用户名: 密码: 验证码:
基于SWAT模型的南四湖流域非点源氮磷污染模拟及湖泊沉积的响应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
南四湖是我国华北地区最大的淡水湖,是南水北调东线工程重要的输水通道和调蓄湖泊。南四湖流域地处34°24′~35°59′N,114°52′~117°42′E之间,是淮河流域的重要组成部分,流域以南四湖为中心,流域内有53条大大小小的河流,从四面八方呈辐射状汇入南四湖。上世纪80年代,流域内工农业快速发展,大量污水未经处理随意排放,使得南四湖流域的水环境遭到了严重破坏。随着南水北调东线工程的推进和南四湖流域各地市生产、生活用水量的增加,南四湖流域水体污染已成为黄淮地区一个不可忽视的问题。
     大量研究表明,近几年来,南四湖流域在点源污染得到有效的控制之后,非点源污染已经成为目前南四湖流域水体污染的主要原因。因此,对南四湖流域非点源污染进行模拟研究,不仅为全面认识南四湖流域水体非点源污染的影响和分布提供科学依据,同时研究方法和所得结果亦可为类似的其它流域非点源污染研究提供借鉴与参考。
     本研究采用野外采样、室内分析和数值模拟等多种研究手段相结合的综合研究的技术路线,尝试利用SWAT模型对南四湖流域非点源污染进行定量模拟,分析南四湖流域非点源污染物的时空分布特征,并探索性地分析检验了南四湖湖区沉积物所含氮、磷元素的空间和时间分布对南四湖流域非点源氮、磷负荷的响应。
     本研究共分为五大部分,包括七章,第一部分即第一章,主要介绍了选题背景、意义、非点源污染的研究综述及国内外研究进展。第二部分包括第二章和第三章,主要介绍了研究区概况,并详述了SWAT模型模拟前的数据准备过程。第三部分包括第四章和第五章,主要论述了典型小流域SWAT模型的构建、校准、验证,南四湖流域非点源污染的模拟及评价。第四部分为第六章,主要分析了南四湖沉积物中氮、磷元素含量在空间分布和时间分布上对南四湖水体非点源氮、磷负荷的响应。第五部分也即第七章,归纳研究结论及未来研究展望。
     本研究得出主要结论如下:
     1、SWAT模型应用于南四湖流域非点源污染的模拟精度较高,且湖东地区模拟效果好于湖西地区。
     考虑到南四湖流域湖东和湖西两个区域的差异性及SWAT模型的数据要求,在湖东和湖西各取泗河流域和东鱼河流域作为典型小流域,进行非点源污染模拟,并将模型参数的校准方法用于流域内其它河流流域的估算,得到了南四湖流域非点源污染的空间分布,取得良好效果。通过对比,湖东地区的模拟效果好于湖西地区,这从一定程度上说明SWAT模型在地形起伏较大的地区模拟精度更高。
     2、南四湖流域非点源氮、磷污染严重,湖东地区非点源氮、磷负荷大于湖西地区。
     通过模拟结果可以看出,南四湖流域土壤侵蚀较轻,大部分地区属于微度土壤侵蚀。流域内非点源氮负荷严重超标,大部分地区氮负荷大于2mg/L,属于氮污染关键区。流域内非点源磷负荷大于0.4mg/L的地区约占总流域面积的40%,这些地区属于磷污染关键区。总体来看,南四湖湖东地区的非点源氮、磷污染较湖西地区严重,其中位于湖东的洸府河流域是南四湖流域非点源氮、磷负荷的最大贡献者。
     3、禽畜养殖和化肥流失是南四湖流域非点源氮、磷污染的主要污染源。
     通过对南四湖流域非点源氮、磷污染的主要污染源进行调查、统计、分析,得到环境背景因素(气候、土壤、地形、土地利用类型等)、化肥流失、农村生活污水、禽畜养殖各因素的贡献率。研究结果表明,除环境背景因素的影响外,禽畜养殖是湖东地区各河流流域非点源氮、磷污染的主要污染来源,化肥流失在湖西地区各河流流域非点源氮、磷污染中占据主要地位。
     4、非点源氮负荷以溶解态为主,非点源磷负荷以吸附态为主。
     通过SWAT模型的模拟及ArcGIS制图,得到流域内各河流流域354个子流域为单位的产流、产沙、坡度、降水、非点源氮负荷、非点源磷负荷的空间分布图。为了进一步探究它们之间的相互关系,对其进行了相关分析。结果显示(1)对产流影响:坡度>降水;(2)对产沙影响:产流>降水>坡度;(3)对非点源氮负荷影响:产流>产沙,因此流域内非点源氮负荷主要为溶解态;(4)对非点源磷负荷影响:产沙>产流,因此流域内非点源磷负荷主要为吸附态。
     5、湖泊沉积物中非点源氮、磷含量对湖泊水体非点源氮、磷负荷有良好的响应效应。
     通过将SWAT模型模拟的入湖口非点源氮、磷含量,与南四湖水质、表层和柱状底泥样点监测分析结果,结合湖泊底泥测年分析数据做对照,分析了湖泊沉积物中氮、磷含量在空间分布和时间分布上对水体中非点源氮、磷负荷的响应。经分析,在空间分布上,湖泊沉积物中的磷含量对湖泊水中非点源磷负荷的有很好的响应效应;在时间分布上,湖泊沉积物中氮、磷含量对湖泊水中氮、磷负荷均有很好的响应,但在时间上稍有滞后。
     本研究主要的贡献与创新点如下:
     ①首次利用最为接近地表流失水文过程的SWAT模型,对南四湖全流域进行了径流量、泥沙负荷、非点源氮负荷和非点源磷负荷的模拟、计算,为进一步掌握南四湖流域水文过程、非点源污染分布等提供数据参考。
     ②研究了2001~2010年年均南四湖流域非点源污染空间分布,确定了土壤侵蚀关键区和营养物质流失关键区,为流域内非点源污染治理和水环境保护措施的制定提供了理论依据。
     ③选取典型小流域进行模拟,并将模型参数的校准方法应用于整个流域的模拟,提高了模拟效率,为SWAT模型模拟类似于南四湖流域的其它流域的非点源污染提供了切实可行的模拟方法。
     ④分析南四湖沉积物所含氮、磷对水体非点源氮、磷负荷在时间和空间上的响应,在一定程度上检验说明了南四湖底泥中氮、磷元素的来源,为南四湖底泥中污染物与营养元素的去除治理工作提供科学依据。
     ⑤较系统地构建了南四湖流域基础地理信息系统与水文、水质污染数据库,为南四湖流域其它相关研究提供了良好基础。
Nansihu Lack is the largest freshwater lack of North China, which is animportant pivot of East Route Project of South-to-North Water Diversion. NasihuBasin, located in the southwest of Shangdong province(34°27′N~35°20′N,116°34′E~117°21′E), and it is an important part of Huaihe basin. Nasihu Lake is thecentre of the basin, where 53 rivers flowed into the Lake. In the 1980s, with the rapiddevelopment, a great deal of wastewater was discharged directly without treatment,which can bring about a serious pollution to the water environment of Nasihu basin.Along with the advance of East Route Project of South-to-North Water DiversionSouth to North Water Diversion and the increase of water consumption formanufacture and resident life, the problem of water pollution was not to be neglectedin Nasihu basin.
     Numerous studies showed that Non-Point Source Pollution (NPS) has become amainly primary cause of Nansihu basin pollution now, after the Point Source Pollutionhas been controlled. For this reason, an all-round understanding of distribution andimpact of NPS pollution in Nansihu basin were based on the research of NPS. Theresearch method can also be used as a source of reference for researching the NPS inanother basin.
     With the methods of field investigation, lab analysis and numerical simulation,the paper studied the simulation of NPS in Nansihu basin with SWAT model. Thecharacteristic of temporal and spatial distribution of NPS pollution in Nansihu basinwas analyzed, and the response of lacustrine deposit to NPS pollution in NansihuLake.
     This study included 7 chapters, which had been separated into five parts. The fistpart was the first chapter, as the opening badge, which gave a general overview of thebackground and significance of this topic, the review of NPS pollution at home andabroad. The second part included the chapter 2 and 3, which introduced the generalsituation of the research district, data preparations for SWAT model. The third partconsisted of chapter 4 and 5, which discoursed the SWAT model building , calibrationand confirmation of typical watersheds, simulation and evaluation of NPS in Nasihubasin. The fourth part was chapter 6, which analyzed the response of lacustrine deposit to NPS pollution of Nansihu Lake in chronology and spatial distribution. Thelast part was chapter 7, which elaborated on the research conclusion and outlook ofthe future research.
     Conclusions of this research were followed as such:
     1. The SWAT model was more rational to simulate the NPS pollution in Nansihu basin,and the result in the east was better than in the west.
     Because of the differences between the east and the west of Nansihu Lake andthe data demand of SWAT model, the typical watersheds, Sihe watershed andDongyuhe watershed, were selected to be simulated firstly. Then the models of Sihewatershed and Dongyuhe watershed were used to simulate the whole Nasihu basin,and good simulation results were got. The simulation result in the east was better thanin the west from the contrastive analysis, which showed that SWAT model was moresuited to simulate the rugged region to a certian extent.
     2. The NPS pollution of nitrogen and phosphorus was very serious in Nansihu basin,and the pollution in the east was more serous than it in the west.
     The result of simulation indicated that soil erosion in large part of Nansihu basinis not serious. The nitrogen load in this region far exceed quota, and the density ofnitrogen was more than 2mg/L, which was the key area of nitrogen pollution. Thedensity of phosphorus in about 40 percent of this region was more than 0.4 mg/L,where NPS pollution of phosphorus was serious. On the whole, NPS pollution ofnitrogen and phosphorus in the east was more serious than in the west, and theprimary contributor was Guangfuhe watershed.
     3. The primary pollution sources were livestock and poultry breeding andchemical fertilizer loss.
     The investigation, statistics and analysis of the source of NPS pollution ofnitrogen and phosphorus showed the contribution rates of all the factors, such asenvironment background value (climate, soil, topography, landuse and so on),chemical fertilizer loss, domestic sewage of village and breeding of livestock andpoultry. The research indicted that except the effect of environment background value,breeding of livestock and poultry was the primary source of NPS pollution in the eastof the basin, and chemical fertilizer loss was the mainly source of NPS pollution inthe west.
     4. The total nitrogen load in Nansihu watershed was mainly solution, and the totalphosphorus load in Nansihu watershed was mainly adsorption.
     The simulation with SWAT model and the map making with ArcGIS received thespatial distribution maps of runoff, silt, gradient, rainfall, NPS nitrogen load and NPSphosphorus load. In order to know the relation among these factors, the correlation ofthem was analyzed. The result showed that: (1) The sequence of the factor, whicheffected the stream flow, was slope > rain fall. (2) The stream flow impact on silt wasgreater than rain fall and slope. (3) The total nitrogen load and the stream flow werepositively correlation with the correlation coefficient 0.733, so the nitrogen wasmainly solution. (4) The total phosphorus load and the sediment flow were positivelycorrelation with the correlation coefficient 0.97, so the phosphorus was mainlyadsorption.
     5. Some responses of sediment to the NPS pollution in the lake existed in both spaceand time.
     In space, the phosphorus in sediment had relation to the NPS of phosphorus inthe lake, because the phosphorus was adsorption both in sediment and lack. In time,the nitrogen and phosphorus in lack impact on them in sediment, but the change ofsediment was latter than lake.
     The contributions and achievements of this research were as follow.
     ①It was the first time to simulate the runoff, silt, NPS nitrogen and phosphorus loadwith SWAT model. This can provide data for mastering the hydrologic process andNPS pollution of Nansihu basin.
     ②The spatial distribution of NPS pollution in Nansihu basin of recent ten years wasresearched, and the key areas of soil erosion and nutriment loss were confirmed.This work was the basis of making pollution regulation and water protectionmeasures.
     ③It was an efficient method to select typical watersheds to simulate firstly, and tosimulate the entire Nansihu basin with calibrated models of typical watersheds,which can be used to simulation similar watershed.
     ④The responses of nitrogen and phosphorus in sediment to them in the lake wereanalyzed. The result showed the origin of the nitrogen and phosphorus in sediment,which was scientific basis of sediment pollution improvement.
     ⑤The data base, which contained hydrology information, pollution data, and so on,was built, and it was the basis of the other research of Nansihu basin.
引文
[1]徐冠华.立足中国走向世界[EB](http://sh.eastday.com/qtmt/20101103/u1a821030.html)
    [2]乔平林.流域面源污染径流模拟方法研究----以开县小江流域为例[R].博士后出站报告,中国测绘科学研究院,2007.
    [3]郝芳华,程红光,杨胜天.非点源污染模型:理论方法与应用[M].北京:中国环境科学出版社,2006.
    [4]http://baike.baidu.com/view/3313.htm [EB]
    [5]中华人民共和国水利部. 2004年中国水资源公报[R].北京:2005.
    [6]国家环境保护总局. 2004年中国环境状况公报[R].北京:2005.
    [7]温家宝.国务院政府工作报告2005[R].北京:2005.
    [8]万超.潘家口水库上游流域面源污染的模拟研究[D].硕士学位论文,清华大学,2002.
    [9]王晓燕.非点源污染及其管理[M].北京:海洋出版社,2003.
    [10]USEPA. Summary of the Clean Water Acts [EB].(http://www.epa.gov/oecaagct/lcwa.html#Nonpoint%20Source%20Pollution)
    [11]庞靖鹏.非点源污染分布式模拟——以密云水库水源地保护为例[J].博士学位论文,北京师范大学,2007.
    [12]李家科.流域非点源污染负荷定量化研究----以渭河流域为例[D].博士学位论文,西安理工大学,2009.
    [13]鲍全盛,王华东.我国水环境非点源污染研究与展望[J].地理科学,1996,(1):66~71.
    [14]U S EPA Non-point Pointers EPA28412F2962004A. USEPA. Office of Water(4503F). U SGov Print Office. Washington. DC 1996.
    [15]Kronvang B., Gr sbo ll P., et al. Diffuse Nutrient in Denmark. Water Science and Technology1996(33): 81~88.
    [16]Boers P.C.M. Nutrient Emissions from Agriculture in the Netherlands: Causes and Remedies.Water Science and Technology 1996(33): 183~189.
    [17]王晓燕,王一峋,蔡新光,等.北京密云水库流域非点源污染现状研究[J].环境科学与技术,2002,25(4):1~3.
    [18]于水.公共突发事件应急管理研究——以太湖流域农业面源污染为例[J].管理观察,2009(012):92~95.
    [19]李家科,李怀恩,李亚娇,等.基于AnnAGNPS模型的陕西黑河流域非点源污染模拟[J].水土保持学报,2008,22(6):82~88.
    [20]鲍全盛,曹利军,王华东.密云水库非点源污染负荷评价研究[J].水资源保护,1997,(l):8~11.
    [21]杨苏树,倪喜云.大理州洱海流域农业非点源污染现状[J].农业环境与发展,1999,(2):43~44
    [22]屠清瑛,顾丁锡,尹澄清,等.巢湖一富营养化研究[M].合肥:中国科技大学出版社,1990.
    [23]熊丽君.基于GIS的非点源污染研究[D].硕士学位论文,河海大学,2004.
    [24]Kevin M.P, Frederick W C, Gary B. Beta. A Watershed-Scale Model for Predicting NonprofitPollution Risk in North Carolina [J]. Environmental Management. 2004, 34(1): 62~74.
    [25]孙莉宁.基于WARMF模型的流域非点源污染分析---以杭埠—丰乐河流域为例[D].硕士学位论文,合肥工业大学,2005.
    [26]赵群群,杨凯.南四湖污染物排放对南水北调东线水质的影响及治理措施[J].价值工程,2010,8:105~107.
    [27]武周虎,慕金波,谢刚,等.南四湖及入出湖河流水环境质量变化趋势分析[J].环境科学研究,2010,23(28):1167~1173.
    [28]彭近新,陈慧君.水质富营养化与防治[M].北京:中国环境科学出版社,1988,78~84.
    [29]张祖陆,彭利民,孙庆义.南四湖水质污染综合评价及水质分区[J].地理学与国土研究,1998,14(4):30~33.
    [30]杨丽原.南四湖现代沉积环境的地球化学特征及污染分析[D].博士学位论文,中国科学院南京地理与湖泊研究所,2004.
    [31]王晓军,潘恒健,杨丽原,等.南四湖表层沉积物重金属元素的污染分析[J].海洋湖沼通报,2005,(2):23~29.
    [32]杨丽原,沈吉,张祖陆,等.南四湖表层底泥重金属和营养元素的多元分析[J].中国环境科学,2003,23(2):206~209.
    [33]杨丽原,沈吉,张祖陆,等.南四湖表层底泥重金属污染及其风险性评价[J].湖泊科学,2003,15(3):252~256.
    [34]杨东海,张晴,潘勇伟,等.山东省南四湖及其流域环境特征[J].江苏环境科技,2004,17(增刊):120~123.
    [35]牛志明,解明曙,孙阁,等.非点源污染模型在土壤侵蚀模拟中的应用及发展动态[J].中国水土保持,2001,(3):20~22.
    [36]Hung, H.H. and N.P. Nikolaidis, Modeling of no point source pollution of nitrogen at thewatershed scale. Water resources bulletin(Urbana), 1998. 34(2): 359~374.
    [37]Crawford, N.H., Lesley, R. K. Digital simulation in hydrology: Stanford watershed modelIV[R]. Tech. Rep.No.39.Palo Alto: Stanford University, 1966.
    [38]Hydrologic Engineering Center(HEC). HEC-1 flood hydrograph package, user's manual[M]. Davis: U.S. Army Corps of Engineers, 1968.
    [39]Metcalf and Eddy, Inc., Univ. of Florida, and Water Resources Engineers, Inc. Storm watermanagement model-Final report [M].Washington, D. C.: USEPA, 1971.
    [40]Sugawara, M. The flood forecasting by a series storage type model [J]. InternationalSymposium Floods and their Computation. 1967, 1: 555~560.
    [41]宋建军,金鑫.水文数学模型研究概述[J].山西水利科技,2006,161(3):22~24.
    [42]赵人俊.流域水文模拟——新安江模型与陕北模型[M].北京:水利电力出版社,1984.
    [43]Burnash, R.J.C. and R.L. Ferral, A generalized stream flow simulation system. MathematicalModels in Hydrology, 1974. 2.
    [44]Ismail, K.A.R., J.F.B. Leal, and M.A. Zanardi, Models of liquid storage tanks. Energy(Oxford), 1997. 22(8): 805~815.
    [45]张秋玲.基于SWAT模型的平原区农业非点源污染模拟研究[D].博士学位论文,浙江大学,2001.
    [46]魏文秋,于建营.地理信息系统在水文学和水资源管理中的应用[J].水科学进展,1997,8(003):296~300.
    [47]施为光.城市降雨径流长期污染负荷模型的探讨[J].城市环境与城市生态,1993,6(2):6~10.
    [48]陈西平.演算降雨及农田径流污染负荷的三峡库区模型[J].中国环境科学,1992,12(1):48~52.
    [49]刘枫,王华东,刘培桐.流域非点源污染的量化识别方法及其在于桥水库流域的应用[J].地理学报,1988,43(4):329~339.
    [50]王中根,刘昌明,黄友波. SWAT模型的原理、结构及应用研究[J].地理科学进展,2003,22(l):79~86.
    [51]张雪松,郝芳华,杨志峰,等.基于SWAT模型的中尺度流域产流产沙模拟研究[J].水土保持研究,2003,10(4):38~42.
    [52]邢可霞,郭怀成,孙延枫,等.基于HPSF模型的滇池流域非点源污染模拟[J].中国环境科学2004,24(2):229~232.
    [53]陈欣,郭新波.采样AGNPS模型预测小流域磷元素流失的分析[J].农业工程学报,2000,16(5):44~47.
    [54]洪华生,曹文志,张玉珍,等.九龙江典型流域氮磷流失的模拟研究[J].厦门大学学报,2004,43:243~248.
    [55]游松财,李文卿. GIS支持下的土壤侵蚀量估算----以江西省泰和县灌溪乡为例[J].自然资源学报,1999,1:62~68.
    [56]苗群.南四湖水环境治理评价研究[D].博士学位论文,青岛大学,2008.
    [57]沈吉,张祖陆,杨丽原,等.南四湖----环境与资源研究[M].北京:地震出版社,2008.
    [58]李吉学,李金玉,李平.南四湖水质有机污染评价及趋势分析[J].治淮,1999,(07):38~39.
    [59]孙娟.南四湖湿地功能变化及评价分析研究[D].硕士学位论文,山东师范大学,2002.
    [60]王义生,贾德旺,岳跃化.南四湖湿地低值环境评价及保护措施浅析[J].山东国土资源,2007,23(1):41~44.
    [61]孙庆义,牛奔,杨丽原.南四湖表层沉积物营养元素的污染分析[J].水利学报,2005(增刊),12:473~477.
    [62]罗辉.南水北调改善南四湖水流水质特性及湖滨带控污技术研究[J].博士学位论文,河海大学,2006.
    [63]史双昕,杨永亮,石磊.南四湖表层沉积物中多环芳烃的分布及其来源[J].青岛大学学报,2005,20(4):95~99.
    [64]张祖陆,沈吉,孙庆义,等.南四湖的形成及水环境演化[J].海洋与湖沼,2002,33(3):314~321.
    [65]张祖陆,孙庆义,彭利民,等.南四湖地区水环境问题探析[J].湖泊科学,1999,11(1):86~90.
    [66]安文超.南四湖及主要入湖河口沉积物的污染特征及磷吸附释放研究[D].博士学位论文,山东大学,2008.
    [67]宋宪国,李媛.南四湖富营养化评价指标的优选[J].山东环境,1998,85(4):25~25.
    [68]辛良杰.南四湖湖泊湿地生态环境需水量初步研究[D].硕士学位论文,山东师范大学,2005.
    [69]张祖陆,辛良杰,梁春玲.近50年来南四湖湿地水文特征及其生态系统的演化过程分析[J].地理研究,2007,26(5):957~966.
    [70]刘洪林,邢文洁,王素芬,等.南水北调东线输水干线南四湖水环境质量研究[J].水文,2003,23(4):49~51.
    [71]李艳红,杨丽原,刘恩峰,等.南四湖富营养化评价与原因分析[J].济南大学学报(自然科学版),2010,24(2):212~215.
    [72]李艳红.南四湖富营养化评价及水质数值模拟[D].硕士学位论文,济南大学,2010.
    [73]张祖陆,梁春玲,管延波.南四湖湖泊湿地生态健康评价[J].中国人口资源与环境,2008,18(1):180~184.
    [74]李辉,姚丽萍.南水北调东线工程济宁段农业面源污染现状及控制对策[J].水利科技,2007,10:35~37.
    [75]宋涛.南四湖沿岸农业面源污染研究[D].硕士学位论文,山东师范大学,2010.
    [76]张祖陆,牛振国,孙庆义,等.南四湖底泥污染及其变化过程[J].中国环境科学,1999,19(1):29~32.
    [77]杨丽原,王晓军,刘恩峰.南四湖表层沉积营养元素分布特征[J].海洋湖泊通报,2007,(02):40~44.
    [78]杨丽原,沈吉,张祖陆.近四十年来山东南四湖环境演化的元素地球化学记录[J].地球化学,2003,32(5):453~460.
    [79]周来,冯启言,王华,等.南四湖表层底泥磷的化学形态及其释放规律[J].环境科学与技术,2007,30(6):37~40.
    [80]刘恩峰,沈吉,杨丽原,等.南四湖及主要入湖河流沉积物中磷的赋存形态研究[J].地球化学,2008,37(3):290~296.
    [81]张志斌,张学杨,张波,等.南四湖微山湖区沉积物磷形态分布特征[J].环境科学,2009,30(5):1345~1350.
    [82]Arnold J G, Williams J R, Srinivasan R, et al. Large area hydrologic modeling andassessment Part I: Model development[J]. Journal of the American Water ResourcesAssociation.1998, 34(1):73~89.
    [83]Neitsch S L, Arnold J G, Kiry J R, et al. Soil and water assessment tool user’s manual[M].Temple: Grassland, soil and Water Research Laboratory, Agricultural Research Service, 2002.
    [84]肖军仓,周文斌,罗定贵,等.非点源污染模型SWAT用户应用指南[M].北京:地质出版社,2010.
    [85]Amold J G, Williams J R, Nicks A D, et al. SWRRB: A Basin Scale Simulation Model for soiland Water Resources Management [M]. College Station: Texas A & M Press, 1990.
    [86]USDA.CREAMS, A Field Scale Model for Chemicals, Runoff, and Erosion from AgriculturalManagement Systems. Conservation research report No.26.USDA, Washing, D.C.1980:643~644.
    [87]Santhi C, Arold J G, Williams J R et al. Validation of the SWAT model on a large river basinwith point and non-point sources [J]. Journal of the American Water Resource Association, 2001,37(5): 1169~1188.
    [88]Bouraoui F, Benabdallah S, Jrad A et al. Application of the SWAT model on the Medjerdariver basin(Tunisia)[J]. Physics and Chemistry of the Earth, Parts A/B/C, 2005, 30(8~10):497~507.
    [89]LUO Y, ZHANG M. Management oriented sensitivity analysis for pesticide transport inwatershed-scale water quality modeling using SWAT [J]. Environmental Pollution, 2009: 1~9.
    [90]Chanasyk, D.S., E. Mapfumo, and W. Willms, Quantification and simulation of surface run offfrom fescue grassland watersheds. Agricultural Water Management, 2003. 59(2): 137~153.
    [91] Schomberg, J.D., et al., Evaluating the influence of landform, surficial geology, and land useon streams using hydrologic simulation modeling. Aquatic Sciences-Research Across Boundaries,2005. 67(4): 528~540.
    [92] Arabi, M., et al., Role of watershed subdivision on modeling the effectiveness of bestmanagement practices with SWAT. Journal of the American Water Resources Association, 2006.42(2): 513~528.
    [93]张丽媛.洋河水库集水区氮磷污染特征及流域面源污染负荷估算研究[D].硕士学位论文,内蒙古农业大学,2010.
    [94]M P Tripathi, R K Panda, N S Raghuwanshi. Development of effective management plan forcritical subwatersheds using SWAT model[J].Hydrol.Process,2005, 19: 809~826.
    [95]M P Tripathi,R K Panda,N S Raghuwanshi.Calibration and validation of SWAT model forpredicting runoff and sediment yield of a small watershed in India[J].Agricultural EngineeringJournal,2003, 12(1&2): 95~118.
    [96]范丽丽,沈珍瑶,刘瑞民,等.基于SWAT模型的大宁河流域非点源污染空间特性研究[J].水土保持通报,2008,28(4):133~37.
    [97]李家科,刘健,秦耀民,等.基于SWAT模型的渭河流域非点源氮污染分布式模拟[J].西安理工大学学报,2008,24(3):278~285.
    [98]王晓燕,秦福来,欧洋,等.基于SWAT模型的流域非点源污染模拟----以密云水库北部流域为例[J].农业环境科学学报,2008,27(3):1098~1105.
    [99]王晓燕,王晓峰,汪清平,等.北京密云水库小流域非点源污染负荷估算[J].地理科学,2004,24(2):227~231.
    [100]Fang-hua, H.A.O., Z. Xue-song, and Y. Zhi-feng, A distributed non-point source pollutionmodel: calibration and validation in the Yellow River Basin. Journal of Environmental Sciences,2004. 16(4): 646~650.
    [101]刘昌明,李道峰,田英,等.基于DEM的分布式水文模型在大尺度流域应用研究[J].地理科学进展,2003,22(5):437~445.
    [102]万超,张思聪.基于GIS的潘家口水库面源污染负荷演算[J].水力发电学报,2003(002):62~68.
    [103] http://baike.baidu.com/view/1033880.htm[EB]
    [104]宋坦花.南四湖流域生态经济区划研究[D].硕士学位论文,山东师范大学,2011.
    [105]梁春玲,张祖陆.南四湖自然保护区生态旅游资源评价与开发[J].资源开发与市场,2007,23(3):260~262.
    [106]海洋.基于遥感的南四湖水质监测及评价研究[D].硕士学位论文,青岛理工大学,2008.
    [107]陈平,姜明丽,王淑霞.南四湖流域水文地区化学环境分析[J].中国煤炭地质,2008,20(11):26~29.
    [108]杨秀芹,钟平安,夏可政. 1960-2005年南四湖流域气候变化趋势及其突变分析[J].冰川冻土,2008,30(5):801~806.
    [109]鲁孟胜,韩宝平,吴恩江,等.南四湖流域环境地质问题及其治理对策[J].山东科技大学学报(自然科学版),2003,22(2):41~44.
    [110]张伟.南四湖主要入湖河流水质分析与评价研究[D].硕士学位论文,济南大学,2011.
    [111]詹道强.南四湖水位变化及干旱情况分析与对策[C].中国水利学会首届青年科技论坛文集,2003:134~138.
    [112]邓坤,谭炳卿.多目标规划法在南四湖流域水资源优化配置中的应用[J].水资源研究,2009,30(4):14~18.
    [113]徐建国,李生果,朱恒华.南四湖流域平原区浅层地下水氮污染特征[J].工程勘察,2010,(5):40~44.
    [114]济宁市新闻出版局编.济宁市水利志[M]. 1997.
    [115]微山县史志办公室编.微山湖志[M].济南:黄河出版社,2010.
    [116]水利部水力水电规划设计总院,全国水资源综合规划技术工作组.全国水资源综合规划地表水水质评价及污染物排放量调查估算工作补充技术细则[R].北京:水利部水利水电规划设计总院,2003.
    [117]柯普.人粪尿[J].新农业,1972,Z1:28~29.
    [118]马记良.人粪尿的成分及性质[J].新农业,1996,02:18~18.
    [119]武淑霞.我国农村畜禽养殖业氮磷排放变化特征及其对农业面源污染的影响[D].博士学位论文,中国农业科学院,2005.
    [120]http://baike.baidu.com/view/3872661.htm[EB].沈振月,杨斌,刘建明,等.浙江省化肥、农药污染状况及防治对策研究[J].上海环境科学.
    [121]http://www.eedu.org.cn/Article/academia/papers/sumpapers/200405/1127.html[EB]
    [122]初明光,王激清,马文奇,等.山东省粮食作物的化肥施用状况分析[J].土壤肥料,2006(2):12~15.
    [123]Neitsch, S.L., et al., Soil and water assessment tool theoretical documentation, version 2000.Grassland, Soil and Water Research Laboratory, Temple, Texas, 2001.
    [124]康杰伟. SWAT模型运行结构及文件系统研究[D].硕士学位论文,南京师范大学,2008.
    [125]尹刚.基于SWAT2000的图们江流域氮磷营养物非点源污染研究[D].硕士学位论文,东北师范大学,2009.
    [126]房孝铎,王晓燕,欧洋.径流曲线数法(SCS法)在降雨径流量计算中的应用----以密云石匣径流试验小区为例[J].首都师范大学学报(自然科学版),2007,28(1):89~92.
    [127]山东省土壤肥料工作站.山东土种志[M].北京:农业出版社,1993.
    [128]刘多森.土壤渗透系数的理论计算[J].土壤,1981,01:18~23.
    [129]牛振海.试论土壤渗透系数的经验公式和曲线图[J].东北水利水电,1999,9:17~19.
    [130]陕西师范大学化学系分析化学教研室,陕西省农林科学院分析室编.农业化学常用分析方法[M].陕西:科学技术出版社,1980.
    [131]蔡永明,张科利,李双才.不同粒径制间土壤质地资料的转换问题研究[J].土壤学报,2003,40(4):511~517.
    [132]Williams J R, Sharply A N. EPIC- Erosion Productivity Impact CalculatorⅠ. ModelDocumentation. US Department of Agriculture Technical Bulletin. N. 1990.
    [133]荀尚培,吴文玉,张宏群.基于统计的MODIS地表反射率简单估算方法[J].量子电子学报,2006,23(5):746~751.
    [134]王开存,陈长和,郭铌.用NOAA/AVHRR探测地表反射率和NDVI的订正及误差分析[J].应用气象学报,2003,14(2):165~175.
    [135]http://blog.sina.com.cn/s/blog_52fb052f0100cn7o.html [EB]
    [136]肖军仓.基于SWAT模型的抚河流域泥沙模拟研究[D].硕士学位论文,华东理工大学,2005.
    [137]Van Griensven. Sensitivity auto–calibration uncertainty and model evaluation in SWAT2005[Z]. Grassland, soil and water research service, Temple, TX, 2007.
    [138]雷晓辉,廖卫红,蒋云钟,等.分布式水文模型EasyDHM模型(Ⅰ):理论方法[J].水利学报,2010,41(7):786~794.
    [139]张洪刚,郭生练,王才君,等.概念性流域水文模型参数优选技术研究[J].武汉大学学报,2004,37(3):18~26.
    [140]刘婧.于桥水库流域下垫面变化对入库径流影响的研究[D].硕士学位论文,天津大学,2010.
    [141]陈强,苟思,秦大庸,等.一种高效的SWAT模型参数自动率定方法[J].水利学报,2010,41(1):113~119.
    [142]白薇,刘国强,董威,等. SWAT模型参数自动率定的改进与应用[J].中国农业气象,2009,30(增2):271~275.
    [143]金相灿,屠清瑛.湖泊富营养化调查规范(第二版)[M].北京:中国环境科学出版社,1990.
    [144]隋桂荣.太湖表层沉积物中OM、TN、TP的现状与评价[J].湖泊科学,1996,8(4):319~324.
    [145]吕晓霞,翟世奎,牛丽凤.长江口柱状沉积物中有机质C/N比的研究[J].环境化学,2005,24(3):255~259.
    [146]庞煜,龙腾锐,尘峰,等.南水北调东线山东段沿线水污染现状调查与分析[J].给水排水,2002,28(8):18~20.
    [147]杨丽原,沈吉,刘恩峰,等.南四湖现代沉积物中营养元素分布特征[J].湖泊科学,2007,19(4):390~396.
    [148]沈吉,张祖陆,孙庆义,等.南四湖沉积剖面中色素与有机碳同位素特征的古环境意义[J].湖泊科学,1998,10(2):17~22.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700