用户名: 密码: 验证码:
宽带射频接收前端电路与系统设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高性能宽带接收机广泛应用于军事通信和民用通信中,现代接收机系统除了具有高线性、高灵敏度、大动态范围等特点外,对射频前端电路系统的宽带化设计要求越来越高。本文紧密结合科研课题,对宽带射频接收前端电路与系统进行了深入研究,重点对射频接收前端关键部件进行了宽带化研究设计,并完成了小型化宽带射频接收前端系统的研制任务。论文的主要研究成果可概括为以下几方面:
     1.对适用于超宽带无线通信的新型印刷天线进行宽带化研究设计。首先,提出了一种火焰型印刷单极子天线结构,采用自相似缝隙加载的办法展宽天线的工作带宽;其次,对具有较小尺寸的Open-L形缝隙天线进行了改进设计,针对其高频工作频段匹配状态差的缺陷,分别采用T形枝节加载和辐射片旋转结构展宽了天线的工作带宽,改进后的天线具有超宽带工作的能力;在此基础之上,提出一种新型双开口Open-L形缝隙结构,采用非对称馈电设计方法实现了天线工作带宽展宽设计。测试结果表明这些新型天线均具有很好的超宽带特性。
     2.结合当前DGS设计研究热点,对具有宽阻带特性的微带滤波器进行了设计研究。提出采用一对缝隙耦合的办法提高传统哑铃型DGS单元的阻带特性,并完成具有超宽阻带的低通滤波器的设计,新型低通滤波器在3.9~18GHz范围内具有20dB超宽阻带抑制特性;基于RSR环形缝隙谐振结构来设计超宽带带通滤波器,提出采用缝隙加载的办法来提高滤波器的选择性和带外抑制特性,新型超宽带滤波器同样具有17.6dB宽阻带抑制特性,阻带范围可到20GHz。新型宽阻带DGS微带滤波器具有小型化特点。
     3.采用PLL频率合成技术,对适用于宽带接收前端系统的宽带微波频率源进行了设计。基于三阶有源环路的设计方法提高锁相环路的电压控制范围,采用正负双电源运放供电方案有效地改善运放工作零点漂移问题。实测试结果表明宽带频率合成信号具有小型化、宽频带、低相位噪声等特点。
     4.对宽带接收系统的AGC控制电路进行了研究设计。提出采用多PIN二极管级联和单电源控制模式对传统π型PIN电调衰减器进行宽带化改进设计,改进后的PIN电调衰减器具有DC~8GHz的宽频带衰减控制特性,衰减范围可达45dB,压控线性度和衰减平坦度好;基于π型PIN电调衰减器设计基础,提出并设计了具有大动态控制与高带外抑制的宽带AGC控制电路。5.对小型化宽带雷达接收前端电路系统进行了分析设计。针对0.5~1GHz的宽带雷达接收频段与高中频频带重叠的难题,提出采用二次变频方案解决了频谱分离的问题,降低了系统设计的难度;采用基于芯片级的信道化宽带射频接收前端系统设计方案,很好地解决2~8GHz宽频带接收的频谱划分和小型化系统集成设计难题,提高了系统设计的灵活性。测试结果表明:小型化宽带射频接收前端电路系统具有体积小、频带宽、动态范围大等特点,完全满足系统设计要求。
High-performance wideband receivers are widely used in military and civilian communication systems. Besides the high linearity, high sensitivity, large dynamic range and other characteristics, broadband RF receiver front-end is a crucial part in the modern receiver system design. As the major part of a research project, this dissertation is mainly concerned with the in-depth study of wideband RF receiver front-end. Some broadband design methods have been introduced to investigate key components of the RF receiver front-end for wideband applications and research tasks. The major contributions of this dissertation are outlined as follows:
    
     1. Several novel printed antennas are investigated and designed with bandwidth enhancement for ultra-wideband(UWB) wireless communications. Firstly, a flame printed monopole antenna is proposed and its operation bandwidth is enhanced greatly with a self-similar slot. Secondly, a small open-L slot antenna has been improved with a T-shaped stub and rotated radiator patch for bandwidth enhancement due to its poor characteristic at high frequency range. At last, a novel double-open-L slot antenna with a small size is introduced with an asymmetric fed patch for bandwidth enhancement. The measured results show that these novel printed antennas have good UWB characteristics.
     2. Focusing on the DGS research, several micro-strip filters with wide stop-band characteristic are proposed and studied. A pair of coupling slots are introduced and etched on the side of a classic dumbbell DGS cell to improve its poor stop-band characteristic, and a compact and small low-pass filter with this structure is designed for wide stop-band suppression from 3.9 to 18GHz with a rejection level of 20dB. Furthermore, a compact ultra-wideband band-pass filter with a pair of slits is designed for a good out-of-band selectivity and an improved upper stop-band rejection of about 17.6dB up to 20GHz. In addition, these filters with small size are suitable for portable systems.
     3. PLL frequency synthesizer technology is adopted to design broadband microwave frequency source, which is suitable for broadband receiver front-end systems. The narrow voltage control range can be increased greatly using third-order active loop filter and zero drift of the op amp can be eliminated with positive and negative power supply scheme. From the measured results, the synthesized broadband frequency signals show wide bandwidth, low phase noise and other characteristics.
     4. An automatic gain control(AGC) circuit is investigated and designed for the wideband receiver system. Using series PIN diodes and single power supply mode,the poor attenuation characteristic at high frequency range is improved greatly. From the experimental results, the operation bandwidth is increased up to 8GHz with a good flatness and a linear attenuation control range better than 45dB. Based on the basicπelectrical modulation attenuator, a wideband AGC circuit system has been achieved with a wide dynamic control range and good suppression out of the pass-band.
     5. Wideband RF front-end systems with small size have been designed and manufactured. Using double frequency conversion structure, the overlap between broadband RF frequency range from 0.5 to 1GHz and IF-band is successfully and easily resolved the spectrum separation. The chip-level channel design program can be used to simplify the frequency planning from 2 to 8GHz and solve the system integration problem. With these methods, the system design flexibility has been improved greatly. From the measured results, the wideband RF front-end systems with small size, wideband, high dynamic and other characteristics fully meet the design requirements at the discretion of the engineer.
引文
[1] M. Golio and J. Golio, RF and microwave applications and systems, CRC Press, 2001.
    [2] F. Losee, RF systems, components and circuits handbook (Second Edition), Artech House, 2005.
    [3] R. Ludwig and P. Bretchko, RF circuits design—Theory and applications, Prentice-Hall, Inc., 2000.
    [4]陈邦媛,射频通信电路(第二版),科学出版社, 2006年.
    [5] J. Laskar, B. Matinpour and S. Charkaborty, Modern receiver front-ends: systems, circuits, and integration, John Wiley & Sons, Inc., 2004.
    [6] P. W. Hooijmans, RF front-end application and technology trends, Design Automation Conference, pp.73-78, 2003.
    [7] Burns, Software defined radio for 3G, Artech House, 2002.
    [8] P. B. Kenington, RF and baseband techniques for software defined radio, Artech House, 2005.
    [9] L. J. Cimimi, Jr. and N. R. Sollenberger, OFDM with diversity and coding for high-bit-rate mobile data applications, IEEE Global Telecommunications Conference, pp.305-309, 1997.
    [10] H. Arsla,Z. N. Chen and M. G. D. Benedetto, Ultra wideband wireless communication, John Wiley & Sons, Inc., 2006.
    [11] B. Razavi, Design considerations for direct-conversion receiver, IEEE Transations on Circuit and System, Vol.44, pp.428-435, 1990.
    [12] J. Crols and M.S.J. Steyaert, Low-IF topologies for high-performance analog front ends of fully integrated receivers, IEEE Transations on Circuits and Systems II: Analog and Digital Signal Processing, Vol.45, pp.269-282, 1998.
    [13] H.W. Su, B.Y. Chi and Z.H. Wang, System design considerations of highly-integrated DAB receiver RF front-end, IEEE Transations on Consumer Electronics, Vol.51, pp.1319-1325, 2005.
    [14]漆家国等,一种射频宽带接收机的设计,电视技术,第47卷,第2期,第88-91页, 2007年.
    [15]周建政等,宽带无线接收机射频前端结构研究与设计,应用科学学报,第26卷第2期,第155-161页, 2008年.
    [16] Y. T. Wang, F. Lu and A. A. Abidi,CMOS active filter design at very high frequency, IEEE Journal of Solid-state Circuits, Vol.25, pp.1562-1574, 1990.
    [17] A. A. Abidi, Direct-conversion radio transceivers for digital communications, IEEE Journal of Solid-state Circuits, Vol.30, pp.1399-1410, 1995.
    [18] L. W. Couch, Digital and analog communication system, Macmillan, New York, 1993.
    [19] S. A. Mass, Microwave mixers, Artech House, 1993.
    [20] Y. Lu, K. H. Huang and C. K. Wang, A 2.4GHz CMOS low-IF receiver front-end for WLAN applications, Analog Integrated Circuits and Signal Processing, Vol.32, pp.211-217, 2002.
    [21] J. T. Vaughan, D. N. Haupt, P. J. Noa and G. M. Pohost, RF front end for a 4.1 tesla clinical NMR spectrometer, IEEE Transactions on Nuclear Science, Vol.42, pp.1333-1337, 1995.
    [22] Adiseno, M. Ismail and H. Olsson, A wide-band RF front-end for multiband multistandard high-linearity low-IF wireless receivers, IEEE Journal of solid-state circuits, Vol.37, pp.1162-1168, 2002.
    [23] Y. Xu, C. Boone and L. T. Pileggi, Metal-mask configurable RF front-end circuits, IEEE Journal of Solid-state Circuits,, Vol. 37, pp.1347-1351, 2004.
    [24] M. M. Reja, A. Allam and I. M. Filanovsky, A new CMOS wideband RF front-end for multistandard low-IF wireless receivers, IEEE International Symposium on Circuits and Systems, Vol. 3, pp.2120-2123, 2005.
    [25] A. Fard and P. Andreani, A low-phase-noise wide-band CMOS quadrature VCO for multi-standard RF front-ends, IEEE Radio Frequency Integrated Circuits Symposium, pp.539-542, 2005.
    [26] P. Rossi, A. Liscidini, M. Brandolini and F. Svelto, A variable gain RF front-end, based on a voltage-voltage feedback LNA for multi-standard applications, IEEE Journal of Solid-state Circuits, Vol.40, pp.690-697, 2005.
    [27] C. Kim, Y. K. Jang and H. J. Yoo, Design of multi-standard (IEEE 802.1 la/b/g and WCDMA) RF front-end using reconfigurable mixer, International Conference on Consumer Electronics, pp.413-414, 2005.
    [28] S. Zheng, W. S. Chan and Y. M. Siu, RF multiple-input multiple-output switchless front-end, Electronics Letters, Vol.42, pp.1408-1409, 2006.
    [29] M. Ikebel, D. Ueo, H. Osabe, K. Inafune, E. Sano, M. Koutani, M. Ikeda and K. Mashiko, 7-GHz CMOS RF front-end monolithically integrated with inverted-F antenna for wireless sensor system, International Solid-state Sensors, Actuators and Microsystems Conference, pp.61-64, 2007.
    [30] A. Safarian, L. Zhou and P. Heydari, A current-equalized distributed receiver front-end for UWB direct conversion receivers, IEEE Custom Intergrated Circuits Conference (CICC), 2007.
    [31] J. Borremans, A. Bevilacqua, S. Bronckers, M. Dehan, M. Kuijk, P. Wambacq and J. Craninckx, A compact wideband front-end using a single-inductor dual-band VCO in 90nm digital CMOS, IEEE Journal of Solid-state Circuits, Vol.43, pp.2693-2705, 2008.
    [32] M. Bruno, M. Murdy, P. Perreault, A. M. Wyglinski and J. A. McNeill, Widely tunable RF transceiver front end for software-defined radio, IEEE Military Communications Conference, pp.1-6, 2009.
    [33] P. Simitsakis, Y. Papananos and E. S. Kytonaki, Design of a low voltage-low power 3.1~10.6GHz UWB RF front-end in a CMOS 65nm technology, IEEE Transactions on Circuits and Systems, Vol.57, pp.833-837, 2010.
    [34]黄国华,宽带接收机抗组合干扰问题分析,电视技术,第4期,第32-94页, 2004年.
    [35]刘大伟,宽带接收电调预选滤波器及射频前端的研究与实现,电子科技大学硕士论文, 2004年.
    [36]陈国宇,大动态范围宽带接收机射频前端设计与实现,哈尔滨工程大学硕士论文,2007年.
    [37]李玮,宽带数字T/R组件接收通道关键技术研究,电子科技大学硕士论文, 2009年.
    [38]康炜,宽带无线通信的射频技术,东南大学博士论文, 2009年.
    [39]冯立松,UWB系统零中频超宽带接收机设计,中国科学技术大学硕士论文,2010年.
    [40]杨静等,高效数字信道化IFM接收机的研究,电子科技大学学报,第34期,第4期,第444-447页, 2005年.
    [41]马云等,宽带雷达接收机数字下变频技术研究,现代雷达,第27卷,第10期,第72-78页, 2005年.
    [42]崔琪楣等,频域谱最优合并超宽带接收技术,北京邮电大学学报,第28卷,第5期,第98-101页, 2005年.
    [43]王鑫等,一种宽带数字信道化接收机设计,哈尔滨理工大学学报,第11卷,第6期,第125-132页, 2006年.
    [44]石远东等, DFT与FFT在宽带数字接收机中的应用,舰船电子对抗,第30卷,第1期,第108-112页, 2007年.
    [45]田玲等,超宽带射频接收机研制,电子学报,第35卷,第10期,第1838-1842页, 2007年.
    [46]谢裕进,基于多相滤波的宽带数字接收机的研究与FPGA实现,南京航空航天大学硕士论文, 2009年.
    [47]杨峰等,基于频域采样技术的超宽带数字接收机设计方法,第十四届全国青年通信学术会议, 2009年.
    [48]印茂伟等,一种改进引导式宽带数字接收机设计,传感器与微系统,第28卷,第2期,第100-103页, 2009年.
    [49] H. G. Schantz, A brief history of UWB antennas, IEEE Aerospace and Electronic Systems Magazine, Vol. 19, pp. 22-26, 2004.
    [50]钟顺时等,超宽带平面天线技术,电波科学学报,第22卷,第2期,第308-315页, 2007年.
    [51] M. J. Ammann, Square planar monopole antennas, IEE National Conference on Antenna and Propagation, pp.37-40, 1999.
    [52] M.J. Ammann, Control of the impedance bandwidth of wideband planar monopole antennas using a beveling technique, Microwave Optical Technology Letters, Vol.30, pp.229-232, 2001.
    [53] E. A. Daviu, M. C. Fabres, M. F. Bataller and A. V. Nogueira, Wideband double-fed planar monopole antennas, Electronics Letters, Vol.39, pp.1635-1636, 2003.
    [54] K. L. Wong, C. H. Wu and S.W. Su, Ultra-wideband square planar metal-plate monopole antenna with a trident-shaped feeding strip, IEEE Transactions on Antennas Propagation, Vol.53, pp.1262-1269, 2005.
    [55] J. Jung, W. Choi and J. Choi, A small wideband microstrip-fed monopole antenna, IEEE Microwave and Wireless Components Letters, vol.15, pp.703-705, October 2005.
    [56] Y. Y. Cui, Y. Q. Sun, Y. Li, H. C. Yang and X. L. Liao, Microstrip-fed monopole antenna for UWB application, International Symposium on Antennas, Propagation and EM Theory, pp.306-308, 2008.
    [57] J. Liang, L. Guo, C. C. Chiau, X. Chen and C. G. Parini, Study of CPW-fed circular disc monopole antenna for ultra wideband applications, IET Microwaves, Antennas and Propagation, Vol.152, pp. 520-526, December 2005.
    [58] X. L.Liang, S. S.Zhong and W. Wang, Elliptical planar monopole antenna with extremely wide bandwidth, Electronics Letters, Vol.42, pp.441-442, 2006.
    [59] Z. N. Chen, T. S. See and X. M. Qing, Small printed ultrawideband antenna with reduced ground plane effect, IEEE Transactions on Antennas and Propagation, Vol. 55, pp. 383-388, 2007.
    [60] H. D. Chen, Ground plane effects on the microstrip-line-fed broadband sleeve monopole antennas, IET Microwaves, Antennas & Propagation, Vol. 2, pp.601-605, 2008.
    [61] Y. W. Jang, Broadband cross-shaped micro-strip-fed slot antenna, Electronics Letters, Vol.36, pp.2056-2057, 2000.
    [62] Y. H. Suh and I. Park, A broadband eccentric annular slot antenna, IEEE Antennas and Propagation Society International Symposium, Vol.1, pp.94-97, 2001.
    [63] X. M. Qing, M. Y. W. Chia and X. H Wu, Wide-slot antenna for UWB applications, IEEE Antennas and Propagation Society International Symposium, Vol.1, pp.834-837, 2003.
    [64] L. Zhu, R. Fu and K. L. Wu, A novel broadband microstrip-fed wide slot antenna with double rejection zeros, IEEE Antennas and Wireless Propagation Letters, Vol.2, pp.194-196, 2003.
    [65] Y. F. Liu, K. L. Lau, Q. Xue and C. H. Chan, Experimental studies of printed wide slot antenna for wide-band applications, IEEE Antennas and Wireless Propagation Letters, Vol.3, pp.273-275, 2004.
    [66] H. D. Chen, J. S. Chen and J. N. Li, Ultra-wideband square-slot antenna, Microwave and Optical Technology Letters, Vol.48, pp.500-502, 2006.
    [67] S. Sadat, M. Fardis, F. Geran and G. Dadashzadeh, A compact microstrip square-ring slot antenna for UWB applications, Progress In Electromagnetics Research, PIER 67, pp.173-179, 2007.
    [68] A. Dastranj, A. Imani and M. N. Moghaddasi, Printed wide-slot antenna for wideband applications, IEEE Transactions on Antennas and Propagation, Vol.56, pp.3097-3102, 2008.
    [69] A. Dastranj, A. Imani and M. N. Moghaddasi, Printed wideslot antenna for wideband applications, IEEE Transaction on Antennas and Propagation, Vol.56, pp.3097-3102, 2008.
    [70] L. Zhang, Y. C. Jiao, K. Song and F. Sh. Zhang, A novel broadband CPW-fed asymmetrical slot antenna, Microwave and Optical Technology Letters, Vol.50, No.11, pp.2817-2820, 2008.
    [71] C. Y. Huang, C. C. Tsai and J. S. Kuo, Slot antenna for ultra wideband communications, Microwave and Optical Technology Letters, Vol.50, pp.616-617, 2008.
    [72] J. Y. Jan and J. W. Su, Bandwidth enhancement of a printed wide-slot antenna with a rotated slot, IEEE Transactions on Antennas and Propagation, Vol.53, pp.2111-2114, 2005.
    [73] J. Y. Jan and L. C. Wang, Printed wideband rhombus slot antenna with a pair of parasitic strips for multiband applications, IEEE Transactions on Antennas and Propagation, Vol.57, pp.1267-1270, 2009.
    [74] C. J. Wang and S. W. Chang, A technique of bandwidth enhancement for the slotantenna, IEEE Transactions on Antennas and Propagation, Vol.56, pp.3321-3324, 2008.
    [75] W. L. Chen, G. M. Wang and C. X. Zhang, Bandwidth enhancement of a microstrip-line-fed printed wide-slot antenna with a fractal-shaped slot, IEEE Transactions on Antennas and Propagation, Vol.57, pp.2176-2179, 2009.
    [76] S. I. Latif, S. K. Sharma and L. Shafai, Wideband microstrip monopole slot antenna, The 6th International Symposium on Antennas, Propagation and EM Theory, pp.54-57, 2003.
    [77] S. I. Latif and L. Shafai, Wideband and reduced size microstrip slot antennas for wireless applications, IEEE Antennas and Propagation Society International Symposium, Vol.2, pp.1959-1962, 2004.
    [78] W. S. Chen and K. Y. Ku, Broadband design of non-symmetric groundλ/4open slot antenna with small size, Microwave Journal, Vol.50, pp.110-121, 2007.
    [79] W. S. Chen and K. Y. Ku, Band-rejected design of the printed open slot antenna for WLAN/WiMAX operation, IEEE Transactions on Antennas and Propagation, Vol.56, pp.1163-1169, 2008.
    [80] W. S. Chen, F. Y. Lin and K. C. Yang, Studies of small open-slot antennas for wide-band applications, IEEE Antennas and Propagation Society International Symposium, pp.1-4, 2008.
    [81] S. Y. Lin and B. J. Ke, Ultrawideband printed patch antenna in notch, Microwave and Optical Technology Letters, Vol.51, pp.2080-2084, 2009.
    [82] H. Kim and C. W. Jung, Bandwidth enhancement of CPW fed tapered slot antenna with multi-transformation characteristics, Electronics Letters, Vol.46, pp.1050-1051, 2010.
    [83] J. S. Hong and M. J. Lancaster, Microstrip filters for RF/Microwave applications, John Wiley & Sons, Inc., 2001.
    [84] P. Jarry and J. Beneat, Advanced design techniques and realizations of microwave and RF filters, John Wiley & Sons, Inc., 2008.
    [85]微波滤波器设计手册,雷达资料编译组, 1972年.
    [86] G. C. Temes and S. K. Mitra, Modern filter theory and design, Wiley, 1973年.
    [87]甘本袯等,现代滤波器的结构与设计,科学出版社, 1973年.
    [88] D. Ahn, J. S. Park, J. S. Lim, C.S. Kim, D. Ahn, Y.C. Jeong and S. Nam, A design of low-pass filters using the novel microstrip defected ground structure, IEEE Transactions on Microwave Theory and Techniques, Vol.49, pp.86-93, 2001.
    [89] H. J. Choi, J. S. Lim and Y. C. Jeong, A new design of doherty amplifiers using defected ground structure, IEEE Microwave and Wireless Components Letters, Vol.16,pp.687-689, 2006.
    [90] S. M. Kang, J. H. Choi and K. H. Koo, Design of dualband wireless LAN transmitter using DGS, Journal of the institute of electronics engineers of Korea TC, Vol.43, pp.75-80, 2006.
    [91] X. Q. Chen, L. H. Weng, Y. C. Guo and X. W. Shi, RF circuit design integrated with microstrip DGS, Progress In Electromagnetics Research M, Vol.3, pp.141-152, 2008.
    [92] C. S. Kim, J. S. Park, D. Ahn and J. B. Lim, A novel 1-D periodic defected ground structure for planar circuits, IEEE Microwave Guided Wave Letters, Vol.10, pp.131-133, 2000.
    [93] J. S. Lim, C. S. Kim, D. Ahn, Y. C. Jeong and S. Nam, Design of low-pass filters using defected ground structure, IEEE Transactions on Microwave Theory and Techniques, Vol.53, pp.2539-2545, 2005.
    [94] X. Q. Chen, L. X. Wang and X. W. Shi, A novel compact low-pass filter using defected ground structure, Microwave and Optical Technology Letters, Vol.51, pp.792-795,2009.
    [95] H. W. Liu, T. Yoshimasu, S. Kurachi, W.L. Hu, K. Yomaoka and L. L. Sun, Compact slot resonator-based photonic bandgap for coplanar waveguide and its application to bandstop filter, Microwave and Optical Technology Letters, Vol.48, pp.1602-1606, 2006.
    [96] A. S. Mohra, Coupled microstrip line bandpass filter with harmonic suppession using right-angle triangle grooves, Microwave and Optical Technology Letters, Vol.51, pp.2313-2318, 2009.
    [97] Y. Liu, C. H. Liang and Y. J. Wang, Ultra-wideband bandpass filter using hybrid quasi-lumped elements and defected ground structure, Electronics Letters, Vol.45, pp.899-900, 2009.
    [98] L. Y. Ren and H. He, Wide stopband bandpass filter based on dual-plane microstrip-interdigital DGS slot structure, Electronics Letters, Vol.45, pp.1331-1332, 2009.
    [99] J. W. No and H. Y. Hwang, A design of cascaded CPW low-Pass filter with broad stopband, IEEE Microwave and Wireless Component Letters, Vol.17, pp.427-429, 2007.
    [100] S. Jung, Y. K. Lim and H. Y. Lee, A coupled-defected ground structure lowpass filter using inductive coupling for improved attenuation, Microwave and Optical Technology Letters, Vol.50, pp.1541-1543, 2008.
    [101] N. Yang, C. Caloz and K. Wu, Lowpass filter with slow-wave rail coplanar stripline(R-CPS), Electronics Letters, Vol.45, pp.895-897, 2009.
    [102] H. Y. Zeng, G. M. Wang, C. X. Zhang and L. Zhu, Compact microstrip lowpass filter using complementary split ring resonators with ultra-wide stopband and high selectivity, Microwave and Optical Technology Letters, Vol.52, pp.430-433, 2010.
    [103] S. H. Fu, C. M. Tong and K. Shen, An improved asymmetric defected ground structure cell and its application to lowpass filter, Microwave and Optical Technology Letters, Vol.51, pp.2933-2935, 2009.
    [104] M. K. Mandal, P. Mondal, S. Sanyal and A. Chakrabarty, Low insertion-loss, sharp-rejection and compact microstrip low-Pass filters, IEEE Microwave and Wireless Component Letters, Vol.16 , pp.600-602, 2006.
    [105] W. L. Chen, G. M. Wang and Y. N. Qi, Fractal-shaped Hi-Lo microstrip low-pass filters with high passband performance, Microwave and Optical Technology Letters, Vol.49, pp.2577-2579, 2007.
    [106] Q. J. He and C. J. Liu, A novel low-pass filter with an embedded band-stop structure for improved stopband characteristics, IEEE Microwave and Wireless Component Letters, Vol.19, pp.629-631, 2009.
    [107] J. T. Kuo, E. Shih and W. C. Lee, Design of bandpass filters with parallel three-line coupled microstrip, APMC, pp.157-160, 2001.
    [108] L. Zhu, S. Sun and W. Menzel, Ultralwide bandpass filters using multiple-mode resonator, IEEE Microwave and Wireless Components Letters, Vol.15, pp.796-798, 2005.
    [109] S. Sun and L. Zhu, Multiple resonator based bandpass filter, IEEE Microwave Magazine, Vol.10, pp.88-98, 2009.
    [110] J. Gao, L. Zhu, W. Menzel and F. B?gelsack, Short-circuited CPW multiple-mode resonator for ultra-wideband(UWB) bandpass filter, IEEE Microwave and Wireless Component Letters, Vol.16 , pp.104-106, 2006.
    [111] H. Wang, L. Zhu, W. Menzel and Z. N. Chen, Ultra-wideband (UWB) bandpass filters using hybrid microstrip/CPW Structures, Asia-Pacific Microwave Conference, pp.1216-1219, 2006.
    [112] S. Sun and L. Zhu, Wideband microstrip ring resonator bandpass filters under multiple resonances, IEEE Transactions on Microwave Theory and Techniques, Vol.55, pp.2176-2182, 2007.
    [113] K. Song and Y. Fan, Compact ultra-wideband bandpass filter using dual-line coupling structure, IEEE Microwave and Wireless Component Letters, Vol.19 , pp.30-32, 2009.
    [114] N. Thomson, and J. S. Hong, Compact ultra-wideband microstrip-coplanarwaveguide bandpass filter, IEEE Microwave and Wireless Component Letters, Vol.17, pp.184-186, 2007.
    [115] H. Shaman and J. S. Hong, A novel ultra-wideband (UWB) bandpass filter (BPF) with pairs of transmission zeroes, IEEE Microwave Wireless Component Letters, Vol. 17, pp. 121-123, 2007.
    [116] C. W. Tang and M. G. Chen, A microstrip ultra-wideband bandpass filter with cascaded broadband bandpass and bandstop filters, IEEE Transactions on Microwave Theory and Techniques, Vol.55, pp.2412-2418, 2007.
    [117] C. H. Wu, Y. S. Lin, C. H. Wang and C. H. Chen, A compact LTCC ultra-wideband bandpass filter using semi-lumped parallelresonance circuits for spurious suppression, The 37th European Microwave Conference, pp. 532-535, 2007.
    [118]郑秀云, X波段宽带频综源的研究,电子科技大学硕士学位论文, 2005年.
    [119]张健, S波段宽带低噪声频率综合器,制导与引信,第28卷,第1期,第57-60页, 2007年.
    [120]陈小清, 8-16GHz宽带跳频源的设计与实现,西南科技大学硕士论文, 2009年.
    [121]何锐,基于FPGA的微波超宽带频率源控制技术的研究,电子科技大学硕士论文, 2009年.
    [122]赵亚辉,微波高分辨率频率源与新型超宽带微带天线研究,东南大学硕士论文, 2009年.
    [123]涂轶凡,一种新型的超宽带细步进频率源设计,电视技术,第49卷,第5期,第71-73页, 2009年.
    [124]张厥盛等,锁相技术,西安电子科技大学出版社, 1994年.
    [125] D. Banerjee,PLL performance, simulation and design,Lucasta Maardt Press,2003.
    [126] (日)远坂俊昭著,何希才译,锁相环PLL电路设计与应用,科学出版社, 2006年.
    [127] K. L. Shu and E. Sanchez-Sinencio, CMOS PLL synthesizers: Analysis and design, Springer, 2007.
    [128] http://www.analog.com
    [129] http://www.national.com
    [130] http://www.hittite.com
    [131] http://focus.ti.com.cn/cn/tihome/docs/homepage.tsp
    [132] Y. M. Yang, Y. X. Zhang and Z. O. Zhou, High spectrum purity signal source applied in X-band radar frequency criterion generator, CIE International Conference on Proceedings, pp.912-915, 2001.
    [133]梁志霄等, X波段谐波混频频率合成器的设计,电讯技术,第1期,第1-3页, 2003年.
    [134]魏春林等,Ku波段宽带低噪声雷达频率源的研制,科学计算及信息处理,第6期,第130-132页, 2007年.
    [135]杨远望等,基于ADF4106的恒定环路带宽宽覆盖频合器设计,电子器件,第31卷,第6期,第1871-1875页, 2008年.
    [136] http://www.hbmmc.com
    [137] http://www.synergymwave.com
    [138] [美] J. E.斯蒂芬著,康士棣等译,接收系统设计,宇航出版社, 1991年.
    [139] W. F. EGAN, Practical RF system design, John Wiley & Sons, Inc., 2003.
    [140] Y. Zhang, RF/microwave system analysis for wideband radar/remote sensing, Environment and Remote Sensing Laboratory, University of Nebraska, Lincoln, 2003.
    [141] Q. Z. Gu, RF system design of transceivers for wireless communications, Springer, 2005.
    [142]梁昌洪,简计算微波,内部教材, 1985年.
    [143]刘长军等,射频通信电路设计,科学出版社, 2005年.
    [144]吕英华,计算电磁学的数值方法,清华大学出版社, 2006年.
    [145]哈林登,计算电磁的矩量法(中译本),国防工业出版社, 1981年.
    [146]葛德彪等,电磁波时域有限差分方法,西安电子科技大学出版社, 2002年.
    [147]谢拥军等, HFSS原理与工程应用,科学出版社, 2009年.
    [148]李润旗等,微波电路CAD软件应用技术[M],国防工业出版社, 1996年.
    [149]傅佳辉等,微波EDA电磁仿真软件评述[J],微波学报, 2004年.
    [150]徐兴福, ADS2008射频电路设计与仿真实现,电子工业出版社, 2009年.
    [151] J. Mark, N. Maxemchuk, R. Ziemer, D. Taylor and W. Tranter, On the self similar nature of ethernet traffic (Extended Version), IEEE Press, 2010.
    [152] N. Cohen, R. Hohlfeld, D. Moschella and P. Salkind, Fractal wideband antennas for software defined radio, UWB and multiple platform applications, Proceedings of Radio and Wireless Conference, pp.99-102, 2003.
    [153] V. Deepu, K. R. Rohith, J. Manoj, M. N. Suma, and P. Mohanan, Compact asymmetric coplanar strip fed monopole antenna for multiband applications, IEEE Transactions on Antennas and Propagation, Vol.55, pp.2351-2357, 2007.
    [154]陈立泽等,宽带大动态中频AGC系统实现,电子测量技术,第33卷,第11期,第211-213页, 2010年.
    [155] D. M. Pozar, Microwave Engineering, Wiley, Third Edition, 2005.
    [156] http://www.renesas.com
    [157]马场清太郎著,何希才译,运算放大器应用电路设计,科学出版社, 2007年.
    [158]王铭三等,通信对抗原理,解放军出版社, 1999年.
    [159]胡来招,雷达侦察接收机设计,国防工业出版社, 2000年.
    [160]胡来招,瞬时测频,国防工业出版社, 2002年.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700