农业机械学报.2005,36(8):78-81.
    121 尚艳芬,侯彩云,常国华,基于图像识别的黄粒米自动检测研究.农业工程学报.2004,20(04):146-148.
    122 房国志,王鑫,赵云志.一种大米白度的检测方法.哈尔滨理工大学学报.2008,13(04):14-16.
    123 孙明,凌云,王一鸣.在MATLAB环境中基于计算机视觉技术的大米垩白检测.农业工程学报.2002,18(04):146-149.
    124 宋韬,曾德超.基于人工神经网络的玉米籽粒形态识别方法的研究.农业工程学报.1996,12(01):177-181.
    125 宁纪锋.玉米品种的计算机视觉识别研究:[硕士学位论文].杨凌:西北农林科技大学,2002.
    126 赵新子.玉米种子纯度数字图像处理与识别技术的应用研究:[硕士学位论文].长春:吉林农业大学,2005.
    127 宁纪锋,何东健,杨蜀秦.玉米籽粒的尖端和胚部的计算机视觉识别.农业工程学报.2004,20(3):117-119.
    128 周红,刘光蓉.计算机视觉及其在谷物籽粒检测分级中的应用.种子.2004,23(07):56-58.
    129 成芳,应义斌.机器视觉技术在农作物种子质量检验中的应用研究进展.农业工程学报.2001,17(06):175-179.
    130 刘燕德,应义斌,成芳.机器视觉技术在种子纯度检验中的应用.农业机械学报.2003,34(05):161-163.
    131 Cheng, F. and Y.B. Ying. Image recognition of diseased rice seeds based on color feature, in Nondestructive Sensing for Food Safety, Quality, and Natural Resources, Y.R. Chen and S.I. Tu, Editors.2004.224-231.
    132 成芳.稻种质量的机器视觉无损检测研究:[博士学位论文].杭州:浙江大学,2004.
    133 成芳,应义斌.基于Matlab平台的稻种图像分析系统.浙江大学学报(农业与生命科学版).2004,30(05):572-576.
    134 成芳,应义斌.基于轮廓特征的稻种芽谷检测方法.农业工程学报.2004,20(5):178-181.
    135 胡少兴,马成林,张爱武.排种器性能检测中种子位置智能检测方法.农业机械学报.2001,32(03):37-40.
    136 凌云.基于机器视觉的谷物外观品质检测技术研究:[博士学位论文].北京:中国农业大学,2004.
    137 王丰元,周一鸣.种子形状参数检测的计算机图象处理技术.农业机械学报.1995,26(02):52-57.
    138 李锦卫,廖桂平.基于数字图像处理的油菜种子形状特征参数提取及模糊聚类分析.计算机辅助工程.2006,15(03):75-78.
    139 王志健,王勤海.小麦色选机的开发与使用.西部粮油科技.2003,(01):3-7.
    140 Wan, Y.-N., Automatic Grain Quality Inspection with Learning Mechanism. Trans of the ASAE,2002.45(2):445-449.
    141 李伟,袁立,蔡卫国,荀一.种子精选自动化装置.实用新型专利.中华人民共和国:CN200420092550.2.2004,09,20.
    142 佐竹机械(苏州)有限公司.日本佐竹公司稻米品质分析设备.http://www.satake.cn/cp/class/?3.htmll.
    143 布勒(中国)有限公司.主要产品http://www.buhlergroup.com/china/zh/10.htm.
    144 苏谦,邬文锦,王红武,王库.安冬基于近红外光谱和仿生模式识别玉米品种快速鉴别方法.光谱学与光谱分析.2009,29(9):2413-2416.
    145 翟亚锋等.基于仿生模式识别和近红外光谱的转基因小麦快速鉴别方法.光谱学与光谱分析.2010,30(4):924-928.
    146 Tonning, E., et al. Bulk Functionality Diversification by Unsupervised Single-Kernel Near-Infrared (SKNIR) Sorting of Wheat. Cereal Chemistry.2009,86(6):706-713.
    147 Tonning, E., et al. A novel improved method for analysis of 2D diffusion-relaxation data-2D PARAFAC-Laplace decomposition. Journal of Magnetic Resonance.2007,188(1):10-23.
    148 Tonning, E., et al. Protein heterogeneity in wheat lots using single-seed NIT-A Theory of Sampling (TOS) breakdown of all sampling and analytical errors. Chemometrics and Intelligent Laboratory Systems.2006,84(1-2):142-152.
    149 郭俊先,基于高光谱成像技术的棉花杂质检测方法的研究:[博士学位论文].杭州:浙江大学,2011.
    150 Kim, M.S., Y.R. Chen, and P.M. Mehl. Hyperspectral reflectance and fluorescence imaging system for food quality and safety. Transactions of the Asae.2001,44(3):721-729.
    151 蔡健荣,王建黑,黄星奕,陈全胜.高光谱图像技术检测柑橘果锈.光电工程.2009,36(6):26-30.
    152 应义斌,韩东海.农产品无损检测技术.北京:化学工业出版社,2005.
    153 近藤直,门田充司,野口伸.农业机器人.北京:中国农业大学出版社,2009.
    154 孙亚亚,三势阱中的玻色-爱因斯坦凝聚的开关特性:[硕十学位论文],石家庄:河北师范大学,2003.
    155 秦国亮,张治国,骆德全.同态滤波空域算法分析和改进.电脑知识与技术.2007,(24):136-137.
    156 武英,利用同态滤波改善光照不足图像.南京晓庄学院学报.2007(6):70-71.
    157 Rafael, C.G., E.W. Richard数字图像处理.北京:电子工业出版社,2008.
    158. 祁亨年,陈丰农,方陆明,马灵飞.一种基于形态学的木材导管图像分割方法.北京林业大学学报.2008,30(4):12-16.
    159 陈丰农,成芳.基于自适应双阈值的彩色线阵CCD小麦黑胚分割.农业工程学报.2011,27(3):341-344.
    160 左飞,万晋森,刘航.Visual C++数字图像处理开发入门与编程实践.北京:电子工业出版社,2008.
    161 伍学千,基于计算机视觉技术的猪肉品质检测与分级研究:[硕十学位论文].杭州:浙江大学,2010.
    162 宁凡,卢勇跃,蒋水秀,基于光电积分法的色度测定仪的研制.光学仪器.2009,31(1):65-68.
    163 周宇峰,程景全.小波变换及其应用.物理.2008,37(01):24-32.
    164 李亚春,夏德深,徐萌.小波变换在图像纹理分析中的研究进展.计算机工程与应用.2005,35:47-51.
    165 边肇祺,张学工.模式识别.北京:清华大学出版社,2002.
    166 Wang, J. and S.J. Qin. A new subspace identification approach based on principal component analysis. Journal of Process Control.2002, 12(8):841-855.
    167 Holland, S.M. principal component analysis (PCA).2008.
    168 Berrueta, L.A., R.M. Alonso-Salces, and K. Heberger, Supervised pattern recognition in food analysis. Journal of Chromatography A.2007,1158(1-2):196-214.
    169 Goldberg, D.E. Genetic Algorithms in Search. New York, Optimization and Machine Learning, Addison-Wesley,1989.
    170 Liu, J.J., et al. Multiclass cancer classification and biomarker discovery using GA-based algorithms. Bioinformatics.2005,21(11):2691-2697.
    171 Samanta, B., K.R. AI-Balushi, and S.A. Al-Araimi. Artificial neural networks and support vector machines with genetic algorithm for bearing fault detection. Engineering Applications of Artificial Intelligence.2003,16(7-8):657-665.
    172 Huang, C.L., M.C. Chen, and C.J. Wang. Credit scoring with a data mining approach based on support vector machines. Expert Systems with Applications.2007,33(4):847-856.
    173 Hsu, C.-W., C.-C. Chang, and C.-J. Lin. A Practical Guide to Support Vector Classication. 2003.
    174 Xing, F. and P. Guo. Classification of stellar spectral data using SVM. Advances in Neural Networks-Isnn 2004, Pt 1.2004,3173:616-621.
    175 Peng, S.H., et al. Molecular classification of cancer types from microarray data using the combination of genetic algorithms and support vector machines. Febs Letters.2003, 555(2):358-362.
    176 Wu, C.H., et al.A real-valued genetic algorithm to optimize the parameters of support vector machine for predicting bankruptcy. Expert Systems with Applications.2007,32(2):397-408.
    177 Huang, C.L. and C.J. Wang. A GA-based feature selection and parameters optimization for support vector machines. Expert Systems with Applications.2006,31(2):231-240.
    178 Frohlich, H., O. Chapelle, and B. Scholkopf. Feature selection for support vector machines by means of genetic algorithms.15th Ieee International Conference on Tools with Artificial Intelligence, Proceedings.2003:142-148.
    179 王小平,曹立明.遗传算法——理论、应用与软件实现.西安:西安交通大学出版社.,2002.
    180 Perez-Enciso, M. and M. Tenenhaus. Prediction of clinical outcome with microarray data:a partial least squares discriminant analysis (PLS-DA) approach. Human Genetics.2003, 112(5-6):581-592.
    181 卢桂宁,多环芳烃和氯代芳香有机污染物环境活性的构效关系研究:[博士学位论文].广州:华南理工大学,2008.
    182 黄勤,常伟,刘益良,刘衍鹏.基于PCA的BP神经网络分类器.重庆工学院学报(自然科学版).2009,23(7):89-96.
    183 下睿.关于支持向量机参数选择方法分析.重庆师范大学学报.2007,24(2):36-42.
    184 刘瑞祯,于仕琪.OpenCV教程-基础篇.北京:北京航空航天大学出版社,2007.
    185 陈胜勇,刘盛.基于OpenCV的计算机视觉技术实现.北京:科学出版社,2008.
    186 张舒,褚艳利.GPU高性能运算之CUDA.北京:中国水利水电出版社,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700