用户名: 密码: 验证码:
青藏高原中部聂荣微陆块侏罗纪早期富碱侵入岩的岩石成因及构造意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聂荣微陆块在地理上位于现今的羌塘地块和拉萨地块之间,呈眼球状、近东西向分布于班公湖-怒江缝合带中段,南北两侧均有班公湖-怒江洋的蛇绿混杂岩残留,是青藏高原内部确定具有前寒武纪结晶基底的地区之一,对于研究班公湖-怒江洋在早中生代时期的构造岩浆演化具有重要价值。
     聂荣微陆块上大规模出露的侏罗纪早期岩体总体上呈岩基状侵位于新元古界变质岩和古生界碎屑岩地层中,且在露头上呈暗色包体和/或脉体与寄主花岗岩类共生的形式。侵入岩的锆石LA–ICP–MS U–Pb定年结果,在误差范围内基本可以分成~185 Ma和~175 Ma两组,说明研究区岩浆侵位活动主要有两期。早侏罗世中期(~185 Ma)侵入岩属于偏铝质-弱过铝质高钾钙碱性-钾玄质碱性系列的闪长岩、二长闪长岩、花岗闪长岩、二长花岗岩到碱长花岗岩;中侏罗世早期(~175 Ma)侵入岩属于偏铝质-过铝质钾玄质碱性-过碱性系列的基性碱性正长岩、碱性二长闪长岩到中性正长岩、闪长岩再到酸性二长花岗岩和碱长花岗岩。两期侵入岩均具有明显的富碱特征,在成因类型上主要是富碱的I-型花岗岩类;均富集轻稀土和大离子亲石元素,亏损高场强元素,同时,均具有富集的Nd同位素和Sr同位素以及古老的Nd模式年龄;并且均属高温低压岩石系列。加之其锆石Hf同位素所表现出的显著不均一性,指示两期侵入体均形成于一个包含有地壳重熔、岩浆混合、围岩混染、结晶分异在内的复杂的,并且涉及到古老基底(占较大比例)和富集岩石圈地幔甚至是亏损地幔的多组分的、幔源物质参与程度逐渐增强的连续演化岩浆作用过程。
     结合区域同时期变质沉积作用的研究成果,聂荣微陆块侏罗纪早期富碱侵入岩是在后碰撞伸展背景下,由被动陆缘的复杂壳幔相互作用产生的。早侏罗世中期侵入岩的形成标志着班怒洋壳北向俯冲作用、聂荣微陆块-羌塘地块对接碰撞作用的结束和后碰撞作用的开始;而中侏罗世早期侵入岩,特别是超基性、过碱性岩的形成则标志着板片的彻底断离和后碰撞作用时期的最终结束。
Nyainrong Microcontinent located geographically between the present-dayQiangtang and Lhasa Terranes, and sandwiched by ophiolitic fragments ofBangong-Nujiang suture zone both in its north and south, comprises one of the fewexposures of metamorphosed crystalline basement in Tibet Plateau. And bounded bywhich, the north(Qiangtang) and south(Lhasa) sides of the Bangong-Nujiang suturezone show very distinct geologic features, making the Nyainrong microcontinent to bean ideal object for regional research on many geological problems, especially theEarly Mesozoic tectonomagmatic evolution of the Bangong-Nujiang Ocean.
     The widespread, generally undeformed early Jurassic intrusions intrude in theNeoproterozoic gneiss and the Paleozoic clasolites in the Microcontinent, withmultiple exposed mafic enclaves and host granitoid. Zircon LA-ICP-MS U-Pb datingdata accordant within the range of the sampling errors, yields two main magmaemplacement eras of ~185 Ma and ~175 Ma. Moreover, the dioritic and felsic magmaemplacement are coeval in ~185 Ma, and the mafic and the felsic are coeval in ~175Ma also.
     The ~185 Ma intrusions of Nyainrong pluton are metaluminous to aluminous,and high-K calc-alkaline to shoshonitic-alkaline, ranging from diorite toalkali-feldspar-granite in composition. While, the ~175 Ma intrusions form part of ashoshonitic-alkaline to peralkaline that ranges in composition from maficalkali-syenite to intermediate monzodiorite and to felsic alkali-granite, with bimodalSiO2contents from metaluminous to peraluminous. They are all significantlycharacteristic of high potassic and high alkalic contents, and are petrogenetic mainlyin I-type series. They are all enriched in LREEs and LILEs but depleted in HFSEs,along with the Eu depletion. Meanwhile, they all have the negative bulk isotopicεNd(t)and zirconεHf(t) values corresponding to the ancient Nd-Hf model ages. And ofparticular note is the variation of the zircon Hf isotopic results are all extremely large,indicating the heterogeneous magma source.
     Based on the magmatic sequence, petrography, mineralogy, major and traceelement geochemical, bulk rock Sr-Nd isotopic data and zircon Hf isotopiccompositions of Nyainrong pluton, the early Jurassic emplacement magmasource(both the ~185 Ma period and the ~175 Ma period) having both highertemperature and lower pressure turns out to be comagmatic, and subsequent to undergo similar evolutionary process, which is a complex stage process involvingcrustal anatexis, magma mixing, crystal fractionation, and wall rock assimilation ofthe ancient mature crustal(significant input) and enriched lithospheric mantle even asthe depleted mantle sources proposed for the petrogenesis of the early JurassicNyainrong pluton. Besides, during this tectonomagmatic process with multiplemagma sources, the involved mantle derived materials are increased or enhanced withage from ~185 Ma to ~175 Ma.
     The data reported here, in combination with other diversified literatures aboutcoeval metamorphism-sedimentation of the research region, illustrate that the earlyJurassic shoshonitic and alkaline intrusions in Nyainrong Microcontinent are theproducts of the distinctive post-collisional magmatism along with intensifiedcrustal-mantle interactions in a passive margin due to northward subduction ofBangong-Nujiang oceanic lithosphere and the consequent Nyainrong-Qiangtangcollision.
     Furthermore, the middle early Jurassic(~185 Ma) magmatism marks the end ofthe Nyainrong-Qiangtang collision and the start of the post-collision and regionalextension; while the early middle Jurassic(~175 Ma) magmatism, especially theemergence of the mafic peralkalic intrusions, is in response to the finalpost-collisional stage which should be compatible with the slab thoroughly break-offand hot asthenospheric upwelling.
引文
Abdel-Rahman AFM. Nature of Biotites from Alkaline, Calc-alkaline, and Peraluminous Magmas.Journal of Petrology, 1994, 35(2): 525 541.
    Abdelsalam MG, Liégeois JP and Stern RJ. The Saharan Metacraton. Journal of African EarthSciences, 2002, 34(3–4): 119–136.
    Ahmadi-Khalaji A, Esmaeily D, Valizadeh MV, et al. Petrology and geochemistry of the granitoidcomplex of Boroujerd-Sanandaj-Sirjan Zone, western Iran. Journal of Asian Earth Sciences,2007, 29(5–6): 859–877.
    Allégre CJ, Courtillot V, Tapponnier P, et al. Structure and evolution of the Himalaya-Tibetorogenic belt. Nature, 1984, 307: 17–22.
    Altherr R, Holl A, Hegner E, et al. High-potassium, calcalkaline I-type plutonism in the EuropeanVariscides: northern Vosges (France) and northern Schwarzwald (Germany). Lithos, 2000,50(1–3): 51–73.
    Anderson JL and Smith DR. The effect of temperature and oxygen fugacity on Al-in-hornblendebarometry. American Mineralogist, 1995, 80: 549 559.
    Anderson JL. Status of thermobarometry in granitic batholiths. Transactions of the Royal Societyof Edinburgh: Earth Sciences, 1996, 87: 125 138.
    Avanzinelli R, Lustrino M, Mattei M, et al. Potassic and ultrapotassic magmatism in thecircum-Tyrrhenian region: Significance of carbonated pelitic vs. pelitic sediment recycling atdestructive plate margins. Lithos, 2009, 113(1–2): 213–227.
    Azman AG. Petrology and geochemistry of granite and syenite from Perhentian Island, PeninsularMalaysia. Geosciences Journal, 2001, 5(2): 123–137.
    Bao PS, Xiao XC, Li S, et al. Petrological, geochemical and chronological constraints for thetectonic setting of the Dongco ophiolite in Tibet. Science in China (Series D: Earth Sciences),50(5): 660 671.
    Barbarin B. A review of the relationships between granitoid types, their origins and theirgeodynamic environments. Lithos, 1999, 46(3): 605–626.
    Barbarin B. Mafic magmatic enclaves and mafic rocks associated with some granitoids of thecentral Sierra Nevada batholith, California: nature, origin, and relations with the hosts. Lithos,2005, 80(1–4): 155–177.
    Barker F, Wones DR, Sharp WN, et al. The Pikes Peak batholith, Colorado front range, and amodel for the origin of the gabbro-anorthosite-syenite-potassic granite suite. PrecambrianResearch, 1975, 2(2): 97–160.
    Barth MG, McDonough WF and Rudnick RL. Tracking the budget of Nb and Ta in the continentalcrust. Chemical Geology, 2000, 165: 197–213.
    Baxter AT, Aitchison JC and Zyabrev SV. Radiolarian age constraints on Mesotethyan oceanevolution, and their implications for development of the Bangong-Nujiang suture, Tibet.London: Journal of the Geological Society, 2009, 166: 689–694.
    Belousova EA, Griffin WL, O’Reilly SY, et al. Igneous Zircon: Trace Element Composition as anIndicator of Source Rock Type. Contributions to Mineralogy and Petrology, 2002, 143:602 622.
    Black R and Liégeois JP. Cratons, mobile belts, alkaline rocks and continental lithospheric mantle:the Pan-African testimony. London: Journal of the Geological Society, 1993, 150: 89–98.
    Black R, Lameyre J and Bonin B. The structural setting of alkaline complexes. Journal of AfricanEarth Sciences, 1985, 3(1–2): 5–16.
    Blichert-Toft J and Albarède F. The Lu-Hf isotope geochemistry of chondrites and the evolution ofthe mantle-crust system. Earth and Planetary Science Letters, 1997, 148: 243 258.
    Blundy JD and Holland TJB. Calcic amphibole equilibria and a new amphibole-plagioclasegeothermometer. Contributions to Mineralogy and Petrology, 1990, 104(2): 208 224.
    Bolhar R, Weaver SD, Whitehouse MJ, et al. Sources and evolution of arc magmas inferred fromcoupled O and Hf isotope systematics of plutonic zircons from the Cretaceous SeparationPoint Suite (New Zealand). Earth and Planetary Science, 2008, 268: 312 324.
    Bonin B, Azzouni-Sekkal A, Bussy F, et al. Alkali-calcic and alkaline post-orogenic (PO) granitemagmatism: petrologic constraints and geodynamic settings. Lithos, 1998, 45(1–4): 45–70.
    Bonin B. A-type granites and related rocks: Evolution of a concept, problems and prospects.Lithos, 2007, 97(1–2): 1–29.
    Bonin B. Do coeval mafic and felsic magmas in post-collisional to within-plate regimesnecessarily imply two contrasting, mantle and crustal, sources? A review. Lithos, 2004,78(1–2): 1–24.
    Bonin B. From orogenic to anorogenic settings: evolution of granitoid suites after a majororogenesis. Geological Journal, 1990, 25(3–4): 261–270.
    Boullier AM, Liégeois JP, Black R, et al. Late Pan-African tectonics marking the transition fromsubduction-related calc-alkaline magmatism to within-plate alkaline granitoids (Adrar desIforas Mali). Tectonophys, 1986, 132(1–3): 233–246.
    Brotzu P, Gomes CB, Melluso L, et al. Petrogenesis of coexisting SiO2–undersaturated toSiO2–oversaturated felsic igneous rocks: the alkaline complex of Itatiaia, southeastern Brazil.Lithos, 1997, 40(1–2): 133–156.
    Brotzu P, Melluso L, Bennio L, et al. Petrogenesis of the Early Cenozoic potassic alkalinecomplex of Morro de S o Jo o, southeastern Brazil. Journal of South American EarthSciences, 2007, 24(1): 93–115.
    Brown GC, Thorpe RS and Webb PC. The geochemical characteristics of granitoids in contrastingarcs and comments on magma sources. Journal of the Geological Society, 1984, 141(3):413 426.
    Brown PE and Becker SM. Fractionation, hybridisation and magma-mixing in the Kialineq centreEast Greenland. Contributions to Mineralogy and Petrology, 1986, 92(1): 57–70.
    Burke K, Ashwal LD and Webb SJ. New way to map old sutures using deformed alkaline rocksand carbonatites. Geology, 2003, 31: 391–394.
    Cawood PA, Johnson MRW and Nemchin AA. Early Palaeozoic orogenesis along the Indianmargin of Gondwana: Tectonic response to Gondwana assembly. Earth and Planetary ScienceLetters, 2007, 255(1 2): 70 84.
    Chappell BW and White AJR. I-and S-type granites in the Lachlan Fold Belt. Trans. Royal Soc.Edinburgh: Earth Sci., 1992, 83: 1 26.
    Chappell BW, White AJR and Wyborn D. The importance of residual source material (restite) ingranite petrogenesis. J Petrol, 1987, 28: 1111 1138.
    Chappell BW. Aluminium saturation in I- and S-type granites and the characterization offractionated haplogranites. Lithos, 1999, 46: 535 551.
    Chen B, Tiana W, Jahna BM, et al. Zircon SHRIMP U-Pb ages and in-situ Hf isotopic analysis forthe Mesozoic intrusions in South Taihang, North China craton: Evidence for hybridizationbetween mantle-derived magmas and crustal components. Lithos, 2008, 102(1–2): 118–137.
    Chen JF, Xie Z, Li HM, et al. U-Pb zircon ages for a collision-related K-rich complex at Shidao inthe Sulu ultrahigh pressure terrane, China. Geochemical Journal, 2003, 37: 35–46.
    Cherniak DJ, Hanchar JM and Watson EB. Diffusion of tetravalent cations in zircon.Contributions to Mineralogy and Petrology, 1997, 127(4): 383 390.
    Chu MF, Chung SL, Song B, et al. Zircon U-Pb and Hf isotope constraints on the Mesozoictectonics and crustal evolution of southern Tibet. Geology, 2006, 34(9): 745–748.
    Chung SL, Chu MF, Ji JQ, et al. The nature and timing of crustal thickening in Southern Tibet:Geochemical and zircon Hf isotopic constraints from postcollisional adakites. Tectonophysics,2009, 477: 36–48.
    Chung SL, Chu MF, Zhang YQ, et al. Tibetan tectonic evolution inferred from spatial andtemporal variations in post-collisional magmatism. EarthScience Reviews, 2005, 68(3–4):173–196.
    Chung SL, Liu DY, Ji JQ, et al. Adakites from continental collision zones: Melting of thickenedlower crust beneath southern Tibet. Geology, 2003, 31(11): 1021–1024.
    Clemens JD, Holloway JR and White AJR. Origin of an A-type granite: experimental constraints.American Mineralogist, 1986, 71(3–4): 317–324.
    Collins WJ, Beams SD, White AJR, et al. Nature and origin of A-type granites with particularreference to southeastern Australia. Contributions to Mineralogy and Petrology, 1982, 80(2):189–200.
    Collins WJ. Evaluation of petrogenetic models for Lachlan Fold Belt granitoids: Implications forcrustal architecture and tectonic models. Aust J Earth Sci, 1998, 45: 483 500
    Concei o RV and Green DH. Derivation of potassic (shoshonitic) magmas by decompressionmelting of phlogopite+pargasite lherzolite. Lithos, 2004, 72(3–4): 209–229.
    Conticelli S, Guarnieri L, Farinelli A, et al. Trace elements and Sr-Nd-Pb isotopes of K-rich,shoshonitic, and calc-alkaline magmatism of the Western Mediterranean Region: Genesis ofultrapotassic to calc-alkaline magmatic associations in a post-collisional geodynamic setting.Lithos, 2009, 107(1–2): 68–92.
    Copeland P, Harrison TM, Pan Y, et al. Thermal evolution of the Gangdese batholith, southernTibet: A history of episodic unroofing. Tectonics, 1995, 14(2): 223–236.
    Copley A, Avouac JP and Wernicke BP. 2011. Evidence for mechanical coupling and strong Indianlower crust beneath southern Tibet. Nature, 472: 79 81.
    Coulon C, Maluski H, Bollinger C, et al. Mesozoic and cenozoic volcanic rocks from central andsouthern Tibet:39Ar–40Ar dating, petrological characteristics and geodynamical significance.Earth and Planetary Science Letters, 1986, 79(3–4): 281–302.
    Coward MP, Kidd WSF, Pan Y, et al. The Structure of the 1985 Tibet Geotraverse, Lhasa toGolmud. Philosophical Transactions of the Royal Society of London. Series A, Mathematicaland Physical Sciences, 1988, 327(1594): 307–333.
    Currie KL. New ideas on an old problem: the peralkaline rocks. Geol. Soc. India. Memoir, 1989,15: 117–136.
    Davis JH and Blackenourg FV. Slab breakoff: A model of lithosphere detachment and its test in themagmatism and deformation of collisional orogenics. Earth and Planetary Science Letters,1995, 129(1–4): 327–343.
    DeCelles PG, Kapp P, Ding L, et al. Late Cretaceous to middle Tertiary basin evolution in thecentral Tibetan Plateau: Changing environments in response to tectonic partitioning,aridification, and regional elevation gain. Geological Society of America Bulletin, 2007,119(5–6): 654–680.
    DeLong SE, Hodges FN and Arculus RJ. Ultramafic and mafic inclusions, Kanaga island, Alaska,and the occurrence of alkaline rocks in island arcs. Journal of Geology, 1975, 83(6):721–736.
    Deng JF, Su SG, Mo XX, et al. The Sequence of Magmatic-Tectonic Events and OrogenicProcesses of the Yanshan Belt, North China. Acta Geologica Sinica (English Edition), 2004,78(1): 260–266.
    Deng WM. Cenozoic volcanism and intraplate subduction in northern margin of the Tibetanplateau. Chin J Geochem, 1991, 10(2): 140–152.
    DePaolo DJ. Neodymium isotopes in the Colorado Front Range and crust-mantle evolution in theProterozoic. Nature, 1981, 291: 193 196.
    Dewey JF, Shackleton RM, Chang CF, et al. The Tectonic Evolution of the Tibetan Plateau.Philosophical Transactions of the Royal Society of London. Series A, Mathematical andPhysical Sciences, 1988, 327(1594): 379–413.
    Ding L, Kapp P, Yue YH, et al. Postcollisional calc-alkaline lavas and xenoliths from the southernQiangtang terrane, central Tibet. Earth and Planetary Science Letters, 2007, 254(1 2): 28 38.
    Ding L, Kapp P, Zhong DL, et al. Cenozoic Volcanism in Tibet: Evidence for a Transition fromOceanic to Continental Subduction. Journal of Petrology, 2003, 44(10): 1833–1865.
    Dong CY, Li C, Wan YS, et al. Detrital zircon age model of Ordovician Wenquan quartzite southof Lungmuco-Shuanghu Suture in the Qiangtang area, Tibet: Constraint on tectonic affinityand source regions. Science China Earth Sciences, 2011b, 54(7): 1034 1042.
    Dong GC, Mo XX, Zhao ZD, et al. Geochronologic Constraints on the Magmatic Underplating ofthe GangdisêBelt in the India-Eurasia Collision: Evidence of SHRIMP II Zircon U-PbDating. Acta Geologica Sinica (English Edition), 2005, 79(6): 787–794.
    Dong X, Zhang ZM and Santosh M. Zircon U Pb Chronology of the Nyingtri Group, SouthernLhasa Terrane, Tibetan Plateau: Implications for Grenvillian and Pan-African Provenance andMesozoic-Cenozoic Metamorphism. Journal of Geology, 2010, 118: 677 690.
    Dong X, Zhang ZM, Santosh M, et al. Late Neoproterozoic thermal events in the northern Lhasaterrane, south Tibet: Zircon chronology and tectonic implications. Journal of Geodynamics,2011a, 52(5): 389 405.
    Dorais MJ, Whitney JA and Roden MF. Origin of Mafic Enclaves in the Dinkey Creek Pluton,Central Sierra Nevada Batholith, California. Journal of Petrology, 1990, 31(4): 853–881.
    Duchesne JC, Berza T, Liégeois JP, et al. Shoshonitic liquid line of descent from diorite to granite:the Late Precambrian post-collisional Tismana pluton (South Carpathians, Romania). Lithos,1998, 45(1–4): 281–303.
    Duretz T, Gerya TV and May DA. Numerical modelling of spontaneous slab breakoff andsubsequent topographic response. Tectonophysics, 2011, 502(1 2): 244 256.
    Eby GN. Chemical subdivision of the A-type granitoids: Petrogenetic and tectonic implications.Geology, 1992, 20(7): 641–644.
    Eklund O, Konopelko D, Rutanen H, et al. 1.8Ga Svecofennian post-collisional shoshoniticmagmatism in the Fennoscandian shield. Lithos, 1998, 45(1–4): 87–108.
    England PC and Houseman GA. Extension during continental convergence, with application to theTibetan plateau. Journal of Geophysical Research, 1989, 94(B12): 17561–17579.
    Farmer GL. Continental basaltic rocks. In: Rudnick RL, (eds). The crust. Treatise on Geochemistry.Oxford: Elsevier-Pergamon, 2003, V3: 85 122.
    Feldstein SN and Lange RA. Pliocene potassic magmas from the Kings River Region, SierraNevada, California: evidence for melting of a subduction modified mantle. Journal ofPetrology, 1999, 40(8): 1301–1320.
    Fitton JG. The Cameroon line, West Africa: a comparison between oceanic and continentalalkaline volcanism. London: Geological Society. Special Publications, 1987, 30: 273–291.
    Foley SF and Peccerillo A. Potassic and ultrapotassic magmas and their origin. Lithos, 1992,28(3–6): 181–185.
    Foley SF, Venturelli G, Green DH, et al. The ultrapotassic rocks: Characteristics, classification,and constraints for petrogenetic models. Earth-Science Reviews, 1987, 24(2): 81–134.
    Foley SF. Petrological characterization of the source components of potassic magmas:geochemical and experimental constraints. Lithos, 1992, 28(3–6): 187–204.
    Frost BR, Barnes CG, Collins WJ, et al. A Geochemical Classification for Granitic Rocks. Journalof Petrology, 2001, 42(11): 2033–2048.
    Furman T and Graham D. Erosion of lithospheric mantle beneath the East African Rift system:geochemical evidence from the Kivu volcanic province. Developments in Geotectonics, 1999,24: 237–262.
    Gao R, Lu ZW, Li QS, et al. Geophysical survey and geodynamic study of crust and upper mantlein the Qinghai-Tibet Plateau. Episodes, 2005, 28(4): 263–273.
    Girardeau J, Marcoux J, Allègre CJ, et al. Tectonic environment and geodynamic significance ofthe Neo-Cimmerian Donqiao ophiolite, Bangong-Nujiang suture zone, Tibet. Nature, 1984,307: 27–31.
    Goolaerts A, Mattielli N, De Jong J, et al. Hf and Lu isotopic reference values for the zirconstandard 91500 by MC ICP MS. Chemical Geology, 2004, 206: 1 9.
    Griffin WL, Pearson NJ, Belousova E, et al. The Hf isotope composition of cratonic mantle:LA MC ICPMS analysis of zircon megacrysts in kimberlites. Geochimica et CosmochimicaActa, 2000, 64: 133 147.
    Grimes CB, John BE, Kelemen PB, et al. Trace element chemistry of zircons from oceanic crust:A method for distinguishing detrital zircon province. Geology, 2007, 35(7): 643 646.
    Guan Q, Zhu DC, Zhao ZD, et al. Crustal thickening prior to 38 Ma in southern Tibet: Evidencefrom lower crust-derived adakitic magmatism in the Gangdese Batholith. GondwanaResearch, 2012, 21(1): 88–89.
    Guo ZF, Wilson M and Liu JQ. Post-collisional adakites in south Tibet: Products of partial meltingof subduction-modified lower crust. Lithos, 2007, 96(1-2): 205–224.
    Guynn JH. U Pb Zircon dating and40Ar/39Ar Thermochronology of the Amdo Gneiss, CentralTibet. Tectonics (Posters) I: Strike-slip, Extension, Alpine-Himalayan Tectonics. SeattleAnnual Meeting, 2003.
    Guynn JH, Kapp P and Gehrels G. Metamorphism and exhumation of the Amdo basement, Tibet:Implications for the Jurassic tectonics of the Bangong suture zone. Manuscript for submissionto Journal of Metamorphic Geology. A Dissertation Submitted to the Faculty of theDepartment of Geosciences in Partial Fulfillment of the Requirements for the Degree ofdoctor of philosophy in the Graduate College. The university of Arizona, 2006c, 74–144.
    Guynn JH, Kapp P, Gehrels G, et al. U Pb geochronology of basement rocks in central Tibet andpaleogeographic implications. Journal of Asian Earth Sciences, 2012, 43(1): 23 50.
    Guynn JH, Kapp P, Gehrels G, et al. U Pb Geochronology of Basement Rocks in Central Tibetand Paleogeographic Implications. A Dissertation Submitted to the Faculty of the Departmentof Geosciences in Partial Fulfillment of the Requirements for the Degree of doctor ofphilosophy in the Graduate College. The university of Arizona, 2006b, 226–270.
    Guynn JH, Kapp P, Pullen A, et al. Tibetan basement rocks near Amdo reveal‘‘missing’’Mesozoictectonism along the Bangong suture, central Tibet. Geology, 2006a, 34(6): 505–508.
    HadjKaddour Z, Liégeois JP, Demaiffe D, et al. The alkaline-peralkaline granitic post-collisionalTin Zebane dyke swarm (Pan-African Tuareg shield, Algeria): prevalent mantle signature andlate agpaitic differentiation. Lithos, 1998, 45: 223–243.
    Haines SS, Klemperer SL, Brown L, et al. INDEPTH III seismic data: From surface observationsto deep crustal processes in Tibet. Tectonics, 2003, 22(1): 1001.
    Harris NBW, Inger S and Xu RH. Cretaceous plutonism in Central Tibet: an example ofpost-collision magmatism? Journal of Volcanology and Geothermal Research, 1990, 44(1–2):21–32.
    Harris NBW, Pearce JA and Tindle AG. Geochemical characteristics of collision-zone magmatism.London: Geological Society. Special Publications, 1986, 19: 67 81.
    Harrison TM and Watson EB. Zircon saturation revisited: temperature and composition effects in avariety of crustal magma types. Earth and Planetary Science Letters, 1983, 64: 295–304.
    Harrison TM, Watson EB and Aikman AB. Temperature spectra of zircon crystallization inplutonic rocks. Geology, 2007, 35(7): 635–638.
    He JG, Zhou YZ, Yang ZJ, et al. Geological and Geochemical characteristics and relatedMineralization of chert formations in South Tibet. Geotectonica et Metallogenia, 2005, 29(2):107–115.
    He SD, Kapp P, DeCellesa PG, et al. Cretaceous-Tertiary geology of the Gangdese Arc in theLinzhou area, southern Tibet. Tectonophysics, 2007, 433(1): 15–37.
    He SP, Li RS, Wang C, et al. Discovery of ~4.0 Ga detrital zircons in the Changdu Block, NorthQiangtang, Tibetan Plateau. Chinese Science Bulletin, 2011, 56(7): 647 658.
    Hibbard MJ. The magma mixing origin of mantled feldspars. Contrib. Mineral. Petrol., 1981, 76:158–170.
    Hofmann AW, Jochum KP, Seufert M, et al. Nb and Pb in oceanic basalts: new constraints onmantle evolution. Earth and Planetary Science Letters, 1986, 79(1 2): 33 45.
    Hofmann AW. Chemical differentiation of the Earth: the relationship between mantle, continentalcrust, and oceanic crust. Earth and Planetary Science Letters, 1988, 90(3): 297–314.
    Holden P, Halliday AN and Stephens WE. Neodymium and strontium isotope content ofmicrodiorite enclaves points to mantle input to granitoid production. Nature, 1987, 330:53 56.
    Holland T and Blundy J. Non-ideal interactions in calcic amphiboles and their bearing onamphibole-plagioclase thermometry. Contributions to Mineralogy and Petrology, 1994,116(4): 433–447.
    Hollister LS, Grissom GC, Peters EK, et al. Confirmation of the empirical correlation of Al inhornblende with pressure of solidification of calc-alkaline plutons. American Mineralogist,1987, 72: 231 239.
    Holtz F and Johannes W. Maximum and minimum water contents of granitic melts: implicationsfor chemical and physical properties of ascending magmas. Lithos, 1994, 32(1 2): 149 159.
    Hoskin P and Schaltegger U. In: Manchar JM, Hoskin PWO, (eds.). The composition of zirconand igneous and metamorphic petrogenesis. Earth and Planetary Science Letters, 2003, 220:139 155.
    Hoskin PWO and Black LP. Metamorphic zircon formation by solid-state recrystallization ofprotolith igneous zircon. Journal of Metamorphic Geology, 2000, 18: 423 439.
    Hou ZQ, Gao YF, Qu XM, et al. Origin of adakitic intrusives generated during mid-Mioceneeast-west extension in southern Tibet. Earth and Planetary Science Letters, 2004, 220:139–155.
    Hu DG, Wu ZH, Jiang W, et al. 2005. SHRIMP zircon U Pb age and Nd isotopic study on theNyainqêntanglha Group in Tibet. Science in China (Series D: Earth Sciences), 48(9):1377 1386.
    Hu ZC, Gao S, Liu YS, et al. Signal enhancement in laser ablation ICP MS by addition ofnitrogen in the central channel gas. Journal of Analytical Atomic Spectrometry, 2008, 23:1093 1101.
    Ji WQ, Wu FY, Chung SL, et al. Zircon U Pb geochronology and Hf isotopic constraints onpetrogenesis of the Gangdese batholith, southern Tibet. Chemical Geology, 2009, 262:229 245.
    Ji WQ, Wu FY, Liu CZ, et al. Early Eocene crustal thickening in southern Tibet: New age andgeochemical constraints from the Gangdese batholith. Journal of Asian Earth Sciences, 2011,In Press, doi:10.1016/j.jseaes.2011.08.020.
    Jiang YH, Jin GD, Liao SY, et al. Geochemical and Sr-Nd-Hf isotopic constraints on the origin ofLate Triassic granitoids from the Qinling orogen, central China: Implications for a continentalarc to continent-continent collision. Lithos, 2010, 117(1 4): 183 197.
    Jochum KP and Hofmann AW. Constraints on earth evolution from antimony in mantle-derivedrocks. Chemical Geology, 1997, 139(1–4): 39–49.
    Johnson MC and Rutherford MJ. Experimental calibration of the aluminum-in-hornblendegeobarometer with application to Long Valley caldera (California) volcanic rocks. Geology,1989, 17(9): 837 841.
    Jung S, Hoffer E and Hoernes S. Neo-Proterozoic rift-related syenites (Northern Damara Belt,Namibia): geochemical and Nd-Sr-Pb-O isotope constraints for mantle sources andpetrogenesis. Lithos, 2007, 96(3–4): 415–435.
    Kapp JLD, Harrison M, Kapp P, et al. Nyainqentanglha Shan: a window into the tectonic, thermal,and geochemical evolution of the Lhasa block, southern Tibet. Journal of GeophysicalResearch, 2005b, 110: B08413.
    Kapp P, DeCelles PG, Gehrels GE, et al. Geological records of the Lhasa-Qiangtang andIndo-Asian collisions in the Nima area of central Tibet. Geological Society of AmericaBulletin, 2007, 119(7–8): 917–933.
    Kapp P, Murphy MA, Yin A, et al. Mesozoic and Cenozoic tectonic evolution of the Shiquanhearea of western Tibet. Tectonics, 2003a, 22(4): 1029.
    Kapp P, Yin A, Harrison TM, et al. Cretaceous-Tertiary shortening, basin development, andvolcanism in central Tibet. Geological Society of America Bulletin, 2005a, 117(7–8):865–878.
    Kapp P, Yin A, Manning CE, et al. Tectonic evolution of the early Mesozoic blueschist-bearingQiangtang metamorphic belt, central Tibet. Tectonics, 2003b, 22(4): 1043.
    Karmalkar NR, Rege S, Griffin WL, et al. Alkaline magmatism from Kutch, NW India:implications for plume-lithosphere interaction. Lithos, 2005, 8(1–4): 101–119.
    Kay RW and Kay SM. Delamination and delamination magmatism. Tectonophysics, 1993,219(1 3): 177 189.
    Kaymakci N, Aldanmaz E, Langereis C, et al. Late Miocene transcurrent tectonics in NW Turkey:evidence from palaeomagnetism and40Ar–39Ar dating of alkaline volcanic rocks. GeologicalMagazine, 2007, 144(2): 379–392.
    Kemp AIS, Hawkesworth CJ, Foster GL, et al. Magmatic and crustal differentiation history ofgranitic rocks from Hf O isotopes in zircon. Science, 2007, 315: 980 983.
    Keto LS and Jacobsen SB. 1987. Nd and Sr isotopic variations of Early Paleozoic oceans. EarthPlanet Science Letters, 84: 27 41.
    Killian R and Stern CR. Constraints on the interaction between slab melts and the mantle wedgefrom adakitic glass in peridotite xenoliths. European Journal of Mineralogy, 2002, 14: 25–36.
    King PL, White AJR, Chappell BW, et al. Characterization and Origin of Aluminous A-typeGranites from the Lachlan Fold Belt, Southeastern Australia. Journal of Petrology, 1997,38(3): 371–391.
    Klein EM. Geochemistry of the igneous oceanic curst. In: Rudnick RL, (eds). The crust. Treatiseon Geochemistry. Oxford: Elsevier-Pergamon, 2003, V3: 433 464.
    Kosarev G, Kind R, Sobolev SV, et al. Seismic evidence for a detached Indian lithosphere mantlebeneath Tibet. Science, 1999, 283: 1306 1309.
    Küster D and Harms U. Post-collisional potassic granitoids from the southern and northwesternparts of the Late Neoproterozoic East African Orogen: a review. Lithos, 1998, 45(1–4):177–195.
    Lan TG, Fan HR, Santosh M, et al. Geochemistry and Sr–Nd–Pb–Hf isotopes of the MesozoicDadian alkaline intrusive complex in the Sulu orogenic belt, eastern China: Implications forcrust-mantle interaction. Chemical Geology, 2011, 285: 97–114.
    Leake BE, Woolley AR, Arps CES, et al. Nomenclature of Amphiboles: Report of theSubcommittee on Amphiboles of the International Mineralogical Association Commission onNew Minerals and Mineral Names. Mineralogical Magazine, 1997, 61: 295 321.
    Lee HY, Chung SL, Lo CH, et al. Eocene Neotethyan slab breakoff in southern Tibet inferred fromthe Linzizong volcanic record. Tectonophysics, 2009, 477: 20 35.
    Leeder MR, Smith AB and Yin JX. Sedimentology, Paleoecology and PalaeoenvironmentalEvolution of the 1985 Lhasa to Golmud Geotraverse. Philosophical Transactions of the RoyalSociety of London, Series A: Mathematical Physical and Engineering Sciences, 1988,327(1594): 107–143.
    Leier AL, DeCelles PG, Kapp P, et al. Lower Cretaceous Strata in the Lhasa Terrane, Tibet, withImplications for Understanding the Early Tectonic History of the Tibetan Plateau. Journal ofSedimentary Research, 2007, 77(10): 809–825.
    Le Maitre RW. A Classification of Igneous Rocks and Glossary of Terms. Oxford: BlackwellScientific Publications, 1989, 193.
    Lesher CE. Decoupling of chemical and isotopic exchange during magma mixing. Nature, 1990,344: 235 237.
    Li PW, Gao R, Cui JW, et al. Paleomagnetic analysis of eastern Tibet: implications for thecollisional and amalgamation history of the Three Rivers Region, SW China. Journal ofAsian Earth Sciences, 2004, 24(3): 291–310.
    Li XH, Li WX, Li QL, et al. Petrogenesis and tectonic significance of the ~850 Ma Gangbianalkaline complex in South China: Evidence from in situ zircon U–Pb dating, Hf–O isotopesand whole-rock geochemistry. Lithos, 2010, 114: 1–15.
    Li XH, Li ZX, Li WX, et al. U–Pb zircon, geochemical and Sr–Nd–Hf isotopic constraints on ageand origin of Jurassic I- and A-type granites from central Guangdong, SE China: A majorigneous event in response to foundering of a subducted flat-slab? Lithos, 2007, 96(1–2):186–204.
    Liégeois JP and Black R. Alkaline magmatism subsequent to collision in the Pan-African belt ofthe Adrar des Iforas (Mali). London: Geological Society. Special Publications, 1987, 30:381–401.
    Liégeois JP, Navez J, Hertogen J, et al. Contrasting origin of post-collisional high-K calc-alkalineand shoshonitic versus alkaline and peralkaline granitoids. The use of sliding normalization.Lithos, 1998, 45(1–4): 1–28.
    Litvinovsky BA, Jahn B, Zanvilevich AN, et al. Crystal fractionation in the petrogenesis of analkali monzodiorite-syenite series: the Oshurkovo plutonic sheeted complex, Transbaikalia,Russia. Lithos, 2002a, 64(3–4): 97–130.
    Litvinovsky BA, Jahn B, Zanvilevich AN, et al. Petrogenesis of syenite-granite suites from theBryansky Complex (Transbaikalia, Russia): implications for the origin of A-type granitoidmagmas. Chemical Geology, 2002b, 189(1 2): 105 133.
    Liu CZ, Wu FY, Chung SL, et al. Fragments of hot and metasomatized mantle lithosphere inMiddle Miocene ultrapotassic lavas, southern Tibet. Geology, 2011, 39(10): 923–926.
    Liu YS, Gao S, Hu ZC, et al. Continental and Oceanic Crust Recycling-induced Melt-PeridotiteInteractions in the Trans-North China Orogen: U–Pb Dating, Hf Isotopes and Trace Elementsin Zircons from Mantle Xenoliths. Journal of Petrology, 2010a, 51: 537 571.
    Liu YS, Hu ZC, Gao S, et al. In situ analysis of major and trace elements of anhydrous mineralsby LA ICP MS without applying an internal standard. Chemical Geology, 2008a, 257:34 43.
    Liu YS, Hu ZC, Zong KQ, et al. Reappraisement and refinement of zircon U Pb isotope and traceelement analyses by LA ICP MS. Chinese Science Bulletin, 2010b, 55: 1535 1546.
    Liu YS, Zong KQ, Kellemen PB, et al. Geochemistry and magmatic history of eclogites andultramafic rocks from the Chinese continental scientific drill hole: Subduction andultrahigh-pressure metamorphism of lower crustal cumulates. Oxford: ROYAUME-UNI.Elsevier, 2008b.
    Loiselle MC and Wones DR. Characteristics and origin of anorogenic granites. Geological Societyof America, Abstracts with Programs, 1979, 11: 468.
    Lou FS, Cui XJ and Huang ZZ. Confirmation and Preliminary Study of Aluminous A-typeGranites in the Wuyi Mountain Area, Eastern Jiangxi Province, China. Chinese Journal ofGeochemistry, 2002, 21(4): 362–369.
    Ludwig KR. ISOPLOT 3.00: A Geochronological Toolkit for Microsoft Excel. California,Berkeley: Berkeley Geochronology Center, 2003.
    Maas R, Nicholls IA and Legg C. Igneous and metamorphic encalves in the S-type DeddickGranodiorite, Lachlan Fold Belt, SE Australia: petrographic, geochemical and Nd-Sr isotopicevidence for crustal melting and magma mixing. J Petrol, 1997, 38: 815 841.
    Macdonald R and Scaillet B. The central Kenya peralkaline province: insights into the evolutionof peralkaline salic magmas. Lithos, 2006, 91(1–4): 59–73.
    Maheshwari A, Sial AN, Coltorti M, et al. Geochemistry and Petrogenesis of Siwana PeralkalineGranites, West of Barmer, Rajasthan, India. Gondwana Research, 2001, 4(1): 87–95.
    Maluski H, Proust F and Xiao XC.39Ar/40Ar dating of the trans-Himalayan calc-alkalinemagmatism of southern Tibet. Nature, 1982, 298: 152–154.
    Martin RF. A-type granites of crustal origin ultimately result from open-system fenitization-typereactions in an extensional environment. Lithos, 2006, 91(1–4): 125–136.
    Matte P, Taponnie P, Arnaud N, et al. Tectonics of Western Tibet, between the Tarims and theIndus. Earth and Planetary Science Letters, 1996, 142: 311–330.
    McDonough WF. Partial Melting of Subducted Oceanic Crust and Isolation of Its ResidualEclogitic Lithology. Phil. Trans. R. Soc. Lond., 1991, 1638: 407 418.
    Mchone JG. Constraints on the mantle plume model for Mesozoic alkaline intrusions innortheastern North America. The Canadian Mineralogist, 1996, 34: 325–334.
    Melluso L, Sethna SF, D'Antonio M, et al. Geochemistry and petrogenesis of sodic and potassicmafic alkaline rocks in the Deccan Volcanic province, Mumbai Area (India). Mineralogy andPetrology, 2002, 74(2–4): 323–342.
    Menzies M. Alkaline rocks and their inclusions: a window on the Earth’s interior. London:Geological Society. Special Publications, 1987, 30: 15 27.
    Metcalfe I. Pre-Cretaceous evolution of SE Asian terranes. In: Tectonic Evolution of SE Asia.Special Publication-Geological Society of London, 1996, 97–122.
    Miller C, Schuster R, Kl tzli U, et al. Post-collisional potassic and ultrapotassic magmatism inSW Tibet: geochemical and Sr–Nd–Pb–O isotopic constrains for mantle sourcecharacteristics and petrogenesis. Journal of Petrology, 1999, 40(9): 1399–1424.
    Miller CF, Hatcher RD, Harrison TM, et al. Crytic crustal events elucidated through zone,southern Appalachian Blue Ridge, North Carolina Georgia. Geology, 1998, 26: 419 422.
    Miller CF, McDowell SM and Mapes RW. Hot and cold granites? Implications of zircon saturationtemperatures and preservation of inheritance. Geology, 2003, 31(6): 529–532.
    Miller CF. Are strongly peraluminous magmas derived from pelitic sedimentary sources? TheJournal of Geology, 1985, 93(3): 673–689.
    Miyazaki T, Kagami H, Mohan VR, et al. Enriched subcontinental lithospheric mantle in thenorthern part of the South Indian Granulite Terrain: evidence from Yelagiri and Sevattursyenite plutons, Tamil Nadu, South India. Gondwana Research, 2003, 6(4): 585–594.
    Miyazaki T, Kagami H, Shuto K, et al. Rb–Sr geochronology, Nd–Sr isotopes and whole rockgeochemistry of Yelagiri and Sevattur syenites, Tamil Nadu, South India. GondwanaResearch, 2000, 3(1): 39–53.
    Mo XX, Dong GC, Zhao ZD, et al. Mantle Input to the Crust in Southern Gangdese, Tibet, duringthe Cenozoic: Zircon Hf Isotopic Evidence. Journal of Earth Science, 2009, 20(2): 241 249.
    Mo XX, Hou ZQ, Niu YL, et al. Mantle contributions to crustal thickening during continentalcollision: Evidence from Cenozoic igneous rocks in southern Tibet. Lithos, 2007, 96:225–242.
    Mo XX, Niu YL, Dong GC, et al. Contribution of syncollisional felsic magmatism to continentalcrust growth: A case study of the Paleogene Linzizong volcanic Succession in southern Tibet.Chemical Geology, 2008, 250(1–4): 49–67.
    Mo XX, Zhao ZD, Deng JF, et al. Petrology and geochemistry of postcollisional volcanic rocksfrom the Tibetan plateau: Implications for lithosphere heterogeneity and collision-inducedasthenospheric mantle flow. GSA Special Papers, 2006, 409: 507–530.
    Moreau C, Demaiffe D, Bellion Y, et al. A tectonic model for the location of Palaeozoic ringcomplexes in A r (Niger, West Africa). Tectonophys, 1994, 234(1–2): 129–146.
    Morrison GW. Characteristics and tectonic setting of the shoshonite rock association. Lithos, 1980,13(1): 97–108.
    Müller D and Groves D. Direct and indirect associations between potassic igneous rocks,shoshonites and gold-copper deposits. Ore Geology Reviews, 1993, 8(5): 383–406.
    Müller D, Rock NMS and Groves D. Geochemical discrimination between shoshonitic andpotassic volcanic rocks in different tectonic settings: a pilot study. Mineralogy and Petrology,1992, 46: 259–289.
    Mu oz M, Sagredo J, de Ignacio C, et al. New data (U–Pb, K–Ar) on the geochronology of thealkaline-carbonatitic association of Fuerteventura, Canary Islands, Spain. Lithos, 2005,85(1–4): 140–153.
    Mushkin A, Navon O, Halicz L, et al. The Petrogenesis of A-type Magmas from the AmramMassif, Southern Israel. Journal of Petrology, 2003, 44(5): 815–832.
    Nardi LVS and Bonin B. Post-orogenic and non-orogenic alkaline granite associations: the Saibrointrusive suite, southern Brazil-A case study. Chemical Geology, 1991, 92(1–3): 197–211.
    Nédélec A, Stephens EW and Fallick AE. The Panafrican Stratoid Granites of Madagascar:Alkaline Magmatism in a Post-Collisional Extensional Setting. Journal of Petrology, 1995,36(5): 1367–1391.
    Owens TJ and Zandt G. Implications of crustal property variations for models of Tibetan plateauevolution. Nature, 1997, 387: 37 43.
    Oyhant abal P, Siegesmund S, Wemmer K, et al. Post-collisional transition from calc-alkaline toalkaline magmatism during transcurrent deformation in the southernmost Dom Feliciano Belt(Braziliano-Pan-African, Uruguay). Lithos, 2007, 98(1–4): 141–159.
    Pearce JA. Trace element characteristics of lavas from destructive plate boundaries. In: Thorpe RS(ed.). Andesites. New York: John Willey & Sons, 1982: 525 548.
    Pearce JA and Deng Wanming. The ophiolites of the Tibetan Geotraverses, Lhasa to Golmud(1985) and Lhasa to Kathmandu (1986). Philosophical Transactions of the Royal Society ofLondon. Series A: Mathematical and Physical Sciences, 1988, 327(1594): 215 238.
    Pearce JA and Mei HJ. Volcanic Rocks of the 1985 Tibet Geotraverse: Lhasa to Golmud.Philosophical Transactions of the Royal Society of London. Series A: Mathematical andPhysical Sciences, 1988, 327: 169–201.
    Pearce JA, Harris NBW and Tindle AG. Trace Element Discrimination Diagrams for the TectonicInterpretation of Granitic Rocks. Journal of Petrology, 1984, 25(4): 956 983.
    Peccerillo A, Barberio MR, Yirgu G, et al. Relationships between mafic and peralkaline silicicmagmatism in continental rift settings: a petrological, geochemical and isotopic study of theGedesma Volcano, Central Ethiopian Rift. Journal of Petrology, 2003, 44(11): 2003–2032.
    Pitcher WS. The nature and origin of granite. London: Chapman & Hall, 1997.
    Plank T and Langmuir CH. Tracing trace elements from sediment input to volcanic output atsubduction zones. Nature, 1993, 362: 739–743.
    Pullen A, Kapp P, Gehrels GE, et al. Metamorphic rocks in central Tibet: Lateral variations andimplications for crustal structure. Geological Society of America Bulletin, 2011, 123(3 4):585 600.
    Pullen A, Kapp P, Gehrels GE, et al. Triassic continental subduction in central Tibet andMediterranean-style closure of the Paleo-Tethys Ocean. Geology, 2008, 36(5): 351–354.
    Qin JF, Lai SC, Grapes R, et al. Geochemical evidence for origin of magma mixing for theTriassic monzonitic granite and its enclaves at Mishuling in the Qinling orogen (centralChina). Lithos, 2009, 112(3 4): 259–276.
    Qiu RZ, Zhou S, Li TD, et al. The tectonic-setting of ophiolites in the western Qinghai-TibetPlateau, China. Journal of Asian Earth Sciences, 2006, 29(2–3): 215–228.
    Qu XM, Hou ZQ and Li YG. Melt components derived from a subducted slab in late orogenicore-bearing porphyries in the Gangdese copper belt, southern Tibetan plateau. Lithos, 2004,74: 131–148.
    Rapp RP, Shimizu N, Norman MD, et al. Reaction between slabderived melts and peridotite in themantle wedge: experimental constraints at 3.8 GPa. Chemical Geology, 1999, 160: 335–356.
    Renna MR, Tribuzio R and Tiepolo M. Interaction between basic and acid magmas during thelatest stages of the post-collisional Variscan evolution: Clues from the gabbro-graniteassociation of Ota (Corsica-Sardinia batholith). Lithos, 2006, 90(1 2): 92 110.
    Ridolfi F, Renzulli A, Macdonald R, et al. Peralkaline syenite autoliths from Kilombe volcano,Kenya Rift Valley: evidence for subvolcanic interaction with carbonatitic fluids. Lithos, 2006,91(1–4): 373–392.
    Riishuus MS, Peate DW, Tegner C, et al. Petrogenesis of syenites at a rifted continental margin:origin, contamination and interaction of alkaline mafic and felsic magmas in the AstrophylliteBay Complex, East Greenland. Contributions to Mineralogy and Petrology, 2005, 149(3):350–371.
    Roberts MP and Clemens JD. Origin of high-potassium, calc-alkaline, I-type granitoids. Geology,1993, 21(9): 825–828.
    Rogers NW, James D, Kelley SP, et al. The generation of potassic lavas from the eastern Virungaprovince, Rwanda. Journal of Petrology, 1998, 39(6): 1223–1247.
    Rollinson HR. A terrane interpretation of the Archaean Limpopo Belt. Geological Magazine, 1993,130: 755 765.
    Rottura A, Bargossi GM, Gaggianelli A, et al. Origin and significance of the Permian high-Kcalc-alkaline magmatism in the central-eastern Southern Alps, Italy. Lithos, 1998, 45(1–4):329–348.
    Rudnick RL and Fountain DM. Nature and composition of the continental crust: a lower crustalperspective. Reviews of Geophysics, 1995, 33(3): 267–309.
    Rudnick RL and Gao S. Composition of the continental crust. In: Rudnick RL, (eds.). The Crust.Treatise on Geochemistry. Oxford: Elsevier-Pergamon, 2003, V3: 1 64.
    Sch rer U, Xu RH and Allègre CJ. U–Pb geochronology of Gangdese (Transhimalaya) plutonismin the Lhasa-Xigaze region, Tibet. Earth and Planetary Science Letters, 1984, 69: 311–320.
    Schmidt MW. Amphibole composition in tonalite as a function of pressure: an experimentalcalibration of the Al-in-hornblende barometer. Contributions to Mineralogy and Petrology,1992, 110(2 3): 304 310.
    Shellnutt JG and Zhou MF. Permian, rifting related fayalite syenite in the Panxi region, SW China.Lithos, 2008, 101(1–2): 54–73.
    Sheppard S. Hybridization of shoshonitic lamprophyre and calc-alkaline granite magma in theearly Proterozoic Mt Bundey igneous suite, Northern Territory. Australian Journal of EarthSciences, 1995, 42(2): 173–185.
    Shi DN, Zhao WJ, Brown L, et al. Detection of southward intracontinental subduction of Tibetanlithosphere along the Bangong-Nujiang suture by P to S converted waves. Geology, 2004b,32(3): 209–212.
    Shi RD, Yang JS, Xu ZQ, et al. Discovery of the boninite series volcanic rocks in the BangongLake ophiolite mélange, western Tibet, and its tectonic implications. Chinese ScienceBulletin, 2004a, 49(12): 1272–1278.
    Shi RD. SHRIMP dating of the Bangong Lake SSZ-type ophiolite: Constraints on the closure timeof ocean in the Bangong Lake-Nujiang River, northwestern Tibet. Chinese Science Bulletin,2007, 52(7): 936–941.
    Sisson TW, Ratajeski K, Hankins WB, et al. Voluminous granitic magmas from common basalticsources. Contributions to Mineralogy and Petrology, 2005, 148(6): 635–661.
    S aby E and Martin H. Mafic and Felsic Magma Interaction in Granites: the HercynianKarkonosze Pluton (Sudetes, Bohemian Massif). Journal of Petrology, 2008, 49(2): 353 391.
    Smith AB and Xu JT. Paleontology of the 1985 Tibet Geotraverse, Lhasa to Golmud. Phil Trans RSoc Lond A, 1988, 327: 53 105.
    S derlund U, Patchett PJ, Vervoort JD, et al. The176Lu decay constant determined by Lu–Hf andU–Pb isotope systematics of Precambrian mafic intrusions. Earth and Planetary ScienceLetters, 2004, 219(3–4): 311–324.
    Srivastava RK, Heaman LM, Sinha AK, et al. Emplacement age and isotope geochemistry of SungValley alkaline-carbonatite complex, Shillong Plateau, northeastern India: implications forprimary carbonate melt and genesis of the associated silicate rocks. Lithos, 2005, 81(1–4):33–54.
    Stein E and Dietl C. Hornblende thermobarometry of granitoids from the Central Odenwald(Germany) and their implications for the geotectonic development of the Odenwald.Mineralogy and Petrology, 2001, 72(1 3): 185 207.
    Stein M, Navon O and Kessel R. Chromatographic metasomatism of the Arabian-Nubianlithosphere. Earth and Planetary Science Letters, 1997, 152(1 4): 75 91.
    Stevenson R, Upton BGJ and Steenfelt A. Crust-mantle interaction in the evolution of theIlímaussaq Complex, South Greenland: Nd isotopic studies. Lithos, 1997, 40(2–4): 189–202.
    Sun SS and McDonough WF. Chemical and isotope systematics of oceanic basalts: implicationsfor mantle composition and processes. In: Saunders AD, (eds.). Magmatism in Ocean Basins.Geol. Soc. Publication, 1989, 42: 313 345.
    Sylvester PJ. Post-Collisional Alkaline Granites. The Journal of Geology, 1989, 97(3): 261–280.
    Tack L, Liégeois JP, Deblond A, et al. Kibaran A-type granitoids and mafic rocks generated bytwo mantle sources in a late orogenic setting (Burundi). Precambrian Research, 1994,68(3–4): 323–356.
    Tchameni R, Mezger K, Nsifa NE, et al. Crustal origin of early Proterozoic syenites in the CongoCraton (Ntem Complex), South Cameroon. Lithos, 2001, 57(1): 23–42.
    Tilmann F, Ni J and INDEPTH III Seismic Team. Seismic imaging of the downwelling Indianlithosphere beneath Central Tibet. Science, 2003, 300(5624): 1424 1427.
    Turner S, Arnaud N, Liu J, et al. Post-collision, shoshonitic volcanism on the Tibetan plateau:implications for convective thinning of the lithosphere and the source of ocean island basalts.Journal of Petrology, 1996, 37(1): 45–71.
    Turner SP, Foden JD and Morrison RS. Derivation of some A-type magmas by fractionation ofbasaltic magma: an example from the Padthaway Ridge, South Australia. Lithos, 1992, 28(2):151–179.
    Upadhyay D, Raith MM, Mezger K, et al. Mesoproterozoic riftrelated alkaline magmatism atElchuru, Prakasam Alkaline Province, SE India. Lithos, 2006, 89(3–4): 447–477.
    Vavra G, Gebauer D, Schmid R, et al. Multiple zircon growth and recrystallization duringpolyphase Late Carboniferous to Triassic metamorphism in granulites of the Ivrea Zone(Southern Alps): an ion microprobe (SHRIMP) study. Contributions to Mineralogy andPetrology, 1996, 122(4): 337 358.
    Vernikovsky VA, Pease VL, Vernikovskaya AE, et al. First report of early Triassic A-type graniteand syenite intrusions from Taimyr: product of the northern Eurasian superplume? Lithos,2003, 66(1–2): 23–36.
    Vernon RH. Interpretation of microstructures of microgranitoid enclaves. In: Didier J and BarbarinB, (eds.). Enclaves and Granite Petrology. Amsterdam: Elsevier, 1991, 277–291.
    Vernon RH. Microgranitoid enclaves in granites—globules of hybrid magma quenched in aplutonic environment. Nature, 1984, 309: 438 439.
    Wan XQ, Jansa LF and Sarti M. Cretaceous and Paleogene boundary strata in southern Tibet andtheir implication for the India-Eurasia collision. Lethaia, 2002, 35: 131–146.
    Wang GH and Zhang WJ. Middle Jurassic high-pressure shearing events revealed by phengite inthe Jiayuqiao metamorphic complex, Eastern Tibet. Goldschmidt Conference Abstracts, 2008,A996.
    Wang J, Fu XG, Chen WX, et al. Chronology and geochemistry of the volcanic rocks in WoruoMountain region, northern Qiangtang depression: Implications to the Late Triassicvolcanic-sedimentary events. Science in China (Series D: Earth Sciences), 2008, 51(2):194 205.
    Wang K, Plant T, Walker JD, et al. A mantle melting profile across the basin and the rang, SWUSA. Journal of the Geophysical Research, 2002, 107: 10.
    Wang Q, Li JW, Jian P, et al. Alkaline syenites in eastern Cathaysia (South China): link toPermian-Triassic transtension. Earth and Planetary Science Letters, 2005, 230(3–4):339–354.
    Wang Q, Wyman DA, Li ZX, et al. Petrology, geochronology and geochemistry of ca.780 MaA-type granites in South China: Petrogenesis and implications for crustal growth during thebreakup of the supercontinent Rodinia. Precambrian Research, 2010, 178(1–4): 85–208.
    Wang Q, Wyman DA, Xu JF, et al. Eocene melting of subducting continental crust and earlyuplifting of central Tibet: Evidence from central-western Qiangtang high-K calc-alkalineandesites, dacites and rhyolites. Earth and Planetary Science Letters, 2008, 272: 158 171.
    Wang Q, Zhu DC, Zhao ZD, et al. Magmatic zircons from I-, S- and A-type granitoids in Tibet:Trace element characteristics and their application to detrital zircon provenance study.Journal of Asian Earth Sciences, 2011, in press.
    Wang WL, Aitchison JC, Lo CH, et al. Geochemistry and geochronology of the amphiboliteblocks in ophiolitic mélanges along Bangong-Nujiang suture, central Tibet. Journal of AsianEarth Science, 2008, 33: 122–138.
    Watson EB and Harrison TM. Zircon saturation revisited: temperature and composition effects in avariety of crustal magma types. Earth and Planetary Science Letters, 1983, 64(2): 295–304.
    Wei WB, Unsworth M, Jones A, et al. Detection of Widespread Fluids in the Tibetan Crust byMagnetotelluric Studies. Science, 2001, 292(5517): 716–719.
    Whalen JB and Currie KL. The Topsails igneous terrane, Western Newfoundland: evidence formagma mixing. Contributions to Mineralogy and Petrology, 1984, 87(4): 319 327.
    Whalen JB, Currie KL and Chappell BW. A-type granites: geochemical characteristics,discrimination and petrogenesis. Contributions to Mineralogy and Petrology, 1987, 95(4):407–419.
    White AJR and Chappell BW. Granitoid types and their distribution in the Lachlan Fold Belt,southeastern Australia. In: Roddick JA, (eds.). Circum-Pacific Plutonic Terranes. GeologicalSociety of America, Memoir, 1983, 159: 21–34.
    White AJR, Clemens JD, Holloway JR, et al. S-type granites and their probable absence insouthwestern North America. Geology, 1986, 14(2): 115–118.
    Wilson JT. Did the Atlantic Close and then Re-Open? Nature, 1966, 211: 676 681.
    Wilson M. Igneous Petrogenesis-A global tectonic approach. London: Unwin Hyman, Chapmanand Hall. 1989, 466.
    Winchester JA and Floyd PA. Geochemical magma type discrimination: Application to altered andmetamorphosed basic igneous rocks. Earth and Planetary Science Letters, 1976, 28(3):459 469.
    Wolf MB and London D. Apatite dissolution into peraluminous haplogranitic melts: anexperimental study of solubilities and mechanism. Geochim. Cosmochim. Acta, 1994, 58:4127 4145.
    Wright JB. A simple alkalinity ratio and its application to questions of non-orogenic granitegenesis. Geological Magazine, 1969, 106: 370 384.
    Wu FY, Sun DY, Li HM, et al. A-type granites in northeastern China: age and geochemicalconstraints on their petrogenesis. Chemical Geology, 2002, 187(1–2): 143–173.
    Wu FY, Yang YH, Xie LW, et al. Hf isotopic compositions of the standard zircons andbaddeleyites used in U Pb geochronology. Chemical Geology, 2006, 234: 105 126.
    Wu ZH, Hu DG, Ye PS, et al. Thrusting of the North Lhasa Block in the Tibetan Plateau. ActaGeologica Sinica (English Edition), 2004, 78(1): 246 259.
    Wyllie PJ, Cox KG and Biggar GM. The habit of apatite in synthetic systems and igneous rocks.Journal of Petrology, 1962, 3(2): 238 243.
    Xiao L and Clemens JD. Origin of potassic (C-type) adakite magmas: Experimental and fieldconstraints. Lithos, 2007, 95(3–4): 399–414.
    Xie CF, Zhu JC, Ding SJ, et al. Identification of Hercynian shoshonitic intrusive rocks in centralHainan Island and its geotectonic implications. Chinese Science Bulletin, 2006, 51(20):2507–2519.
    Xing FM and Xu X. Two A-type syenite-granite belts in Anhui. Chinese Journal of geochemistry,1994, 13(4): 340–354.
    Xu JF and Castillo PR. Geochemical and Nd-Pb isotopic characteristics of the Tethyanasthenosphere: implications for the origin of the Indian Ocean mantle domain.Tectonophysics, 2004, 393(1): 9–27.
    Xu RH, Sch rer U and Allégre CJ. Magmatism and metamorphism in the Lhasa block (Tibet): Ageochronological study. Journal of Geology, 1985, 93: 41–57.
    Xu YG, Lan JB, Yang QJ, et al. Eocene break-off of the Neo-Tethyan slab as inferred fromintraplate-type mafic dykes in the Gaoligong orogenic belt, eastern Tibet. Chemical Geology,2008, 255: 439–453.
    Yang JH, Chung SL, Wilde SA, et al. Petrogenesis of post-orogenic syenites in the Sulu OrogenicBelt, East China: geochronological, geochemical and Nd Sr isotopic evidence. ChemicalGeology, 2005, 214(1–2): 99–125.
    Yang JH, Wu FY, Wilde SA, et al. Tracing magma mixing in granite genesis: in situ U Pb datingand Hf-isotope analysis of zircons. Contrib Mineral Petrol, 2007, 153: 177 190.
    Yang KF, Fan HR, Santosh M, et al. Mesoproterozoic mafic and carbonatitic dykes from thenorthern margin of the North China Craton: implications for the final breakup of Columbiasupercontinent. Tectonophysics, 2011, 498: 1–10.
    Yin A and Harrison TM. Geologic Evolution of the Himalayan-Tibetan Orogen. Annual Review ofEarth and Planetary Sciences, 2000, 28: 211–280.
    Yin JX, Xu JT, Liu CJ, et al. The Tibetan Plateau-Regional Stratigraphic Context and PreviousWork. Philosophical Transactions of the Royal Society of London, Series A: MathematicalPhysical and Engineering Sciences, 1988, 327(1594): 5–52.
    Ying JF, Zhang HF, Sun M, et al. Petrology and geochemistry of Zijinshan alkaline intrusivecomplex in Shanxi Province, western North China Craton: Implication for magma mixing ofdifferent sources in an extensional regime. Lithos, 2007, 98(1–4): 45–66.
    Yuan HL, Gao S, Dai MN, et al. Simultaneous determinations of U Pb age, Hf isotopes and traceelement compositions of zircon by excimer laser-ablation quadrupole and multiple-collectorICP MS. Chemical Geology, 2008, 247: 100 118.
    Zanvilevich AN, Litvinovsky BA, Wickham SM, et al. Genesis of alkaline and peralkalinesyenite-granite series: the Kharitonovo pluton (Transbaikalia, Russia). The Journal ofGeology, 1995, 103(2): 127 145.
    Zhang HF, Gao S, Zhong ZQ, et al. Geochemical and Sr Nd Pb isotopic compositions ofCretaceous granitoids: constraints on tectonic framework and crustal structure of theDabieshan ultrahigh-pressure metamorphic belt, China. Chemical Geology, 2002, 186:281 299.
    Zhang KJ and Tang XC. Eclogites in the interior of the Tibetan Plateau and their geodynamicimplications. Chinese Science Bulletin, 2009, 54(15): 2556–2567.
    Zhang KJ, Zhang YX, Li B, et al. Nd isotopes of siliciclastic rocks from Tibet, western China:Constraints on provenance and pre-Cenozoic tectonic evolution. Earth and Planetary ScienceLetters, 2007a, 256(3–4): 604–616.
    Zhang XH, Mao Q, Zhang HF, et al. Mafic and felsic magma interaction during the constructionof high-K calc-alkaline plutons within a metacratonic passive margin: The Early PermianGuyang batholith from the northern North China Craton. Lithos, 2011, 125(1–2): 569–591.
    Zhang XR, Shi RD, Huang QS, et al. Finding of high-pressure mafic granulites in the Amdobasement, central Tibet. Chinese Science Bulletin, 2010, 55(32): 3694 3702.
    Zhang YX, Zhang KJ, Li B, et al. Zircon SHRIMP U–Pb geochronology and petrogenesis of theplagiogranites from the Lagkor Lake ophiolite, Gerze, Tibet, China. Chinese Science Bulletin,2007b, 52(5): 651–659.
    Zhao JX, Shiraishi K, Ellis DJ, et al. Geochemical and isotopic studies of syenites from theYamoto Mountains, East Antartica: implication for the origin of syenitic magmas.Geochimica et Cosmochimica Acta, 1995, 59(7): 1363–1382.
    Zhao TP, Zhou MF, Zhao JH, et al. Geochronology and geochemistry of the c. 80 Ma Rutoggranitic pluton, northwestern Tibet: implications for the tectonic evolution of the LhasaTerrane. Geological Magazine, 2008, 145(6): 845 857.
    Zhao ZD, Mo XX, Dilek Y, et al. Geochemical and Sr–Nd–Pb–O isotopic compositions of thepost-collisional ultrapotassic magmatism in SW Tibet: Petrogenesis and implications forIndia intra-continental subduction beneath southern Tibet. Lithos, 2009, 113: 190–212.
    Zhou MF, Malpas J and Robinson PT. The-dynamothermal aureole of the Donqiao ophiolite(northern Tibet). Canadian Journal of Earth Sciences, 1997, 34(1): 59 65.
    Zhu DC, Mo XX, Niu YL, et al. Geochemical investigation of Early Cretaceous igneous rocksalong an east-west traverse throughout the central Lhasa Terrane, Tibet. Chemical Geology,2009a, 268(3–4): 298–312.
    Zhu DC, Mo XX, Niu YL, et al. Zircon U Pb dating and insitu Hf isotopic analysis of Permianperaluminous granite in the Lhasa terrane, southern Tibet: Implications for Permiancollisional orogeny and paleogeography. Tectonophysics, 2009d, 469: 48 60.
    Zhu DC, Mo XX, Wang LQ, et al. Petrogenesis of highly fractionated I-type granites in the Zayuarea of eastern Gangdese, Tibet: Constraints from zircon U–Pb geochronology, geochemistryand Sr–Nd–Hf isotopes. Science in China (Series D: Earth Sciences), 2009c, 52: 1223–1239.
    Zhu DC, Mo XX, Zhao ZD, et al. Presence of Permian extensionand arc-type magmatism insouthern Tibet: Paleogeographic implications. GSA Bulletin, 2010, 122: 979 993.
    Zhu DC, Zhao ZD, Niu YL, et al. Lhasa terrane in southern Tibet came from Australia. Geology,2011b, 39: 727–730.
    Zhu DC, Pan GT, Chung SL, et al. SHRIMP zircon age and geochemical constraints on the originof lower Jurassic volcanic rocks from the Yeba formation, Southern Gangdese, south Tibet.International Geology Review, 2008, 50: 442 471.
    Zhu DC, Zhao ZD, Niu YL, et al. The Lhasa Terrane: Record of a microcontinent and its historiesof drift and growth. Earth and Planetary Science Letters, 2011a, 301: 241–255.
    Zhu DC, Zhao ZD, Niu YL, et al. The origin and pre-Cenozoic evolution of the Tibetan Plateau.Gondwana Research, 2012. doi: 10.1016/j.gr.2012.02.002.
    Zhu DC, Zhao ZD, Pan GT, et al. Early cretaceous subduction-related adakite-like rocks of theGangdese Belt, southern Tibet: Products of slab melting and subsequent melt-peridotiteinteraction? Journal of Asian Earth Sciences, 2009b, 34: 298–309.
    Zorpi MJ, Coulon C and Orsini JB. Hybridization between felsic and mafic magmas incalc-alkaline granitoids: a case study in northern Sardinia, Italy. Chemical Geology, 1991,92(1 3): 45 86.
    白志达,徐德斌,陈梦军,等.西藏安多地区粗面岩的特征及其锆石SHRIMP U Pb定年.地质通报, 28(9): 1229 1235.
    白志达,徐德斌,张绪教,等.中华人民共和国1: 25万区域地质调查报告安多县幅(I46C004002).中国地质大学(北京)地质调查研究院, 2005.
    曹圣华,罗小川,唐峰林,等.班公湖-怒江结合带南侧弧-盆系时空结构与演化特征.中国地质, 2004, 31(1): 51–56.
    常承法.特提斯及青藏碰撞造山带的演化特点.见:徐贵忠和常承法,主编.大陆岩石圈构造与资源.北京:海洋出版社, 1992.
    常承法.喜马拉雅地层发展史.见:构造的划分和隆起原因探讨国际交流地质学术论文集(1):区域构造、地质力学.北京:地质出版社, 1978, 198–211.
    常丽华,曹林和高福红.火成岩鉴定手册.北京:地质出版社, 2009, 130–132.
    常青松,朱弟成,赵志丹,等.西藏羌塘南缘热那错早白垩世流纹岩锆石U Pb年代学和Hf同位素及其意义.岩石学报, 2011, 27(7): 2034 2044.
    陈国安和周珣若.漳州地区白垩纪I型和A型花岗岩中黑云母的矿物学特征.矿物岩石, 1996,16(2): 25 30.
    陈国荣,刘鸿飞,蒋光武,等.西藏班公湖-怒江结合带中段沙木罗组的发现.地质通报,2004, 2: 193–194.
    陈玉禄,张宽忠,李关清,等.班公湖-怒江结合带中段上三叠统确哈拉群与下伏岩系角度不整合关系的发现及意义.地质通报, 2005, 7: 621–624.
    邓晋福,罗照华,苏尚国,等.岩浆成因、构造环境与成矿作用.北京:地质出版社, 2004.
    董国臣.林周盆地林子宗火山岩及其所含的印度-欧亚大陆碰撞信息研究. [博士学位论文].北京:中国地质大学, 2002.
    董国臣,莫宣学,赵志丹,等.拉萨北部林周盆地林子宗火山岩层序新议.地质通报, 2005,24(6): 549 557.
    董国臣,莫宣学,赵志丹,等.西藏冈底斯南带辉长岩及其所反映的壳幔作用信息.岩石学报, 2008, 24(2): 203 210.
    董昕,张泽明,耿官升,等.青藏高原拉萨地体南部的泥盆纪花岗岩.岩石学报, 2010, 26(7):2226 2232.
    董彦辉,许继峰,曾庆高,等.存在比桑日群弧火山岩更早的新特提斯洋俯冲记录么?岩石学报, 2006, 22(3): 661–668.
    杜德道,曲晓明,王根厚,等.西藏班公湖-怒江缝合带西段中特提斯洋盆的双向俯冲:来自岛弧型花岗岩锆石U–Pb年龄和元素地球化学的证据.岩石学报, 2011, 27(7):1993–2002.
    杜杨松,曹毅,袁万明,等.安徽沿江地区中生代碰撞后到造山后岩浆活动和壳幔相互作用——来自火山-侵入杂岩和岩石包体的证据.岩石学报, 2007, 23(6): 1294 1302.
    付修根,王剑,谭富文,等.青藏高原羌塘盆地东部鄂尔陇巴组火山岩的锆石SHRIMP U Pb年龄及其地质意义.地质通报, 2009, 28(5): 561 567.
    高顺宝,郑有业,王进寿,等.西藏班戈地区侵入岩年代学和地球化学:对班公湖-怒江洋盆演化时限的制约.岩石学报, 2011, 27(7): 1973–1982.
    耿全如.西藏冈底斯晚古生代火山岩岩石学、地球化学及其大地构造意义. [博士学位论文].武汉:中国地质大学, 2007.
    耿全如,潘桂棠,王立全,等.班公湖-怒江带、羌塘地块特提斯演化与成矿地质背景.地质通报, 2011, 30(8): 1261 1274.
    龚日祥和卢成忠.浙西晚中生代富碱高钾花岗岩类的岩石地球化学特征及构造意义.岩石学报, 2008, 24(10): 2343–2351.
    郭芳放,姜常义,卢荣辉,等.新疆北部卡拉麦里地区黄羊山碱性花岗岩的岩石成因.岩石学报, 2010, 26(8): 2357 2372.
    韩宝福,加加美宽雄和李惠民.河北平泉光头山碱性花岗岩的时代、Nd–Sr同位素特征及其对华北早中生代壳幔相互作用的意义.岩石学报, 2004, 20(6): 1375–1388.
    何世平,李荣社,王超,等.青藏高原冈底斯北缘嘉玉桥群形成时代的确定.中国地质, 2012,39(1): 21 28.
    和钟铧,杨德明,郑常青,等.冈底斯带门巴花岗岩同位素测年及其对新特提斯洋俯冲时代的约束.地质论评, 2006b, 52(1): 100–106.
    和钟铧,杨德明和王天武.冈底斯带桑巴区早白垩世后碰撞花岗岩类的确定及构造意义.岩石矿物学杂志, 2006a, 25(3): 185–193.
    侯增谦,孟祥金,曲晓明,等.西藏冈底斯斑岩铜矿带埃达克质斑岩含矿性:源岩相变及深部过程约束.矿床地质, 2005, 24(2): 108–114.
    侯增谦,莫宣学,高永丰,等.埃达克岩:斑岩铜矿的一种可能的重要含矿母岩——以西藏和智利斑岩铜矿为例.矿床地质, 2003, 22(1): 1–12.
    侯增谦,莫宣学,高永丰,等.印度大陆与亚洲大陆早期碰撞过程与动力学模型——来自西藏冈底斯新生代火成岩证据.地质学报, 2006a, 80(9): 1233–1248.
    侯增谦,莫宣学,杨志明,等.青藏高原碰撞造山带成矿作用构造背景、时空分布和主要类型.中国地质, 2006b, 33(2): 340–351.
    侯增谦,曲晓明,杨竹森,等.青藏高原碰撞造山带:Ⅲ.后碰撞伸展成矿作用.矿床地质,2006c, 25(6): 629 651.
    胡道功,吴珍汉,江万,等.藏北纳木错西缘前寒武纪辉长岩变质变形年代学研究.岩石学报, 2004, 20(3): 627–632.
    黄汲清和陈炳蔚.中国及邻区特提斯海的演化.北京:地质出版社, 1987.
    黄继钧.羌塘盆地基底构造特征.地质学报, 2001, 75(3): 333 337.
    黄行凯,莫宣学,喻学惠,等.云南马关地区岩石圈地幔组成和年龄:地幔橄榄岩包体的Re Os同位素限制.岩石学报, 2011, 27(9): 2646 2654.
    纪伟强,吴福元,锺孙霖,等.西藏南部冈底斯岩基花岗岩时代与岩石成因.中国科学(D辑:地球科学), 2009, 39(7): 849–871.
    计文化,陈守建,赵振明,等.西藏冈底斯构造带申扎一带寒武系火山岩的发现及其地质意义.地质通报, 2009, 28(9): 1350 1355.
    赖绍聪和刘池阳.青藏高原安多岛弧型蛇绿岩地球化学及成因.岩石学报, 2003, 19(4):675 682.
    李才,程立人,于介江,等.中华人民共和国1: 25万区域地质调查报告玛依岗日幅(I45C003002).吉林大学地质调查研究院, 2006.
    李才,谢尧武,沙绍礼,等.藏东八宿地区泛非期花岗岩锆石SHRIMP U Pb定年.地质通报,2008, 27(1): 64 68.
    李才,翟刚毅,王立全,等.认识青藏高原的重要窗口——羌塘地区近年来研究进展评述(代序).地质通报, 2009, 28(9): 1169 1177.
    李才,翟庆国,董永胜,等.青藏高原龙木错-双湖板块缝合带与羌塘古特提斯洋演化记录.地质通报, 2007, 26(1): 13 21.
    李尚林,王根厚,胡敬仁,等.藏北聂荣县查吾拉区中侏罗统巴通阶与基底岩系角度不整合的发现及其地质意义.地质通报, 2005, 24(3): 239–242.
    李曙光.蛇绿岩生成构造环境的Ba Th Nb La判别图.岩石学报, 1993, 9(2): 146 157.
    李伍平和路凤香.钙碱性火山岩构造背景的研究进展.地质科技情报, 1999, 18(2): 15 18.
    李小伟,莫宣学,赵志丹,等.关于A型花岗岩判别过程中若干问题的讨论.地质通报, 2010,29(2 3): 278–285.
    刘敏,赵志丹,管琪,等.西藏聂荣微陆块早侏罗世中期花岗岩及其包体的岩浆混合成因:锆石LA–ICP–MS U–Pb定年和Hf同位素证据.岩石学报, 2011, 27(7): 1931–1937.
    刘敏,朱弟成,赵志丹,等.藏北聂荣地区早侏罗世末期的岩浆混合作用及构造意义.岩石学报, 2010, 26(10): 3117–3130.
    刘敏,朱弟成,赵志丹,等.西藏冈底斯东部然乌地区早白垩世岩浆混合作用:锆石SHRIMP U–Pb年龄和Hf同位素证据.地学前缘, 2009, 16(2): 152–160.
    刘琦胜,江万,简平,等.宁中白云母二长花岗岩SHRIMP锆石U–Pb年龄及岩石地球化学特征.岩石学报, 2006, 22(3): 643–652.
    刘训,傅德荣,姚培毅,等.青藏高原不同地体的地层生物区系及沉积构造演化史.地质专报:地层古生物.北京:地质出版社, 1992.
    路凤香和桑隆康.岩石学.北京:地质出版社, 2002.
    路远发. GeoKit:一个用VBA构建的地球化学工具软件包.地球化学, 2004, 33(5): 459–464.
    罗照华,张文会,邓晋福,等.西昆仑地区新生代火山岩中的深源包体.地学前缘, 2000, 7(1):295–298.
    莫宣学,董国臣,赵志丹,等.西藏冈底斯带花岗岩的时空分布特征及地壳生长演化信息.高校地质学报, 2005, 11(3): 281–290.
    莫宣学,罗照华,邓晋福,等.东昆仑造山带花岗岩及地壳生长.高校地质学报, 2007, 13(3):403–414.
    莫宣学,赵志丹, Depaolo D,等.青藏高原拉萨地块碰撞-后碰撞岩浆作用的三种类型及其对大陆俯冲和成矿作用的启示: Sr–Nd同位素证据.岩石学报, 2006, 22(4): 795–803.
    莫宣学,赵志丹,邓晋福,等.印度-亚洲大陆主碰撞过程的火山作用响应,地学前缘, 2003,10(3): 135–147.
    莫宣学和潘桂棠.从特提斯到青藏高原形成:构造-岩浆事件的约束.地学前缘, 2006, 13(6):43–51.
    潘桂棠,李兴振,王立全,等.青藏高原及邻区大地构造单元初步划分.地质通报, 2002,21(11): 701–707.
    潘桂棠,莫宣学,侯增谦,等.冈底斯造山带的时空结构及演化.岩石学报, 2006, 22(3):521–533.
    潘桂棠,王立全,耿全如,等. 20年后再论班公湖-怒江结合带.见:青藏高原及邻区地质与资源环境学术讨论会论文摘要汇编, 2003, 542.
    潘桂棠,王立全和朱弟成.青藏高原区域地质调查中几个重大科学问题的思考.地质通报,2004b, 23(1): 12–19.
    潘桂棠,朱弟成,王立全,等.班公湖-怒江缝合带作为冈瓦纳大陆北界的地质地球物理证据.地学前缘, 2004a, 11(4): 371–382.
    潘桂棠等.东特提斯地质构造形成演化.北京:地质出版社, 1997.
    强巴扎西,谢尧武,吴彦旺,等.藏东丁青蛇绿岩中堆晶辉长岩锆石SIMS U Pb定年及其意义.地质通报, 2009, 28(9): 1253 1258.
    邱检生,肖娥,胡建,等.福建北东沿海高分异I型花岗岩的成因:锆石U Pb年代学、地球化学和Nd Hf同位素制约.岩石学报, 2008, 24(11): 2468 2484.
    邱瑞照,周肃,邓晋福,等.西藏班公湖-怒江西段舍马拉沟蛇绿岩中辉长岩年龄测定——兼论班公湖-怒江蛇绿岩带形成时代.中国地质, 2004, 31(3): 262–268.
    曲晓明,侯增谦和李振清.冈底斯铜矿带含矿斑岩的40Ar/39Ar年龄及地质意义.地质学报,2003, 77(2): 245–252.
    曲晓明,王瑞江,辛洪波,等.西藏西部与班公湖特提斯洋盆俯冲相关的火成岩年代学和地球化学.地球化学, 2009, 38(6): 523–535.
    曲晓明,辛洪波,赵元艺,等.西藏班公湖中特提斯洋盆的打开时间:镁铁质蛇绿岩地球化学与锆石U–Pb LAICPMS定年结果.地学前缘, 2010, 17(3): 53–63.
    任纪舜,牛宝贵和刘志刚.软碰撞、叠覆造山和多旋回缝合作用.地学前缘, 1999, 6(3):85 93.
    任纪舜和肖黎薇. 1: 25万地质填图进一步揭开了青藏高原大地构造的神秘面纱.地质通报,2004, 23(4): 1–11.
    史仁灯,杨经绥,许志琴,等.西藏班公湖存在MOR型和SSZ型蛇绿岩——来自两种不同地幔橄榄岩的证据.岩石矿物学杂志, 2005, 24(5): 397–408.
    宋彪,张玉梅,万渝生,等.锆石SHRIMP样品靶制作,年龄测定及有关现象讨论.地质论评,2002, 5(增刊): 26 30.
    孙立新,白志达,徐德斌,等.西藏安多蛇绿岩中斜长花岗岩地球化学特征及锆石U PbSHRIMP年龄.地质调查与研究, 2011, 34(1): 10 15.
    涂光炽.关于富碱侵入岩.矿产与地质, 1989, 3(13): 1–4.
    汪传胜,顾连兴,张遵忠,等.东天山哈尔里克山区二叠纪高钾钙碱性花岗岩成因及地质意义.岩石学报, 2009, 25(6): 1499–1511.
    王立全,姚冬生,罗建宁,等.冈底斯-喜马拉雅地区1: 50万地质图.成都地质矿产研究所:未发表资料, 2006.
    王希斌,鲍佩声,邓万明,等.喜马拉雅岩石圈构造演化:西藏蛇绿岩.中华人民共和国地质矿产部地质专报,岩石矿物地球化学(3),第8号.北京:地质出版社, 1987, 138–214.
    王治华,郭晓东,陈祥,等.云南祥云马厂箐富碱斑岩体的地球化学特征及其形成的构造环境.地质论评, 2010, 56(1): 125 135.
    吴福元,黄宝春,叶凯,等.青藏高原造山带的垮塌与高原隆升.岩石学报, 2008, 24(1):1–30.
    吴福元,李献华,郑永飞,等. Lu Hf同位素体系及其岩石学应用.岩石学报, 2007, 23(2):185 220.
    西藏自治区区域地质志.地质专报:区域地质.西藏自治区地质矿产局.北京:地质出版社,1993.
    夏代祥和刘世坤.西藏自治区岩石地层.西藏自治区地质矿产局编著.武汉:中国地质大学出版社, 1997.
    谢才富,朱金初,丁式江,等.琼中海西期钾玄质侵入岩的厘定及其构造意义.科学通报,2006, 51(16): 1944 1954.
    谢超明.青藏高原聂荣微陆块泛非期花岗片麻岩年代学研究. [硕士学位论文].长春:吉林大学, 2011.
    谢尧武,尼玛次仁,沙昭礼,等.中华人民共和国1: 25万区域地质调查报告那曲县幅(H46C001002).西藏自治区地质调查院, 2005.
    谢应雯和张玉泉.横断山区不同成因类型花岗岩中黑云母的标型特征.矿物学报, 1987, 7(3):245 254.
    谢应雯和张玉泉.青藏高原东部及邻区富碱侵入岩中的角闪石和辉石.矿物学报, 1998,18(1): 90 96.
    徐德明,黄圭成和雷义均.西藏西南部拉昂错地幔橄榄岩的地球化学特征及其构造意义.岩石矿物学杂志, 2008, 27(1): 1–13.
    许荣华.西藏中南部花岗岩类和变质岩的年代学和同位素研究.北京:地质出版社, 1990.
    许荣科,郑有业,赵平甲,等.西藏东巧北尕苍见岛弧的厘定及地质意义.中国地质, 2007,34(5): 768–777.
    许志琴,姜枚,杨经绥,等.青藏高原的地幔结构:地幔羽、地幔剪切带及岩石圈俯冲板片的拆沉.地学前缘, 2004, 11(4): 329–343.
    杨虎.西藏安多弧形构造地质特征初探. [硕士学位论文].北京:中国地质大学, 2005.
    杨进辉,吴福元,谢烈文,等.辽东矿洞沟正长岩成因及其构造意义:锆石原位微区U–Pb年龄和Hf同位素制约.岩石学报, 2007, 23(2): 263–276.
    杨经绥,柴耀楚和冯秉贵.班公湖蛇绿岩中的地幔羽型洋中脊玄武岩:地球化学证据.见:青藏高原地质文集.北京:地质出版社, 1991, 447–491.
    喻学惠,莫宣学,曾普胜,等.云南马关地区新生代碧玄岩中地幔包体研究.岩石学报, 2006,22(3): 621 630.
    喻学惠,赵志丹,莫宣学,等.甘肃西秦岭新生代钾霞橄黄长岩和碳酸岩的微量、稀土和Sr,Nd, Pb同位素地球化学:地慢柱-岩石圈交换的证据.岩石学报, 2004, 20(3):483–494.
    袁忠信.关于A型花岗岩命名问题的讨论.岩石矿物学杂志, 2001, 20(3): 293–296.
    张宏飞,徐旺春,郭建秋,等.冈底斯南缘变形花岗岩锆石U-Pb年龄和Hf同位素组成:新特提斯洋早侏罗世俯冲作用的证据.岩石学报, 2007, 23(6): 1347–1353.
    张开均,夏斌,夏邦栋,等.冈底斯弧弧后早白垩世裂谷作用的沉积学证据.沉积学报, 2003,21(1): 31–37.
    张旗,金惟俊,李承东,等.三论花岗岩按照Sr Yb的分类:应用.岩石学报, 2010, 26(12):3431 3455.
    张旗和杨瑞瑛.西藏丁青蛇绿岩中玻镁安山岩类的深成岩及其地质意义.科学通报, 1985,30(16): 1243–1245.
    张拴宏,赵越,刘健,等.华北地块北缘晚古生代-中生代花岗岩体侵位深度及其构造意义.岩石学报, 2007, 23(3): 625 638.
    张修政,董永胜,解超明,等.安多地区高压麻粒岩的发现及其意义.岩石学报, 2010, 26(7):2106 2112.
    张玉泉和谢应雯.青藏高原及邻区富碱侵入岩——以苦干子和太和二岩体为例.中国科学(B辑), 1994, 24(10): 1102 1108.
    张玉修.班公湖-怒江缝合带中西段构造演化. [博士学位论文].中国科学院研究生院, 2007.
    张泽明,董昕,耿官升,等.青藏高原拉萨地体北部的前寒武纪变质作用及构造意义.地质学报, 2010, 84(4): 449 456.
    张正伟,周玲棣,朱炳泉,等.东秦岭北部富碱侵入岩的主要矿物组成.矿物学报, 2002,22(1): 67 74.
    赵珊茸,边秋娟和凌其聪.结晶学及矿物学.北京:高等教育出版社, 2004, 385 400.
    赵文津,刘葵,蒋忠惕,等.西藏班公湖-怒江缝合带:深部地球物理结构给出的启示.地质通报, 2004, 23(2): 623–635.
    赵政璋,李永铁,叶和飞,等.青藏高原大地构造特征与盆地演化.北京:科学出版社, 2001,23 25.
    赵志丹,莫宣学, Nomade S,等.青藏高原拉萨地块碰撞后超钾质岩石的时空分布及其意义.岩石学报, 2006, 22(4): 787–794.
    赵志丹,莫宣学,罗照华,等.印度-亚洲俯冲带结构——岩浆作用证据.地学前缘, 2003,10(3): 149–157.
    赵志丹,莫宣学,孙晨光,等.青藏高原南部地幔包体的发现及其意义.岩石学报, 2008,24(2): 193–202.
    赵志丹,朱弟成,董国臣,等.西藏当雄南部约54 Ma辉长岩-花岗岩杂岩的岩石成因及意义.岩石学报, 2011, 27(12): 3513 3524.
    郑永飞.深俯冲大陆板块折返过程中的流体活动.科学通报, 2004, 49(10): 917–929.
    周肃,莫宣学,董国臣,等.西藏林周盆地林子宗火山岩40Ar/39Ar年代格架.科学通报, 2004,49(20): 2095–2103.
    周详.西藏板块构造-建造图说明书.北京:地质出版社, 1984.
    周云生,吴浩若,郑锡斓,等.西藏南部日喀则地区蛇绿岩地质.地质科学, 1982, 1: 30–39.
    朱弟成,莫宣学,赵志丹,等.西藏南部二叠纪和早白垩世构造岩浆作用与特提斯演化:新观点.地学前缘, 2009, 16(2): 1–20.
    朱弟成,潘桂棠,莫宣学,等.冈底斯中北部晚侏罗世-早白垩世地球动力学环境:火山岩约束.岩石学报, 2006a, 22(3): 534–546.
    朱弟成,潘桂棠,莫宣学,等.青藏高原中部中生代OIB型玄武岩的识别:年代学、地球化学及其构造环境.地质学报, 2006b, 80(9): 1312 1328.
    朱弟成,潘桂棠,王立全,等.西藏冈底斯带中生代岩浆岩的时空分布和相关问题的讨论.地质通报, 2008a, 27(9): 1535–1550.
    朱弟成,潘桂棠,王立全,等.西藏冈底斯带侏罗纪岩浆作用的时空分布及构造环境.地质通报, 2008b, 27(4): 458–468.
    朱弟成,赵志丹,牛耀龄,等.拉萨地体的起源和古生代构造演化.高校地质学报, 2012,18(1): 1 15.
    朱弟成,赵志丹,牛耀龄,等.西藏拉萨地块过铝质花岗岩中继承锆石的物源区示踪及其古地理意义.岩石学报, 2011, 27(7): 1917 1930.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700