用户名: 密码: 验证码:
高效无功与谐波动态控制方法及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电能是国民经济和人民生活的命脉,随着非线性负载的大量增加,引起电网电流、电压波形发生畸变,造成电网的谐波污染和电能损失;同时,冲击性负载及无功补偿不足常引起电网电压跌落和闪变,影响企业的正常生产和人民的日常生活,并导致线路损耗增加。目前我国的输配电线损率为6.72%左右,若能达到西方发达国家的4.7%左右,每年可节约电能740亿度以上,谐波污染严重、无功补偿不足、电压波动频繁等电能质量问题是导致我国电能损耗高的重要原因。
     针对配电网电能质量控制的关键瓶颈问题,本文以国家自然科学基金项目和国家"863"计划项目为依托,详细阐述了高效电能质量控制的内涵,从高效无功与谐波动态控制系统新型拓扑结构和控制装置优化规划方法两个层面,深入研究了企业配电网高效无功与谐波综合动态控制的相关理论和方法。研究内容涵盖了高效无功与谐波动态控制系统的工作机理分析、数学建模、控制算法、优化运行、以及工程应用时的关键技术问题等方面,形成了较为完善的高效无功与谐波动态控制方法的基本研究方法和技术方案,研究重点及取得的成果主要体现在以下几个方面:
     (1)提出了一种兼顾HAPF和SVC优势、克服其各自不足的配电网高压系统高效无功与谐波混合控制器HVHC,在分析HVHC基本工作原理的基础上建立了其电气模型。深入研究了HVHC系统的工作特性,揭示了HVHC i皆波动态治理子系统和无功连续调节子系统间相互耦合的本质,在此基础上提出了HVHC复合控制方法,实现了谐波动态治理子系统和无功连续调节子系统间的解耦控制。HVHC实现了配电网高压系统的谐波及无功功率的综合动态补偿,并具备补偿不平衡、电压支撑、阻尼振荡等功能,大幅降低了配电网的谐波损耗和无功损耗。
     (2)着重研究了电网电压发生波动、电压畸变等系统异常情况时,HVHC直流侧电压的稳定性问题;在剖析HVHC直流侧电压抬升机理的基础上,提出了优化HVHC注入支路参数、改进HVHC有源部分主电路结构以及复合控制方法等三种稳定直流侧电压以提高系统可靠性的方法,确保了HVHC直流侧电压的稳定及HVHC系统的可靠运行。
     (3)提出了兼顾成本和性能优势的配电网低压系统高效混杂无功补偿器HHVC进行低成本大容量无功动态调节,并具备滤波功能。在分析HHVC的基本结构和建立电气模型的基础上,对采用基于检测负载谐波电流控制策略下HHVC的稳定性、运行机理进行了深入研究,揭示了HHVC运行的内在本质;同时在分析HHVC连续子系统和离散子系统交互影响的基础上,提出了HHVC专家协同控制方法,确保了系统的经济、稳定运行。
     (4)建立了配电网的谐波域摄动模型,在此基础上提出了无功与谐波综合优化规划问题的数学模型,为无功与谐波综合优化规划问题的求解奠定了基础;提出了无功及谐波综合优化规划的启发式频域摄动分析法HPFA。HPFA法首先提出了频域摄动量分析,获得了高效无功及谐波补偿装置的最优配置集,提出了启发式精确搜索算法,实现了对无功及谐波综合优化规划目标函数的快速、精确求解,为谐波及无功综合动态治理装置工程应用时以较低的成本获得较优的治理效果提供了理论指导。
     (5)以合肥某铜材厂35kV配电网电能质量综合控制工程为背景,利用本文提出的无功与谐波优化规划的启发式频域摄动分析法为该厂设计了高效无功与谐波控制系统的最优安装位置和容量;针对该厂谐波及无功的实际工况,并结合HVHC、HHVC系统的运行特点,为该厂设计了电能质量控制整体技术方案;为提高HVHC、HVC系统的控制性能及确保装置的长期可靠运行,对HVHC、HHVC系统工程应用时的若干关键技术难题进行了研究,并提出了相关解决措施;最后,为该厂研制了HVHC、HHVC装置,装置投运后运行效果良好,企业产品质量显著提高、节能降耗效果明显。
     本文以配电网电能质量控制、企业电气节能需求为背景,提出了高效无功与谐波混合控制器HVHC和高效混杂无功补偿器HHVC,并对谐波及无功综合优化规划问题进行了研究。HVHC、HHVC克服了单一电力电子在功能上的局限,实现了配电网高低压系统的谐波、无功动态治理,电压支撑及闪变抑制等。论文对HVHC、HHVC的研究方法,可以为其它高效电能质量控制装备的研究提供一定的借鉴意义;工程应用的整体方案设计思路和一些工程经验还可推广到其它电能质量控制电力电子系统的设计和应用中,为推进电力电子混合、混杂系统的实用化进程提供有益的参考和借鉴。
Electrical energy plays an important role in the economic development and people's lives. With widely used of the non-linear load in the grid, the supply current and voltage become distortion which causes harmonic pollution and energy losses. Meanwhile, voltage fluctuation and voltage flicker caused by the impulsive load and reactive power variation have greatly disturbed the industrial production and people's lives. It also increases the line loss of the grid. The line loss rate of distribution grid is about 6.72% in our country. It can save more than 74 billion kWh per year, if the line loss rate reaches about 4.7% of the Western developed countries.
     Aiming at the key problem of power quality control technology in distribution grid, and based on the financial support of The National Natural Science Foundation of China (Project No.60774043) and The National High Technology Research and Development of China (863 Program) (Project No.2008AA05Z211), the connotation of the high-effiency power quality control is firstly explained in detail in this paper. Novel theories and methods of high-effieccy reactive power compensation and harmonic elimination in distribution grid have been studied in a deep-going way. Two novel comprehensive power quality controller, named High-efficiency Var and Harmonic hybrid Controller (HVHC) and High-efficiency Hybrid Var Controller (HHVC), were proposed to improve the power quality and decrease power losses. The working mechanism, mathematical model, control method, optimal operation and the critical technical problems in application of comprehensive power quality controller are described in detail in this paper. The emphasis and achievement of the paper mainly manifests in the following aspects:
     (1) High-efficiency Var and Harmonic hybrid Controller (HVHC) is proposed to realize harmonic currents dynamical suppression and reactive power dynamical compensation at the same time in high voltage distribution grid. The shortcomings of HAPF and SVC are avoided in this system. Based on the analysis of its working principle, the electric model is established. The compensation characteristics of harmonic and reactive power are also given in this paper. Furthermore, suppressing coupling crosstalk hybrid control strategy is proposed to eliminate the infection between SVC and IHAPF. Simulation and experiment results show that, HVHC can realize the harmonic currents dynamical suppression and reactive power dynamical compensation at same time. It can also realize the unbalance compensation, voltage support, damping oscillation, etc which can reduce the harmonic losses and reactive power loss greatly.
     (2) This paper mainly focuses on the DC voltage stability of HVHC under interference. Based on the analysis of HVHC's DC voltage problem, optimizing the parameters of HVHC's injection circuit, improving the main circuit of HVHC's active part and composite control strategy are proposed to improve system reliability.
     (3) This paper proposes a High-efficiency Hybrid Var Controller to realize the low-cost, high-capacity continuous adjustment of reactive power. It can also eliminate harmonic currents and flicker, which has significantly improved the power quality and power utilization of low-voltage distribution grid. Based on the topology and electrical model of HHVC, the stability and operation mechanism are described in detail in the control strategy of detecting the load's harmonic current. HHVC expert cooperative hybrid control method is proposed in this paper to maintain the economic and stable operation of system.
     (4) Based on the establishment of node admittance matrix in harmonic domain, harmonic power flow calculation method of distribution grid is described in this paper. Heuristic Perturbation Frequency domain Analysis method is proposed to arrange the compensation device and simplify the iteration calculation of power flow. Sensitivity analysis is used to get the reasonable installation location. Combining the advantage of Benders decomposition method in solving mixed integer problems and Lagrange multiplier method in getting the optimal solution of continuous variable, a method is used to obtain the optimal solution in the alternative solutions. At last, harmonic suppression and reactive power optimization planning are described in detail in this paper. Simulation results verify the validity of the proposed method in this paper.
     (5) Based on the project of harmonic suppression and var compensation in a 35kV distribution grid in copper material factory, several critical technical problems in the application of power electronic hybrid system HVHC and HHVC are described in detail in this paper. The power quality technical scheme of this factory is designed. And the application results verify the validity of the proposed method in this paper.
     Based on the proposed theory and design method, this paper makes a deep research on several critical technical problems in the application of power electronic hybrid system HVHC and HHVC to meet the industrial need on harmonic suppression and var compensation in large industrial enterprise. The overall design scheme of HVHC and HHVC is described in detail in this paper. The compensation system of HVHC and HHVC has been developed. The application result shows that the compensation system has good performance and the power quality of this enterprise has improved greatly.
     Accroding to the research of distribution grid power quality control and the electric energy saving of enterprise, power electronic hybrid system HVHC and HHVC are proposed in this paper. Besides, harmonic suppression and reactive power optimization planning are also described in detail. HVHC and HHVC overcome the shortcomings of single power electronics in compensation performance, realizing the dynamic compensation of harmonic and reactive power, voltage support and flicker suppression in the high and low voltage side of distribution grid. The research on HVHC and HHVC is very practical for the other researches of power electronic hybrid system. The overall program design ideas and some engineering experience can be extended to the design and application of other power electronic systems. It also provides a useful practical reference for the development of power electronic hybrid system.
引文
[1]张一中,宁元中,宋永华,朱光永.电力谐波.成都:成都科技大学出版社,1992,23-36
    [2]夏道止,沈赞埙.高压直流输电系统的谐波分析及滤波.北京:水利电力出版社,1994,1-10
    [3]林海雪,孙树勤.电力网中的谐波.北京:中国电力出版社,1998.66-69
    [4]阿里拉加J,布莱德勒D A,伯德格尔P S.电力系统谐波.唐统一译.徐州:中国矿业大学出版社,1991,1-10
    [5]阿里拉加J,布莱德勒D A,伯德格尔P S.电力系统谐波.容健纲,张文亮译.武汉:华中理工大学出版社,1994,47-53
    [6]王兆安,杨君,刘进军.谐波抑制与无功补偿.北京:机械工业出版社,1998,8-13
    [7]罗安.电网谐波治理和无功补偿技术及装备.北京:中国电力出版社,2006,22-32
    [8]姜华.高耗能用户电能质量测试分析与治理措施研究,[华北电力大学硕士学位论文],北京:华北电力大学,2005,6-13
    [9]肖湘宁,尹忠东,徐永海.现代电能质量问题综述.电气时代,2004,11(11):48-53
    [10]IEEE Standards Coordinating Committee 22 on Power Quality. IEEE Std 1159-1995 IEEE Recommended Practice for Monitoring Electric Power Quality, ISBN-1-55937-549-3,1995,105-111
    [111谢小荣,崔文进,陈远华,等.多机电力系统中STATCOM与发电机励磁的协调控制.电力系统自动化,2002,26(01):14-17
    [12]吴国红,贺家李,余贻鑫,等FACTS装置最佳设置点的选择指标.电力系统自动化,1998,22(09):57-60
    [13]夏岩峰100Mvar SVC在220kV系统中的应用研究.[华北电力大学硕士学位论文].北京:华北电力大学,2006,15-32
    [14]R.Mohan Mathur,Rajiv K. Varma基于晶闸管的柔性交流输电控制装置.徐政.北京:机械工业出版社,2005,34-36
    [15]姜齐荣.电力系统并联补偿:结构、原理、控制与应用.北京:机械工业出版社,2004,5-10
    [16]王群,姚为正,刘进军.谐波源与有源电力滤波器的补偿特性.中国电机工程学报,2001,21(2):16-20
    [17]陈国柱,吕征宇,钱照明.有源电力滤波器的一般原理及应用.中国电机工程学报,2000,20(9):17-21
    [18]Fujita H. A hybrid active filter for damping of harmonic resonance in industrial power systems. IEEE-TPE,2000,15(2):215-222
    [19]Hafner J, Areds M, Heumann K. A shunt active power filter applied to high voltage distribution lines. IEEE Trans. on Power Delivery,1997,12(1):266-272
    [20]Reza Keypour,Hossein Seifi,Ali Yazdian-Varjani. Genetic based algorithm for active power filter allocation and sizing. Electric Power Systems Research,2004: 41-49
    [21]Senini S, Wolfs P J. Analysis and Design of a Multiple-loop Control System for a Hybrid Active Filter. IEEE Trans on Industrial Electronics,2002:1283-1292.
    [22]Dirk Detjen, Joep Jacobs, Rik W.De Doncker et al.A new hybrid filter to dampen resonances and compensate harmonic currents in industrial power systems with power factor correction equipment. IEEE Trans. On power electronics,2001, 16(6):821-827
    [23]肖湘宁,徐永海,刘昊.混合有源电力补偿技术与实验研究.电力系统自动化,2002,26(5):39-44
    [24]唐卓尧,任震.并联型混合滤波器及其滤波特性分析.中国电机工程学报,2000,20(5):25-29
    [25]吴卫民,童立青,钱照明,等.一种高性能串联混合有源电力滤波器拓扑的研究.中国电机工程学报,2004,24(3):41-45
    [26]范瑞祥.混合型有源滤波装置设计与应用研究,[湖南大学硕士学位论文].长沙:湖南大学,2005,47-53
    [27]L. Gyugyi, E. C. Strycula, Active ac power filters. In Proc. IEEE, Ind. Appl. Soc. Annual Meeting,1976,529-535
    [28]Akagi H, Kanazawa Y, Nabae A. Generalized theory of the instantaneous reactive power in three-power circuits. IPEC'83-Int. Power Electronics Conf., Tokyo, Japan,1983,1375-1386
    [29]王广柱.并联型有源电力滤波器电流控制的等效原理.中国电机工程学报,2006,26(15):40-45
    [30]王跃,王兆安.复合控制的新型并联HAPF的稳态特性研究.电力电子技术,2004,38(6):13-15
    [31]Mattavelli P, Marafao F P. Repetitive-based control for selective harmonic compensation in active power filters. IEEE Transactions on Industrial Electronics, 2004,51(5):1018-1024
    [32]Yazdani, D.; Bakhshai, A.; Geza Joos. Multifunctional Grid-Connected Multimodule Power Converters Capable of Operating in Single-Pulse and PWM Switching Modes. IEEE Transactions on Power Electronics,2008,23(3):1228 1238
    [33]Hirofumi Akagi. Control Strategy and Site Selection of a Shunt Active Power Filter Damping of Harmonic Propagation in Power Distribution Systems. IEEE Transactions on Power Delivery,1997,12(1):354-363
    [34]李丽.改善电压稳定性的SVC非线性控制策略,中国测试技术,2005,31(2):21-23
    [35]曾光,苏彦民,柯敏倩,张静刚.用于无功静补系统的模糊-PID控制方法,电工技术学报,2006,21(6):40-44
    [36]刘瑞叶,刘宝柱,SVC的模糊变结构控制对电力系统稳定性的影响,继电器,2001,29(6):13-19
    [37]Jing Zhang; Wen, J.Y.; Cheng, S.J.; Jia Ma, A Novel SVC Allocation Method for Power System Voltage Stability Enhancement by Normal Forms of Diffeomorphism, IEEE Transactions on Power Systems,2007,22(4):1819-825
    [38]Rizy, D. T., Gunther, E. W., McGranaghan. M. F. Transient and Harmonic Voltages Associated with Automated Capacitor Switching on Distribution Systems, IEEE Transactions on Power Systems,1987,2(3):713-723
    [39]何斌,张秀彬.基于结构保持模型的多SVC协调控制,中国电机工程学报,2007,27(28):35-39
    [40]刘隽,李兴源.汤广福.SVC电压控制与阻尼调节间的相互作用机理,中国电机工程学报.2008,28(1):12-17
    [41]彭建春,黄纯,王耀南,静止无功补偿器的智能自适应PID控制器设计,湖南大学学报,vol.26,No.5,1999),26(5):51-55
    [42]康忠健,勾松波,孟繁玉,刘宝.SVC与发电机励磁的非线性变结构协调控制,高电压技术,2008,34(5):995-1000
    [43]邱宇,陈学允.用于静止无功补偿器的非线性PID控制器,中国电机工程学报,2002,22(11):41-44
    [44]袁翔,马瑞.考虑SVC影响的电力系统多目标交易计划,电力科学与技术学报,2007,22(4):6-10
    [45]王琦,吴启涛,纪延超.基于脉宽调制静止无功补偿器的模糊变结构控制方式研究,电网技术.2004,28(8):46-50
    [46]徐永海,肖湘宁,杨以涵,等.基于d-q变换和ANN的电能质量扰动辨识,电力系统自动化,2001,25(14):24-28
    [47]马幼捷,周雪松,相伟.SVC综合非线性控制器在交直流混合系统中的应用,中国电机工程学报,2004,24(9):19-23
    [48]牛伟,房大中.基于GATS混合算法的PSS与SVC控制器参数设计,电力系统及其自动化学报,2006,18(1):43-48
    [49]纪飞峰,周荔丹,姚钢,陈陈,基于同步对称分量法的静止无功补偿装置,中国电机工程学报,2005,25(6):24-29
    [50]袁佳歆,陈柏超,万黎,等.一种低压系统无功补偿器的研究.电力自动化设备,2004,24(3):69-71
    [51]张建成,黄立培,吴速.电压源型电能质量控制技术研究.电力系统自动化,2004,28(4):45-48
    [52]Chong Han; Zhanoning Yang; Bin Chen; Huang, A.Q.; Bin Zhang; Ingram, M.R. Edris, A.-A.; Evaluation of Cascade-Multilevel-Converter-Based STATCOM for Arc Furnace Flicker Mitigation, IEEE Trans. on Industrial Applications,2008, 43(2):378-385
    [53]Bina, M.T.; Bhat, A.K.S. Averaging Technique for the Modeling of STATCOM and Active Filters, IEEE Transactions on Power Electronics,2008,23(2):723-734
    [54]Khan, M.S., Iravani, M.R. supervisory hybrid control of a micro grid system, Electrical Power Conference,2007. EPC 2007. IEEE Canada. Oct.2007, Page(s):20-24
    [55]丁洪发,段献忠,何仰赞.同步检测法的改进及其在三相不对称无功补偿中的应用.中国电机工程学报.2000,20(6):17-20,52
    [56]何湘宁,B.W.Willianms.钱照明.高功率逆变桥开通缓冲电路能量回馈研究.中国电机工程学报,1997,17(3):157-161
    [57]Bhim Singh, Jitendra Solanki, Vishal Verma. Neural network based control of reduced rating DSTATCOM. In:IEEE indicon conference. Chennai,2005,516-520
    [58]马晓军,姜齐荣,陈建业,等.不对称系统的设计参数对STATCOM性能的影响.清华大学学报(自然科学版),2000,40(7):23-26
    [59]Woei-Luen Chen, Yuan-Yih Hsu. Direct output voltage control of a static synchronous compensator using current sensorless d-q vector-based power balancing scheme. In:IEEE PES Transmission and distribution conference and exposition.2003,2:545-549
    [60]Su Chen, Ceza Joos. Direct power control of DSTATCOMs for voltage flicker mitigation. In:36th IAS annual meeting industry application conference.2001, 4:2683-2690
    [61]P.W.Lehn, M.R.Iravani. Experimental evaluation of STATCOM closed loop dynamics. IEEE Trans. On Power Delivery,1998,13(4):1378-1384
    [62]Pranesh Rao, M.L.Crow, Zhiping Yang. STATCOM control for power system voltage control applications. IEEE Trans. On Power Delivery,2000,15(4): 1311-1317
    [63]S.Mishra, B.K.Panigrahi, M.Tripathy. A hybrid adaptive-bacterial-foraging and feedback linearization scheme based D-STATCOM. In:International conference on power system technology. Singapore,2004,275-280
    [64]戴朝波,林海雪.电压源型逆变器三角载波电流控制新方法.中国电机工程学报,2002,22(2):99-102
    [65]Dirk Detjen,Joep Jacobs,Rik W De Doncker,et al. A new hybrid filter to dampen resonances and compensate harmonic currents in industrial power systems with power factor correction equipment. IEEE Trans. On power electronics,2001,16 (6):821-827
    [66]涂春鸣,罗安.基于广义积分迭代算法的有源滤波器三重变结构控制.电工电能新技术,2004,23(1):34-38
    [67]J.A. Barrena, L. Marroyo, M.A.R. Vidal, J.R.T. Apraiz, Individual Voltage Balancing Strategy for PWM Cascaded H-Bridge Converter-Based STATCOM. IEEE Trans. on Industrial Electronics,2008,55(1):21-29
    [68]Divan, D. Johal, H. Distributed FACTS-A New Concept for Realizing Grid Power Flow Control, IEEE Transactions on Power Electronics,2007,22(6):2253-2260
    [69]M.I.Marei, E.F.El-Saadany, M.M.A.Salama. A novel control scheme for STATCOM using space vector modulation based hysteresis current controller. 11th International conference on harmonics and quality of power,2004:58-65
    [70]Pranesh Rao,M.L.Crow, Zhiping Yang. STATCOM control for power system voltage control applications. IEEE Trans. On Power delivery,2000, 15(4):1311-1317
    [71]曾江,刁勤华,倪以信,等.基于最优电压矢量的有源滤波器电流控制信方法.电力系统自动化,2000,24(6):25-31
    [72]Shin-ichi Hanasaki, Atsuo Kawamura. Improvement of current regulation of line-current-detection-type active filter based on deadbeat control. IEEE Trans. On Industry applications,2003,39(2):536-541
    [73]杨晓萍,马少军,钟彦儒.预测电流控制的DSTATCOM控制器设计与实现.电力电子技术,2006,40(3):33-35
    [74]Paolo Mattavelli. A closed-loop selective harmonic compensation for active filters. IEEE Trans. On Industry applications,2001,37(1):81-89
    [75]Thukaram, D.; Yesuratnam, G. Optimal reactive power dispatch in a large power system with acydc and facts controllers. IET Generation, Transmission & Distribution,2008,2(1):71-81,
    [76]El Metwally, M.M.; El Emary, A.A.; El Bendary, F.M.; Mosaad, M.I.; Optimal allocation of FACTS devices in power system using genetic algorithms. Power System Conference,2008. MEPCON 2008.12th International Middle-East,12-15 March 2008, Page(s):1-4
    [77]袁佳歆,陈柏超,万黎等.利用配电网静止无功补偿器改善电网电能质量的方法,电网技术,2004,28(19):81-84
    [78]李永丽,范群芳,李岐虎.静止无功补偿器的最优电容投切阈值分析.电力系统及其自动化学报,2007,19(3):77-81
    [79]邓文浪,杨欣荣,朱建林,易灵芝.改进矩阵变换器在输入电压非正常情况下的调制策略.控制与决策,2006,21(8):908-912
    [80]彭晓涛,程时杰,王少荣,唐跃进.一种新型的电流源型变流器PWM控制策略及其在超导磁储能装置中的应用.中国电机工程学报,2006,26(22):60-66
    [81]张崇巍,张兴.PWM整流器及其控制.北京:机械工业出版社,2002
    [82]严陆光,周孝信,张楚汉等.关于筹建青海大规模光伏发电与水电结合的国家综合能源基地的建议.电工电能新技术,2010,29(3):1110-116
    [83]张超,何湘宁.短路电流结合扰动观察法在光伏发电最大功率点跟踪控制中的应用.中国电机工程学报,2006,26(20):98-102
    [84]王涛.小型风光互补发电系统控制器的研究.合肥工业大学.硕士学位论文.2009,23-30
    [85]余晓明,曾君,郭红霞,柳澹.基于multi-Agent和Petri网的分布式风光互补系统.控制理论与应用,2008,25(2):353-356
    [86]李明.大功率充电电源及其并联均流技术的研究.北京交通大学.硕士学位论文.2009,6-9
    [87]邓礼宽,姜新建,朱东起,陈峻岭.APF和SVC联合运行的稳定控制.电力系统自动化,2005,29(18):29-34
    [88]An Luo; Zhikang Shuai; Wenji Zhu; Shen, Z.J. Combined System for Harmonic Suppression and Reactive Power Compensation, IEEE Trans. Ind. Electron.,2009, 56(2):418-428
    [89]San-Yi Lee, Chi-Jui Wu. Combined compensation structure of an SVC and an active filter for unbalanced three phase distribution feeders with harmonic distortion. Proceedings of the 4th International Conference on Advances in Power System Control, Operation and Management, APSCOM-97, Hong Kong, November 1997,543-548
    [90]Hug-Glanzmann G, Andersson G. Coordinated control of FACTS devices in power systems for security enhancement. In:Bulk Power System Dynamics and Control-Ⅶ. Revitalizing Operational Reliability,2007 iREP Symposium. 2007,1-10
    [91]L Cong, Y Wang. Co-ordinated control of generator excitation and STATCOM for rotor angle stability and voltage regulation enhancement of power systems. IEE Proc-Gener. Transm. Distrib.,2002,149(06):659-666
    [92]Liu Q J, Sun Y Z, Shen T L, et al. Adaptive nonlinear co-ordinated excitation and STATCOM controller based on Hamiltonian structure for multimachine- power-system stability enhancement. IEE Proc. Control Theory Appl.,2003,150(3): 285-294
    [93]江全元,邹振宇,曹一家.基于RGA原理的SVC和STATCOM控制器交互影响分析.浙江大学学报:工学版,2005,39(07):1014-1018
    [94]吴磊.变结构多TCSC暂态稳定控制器的研究.武汉大学.硕士学位论文.2003,5-7
    [95]Passelergue J C, Hadjsaid N, Georges D, et al. An efficient index to deal with interaction phenomena of FACTS devices in power systems. In:Power System Technology,1998. Proceedings. POWERCON'98.1998 International Conference on.1998,401-405
    [96]Moran, L.T.; Mahomar, J.J.; Dixon, J.R.; Careful connection. IEEE Industry Applications Magazine 2004,10(2):43-50
    [97]范瑞祥,罗安,李欣然.并联混合型有源电力滤波器的系统参数设计及应用研究.中国电机工程学报,2006,23(2):106-111
    [98]李江,孙海顺,程时杰,等,基于灰色系统理论的有源滤波器的预测控制.中国电机工程学报,2002,22(2):6-10
    [99]Senini S,Wolfs P J. Analysis and design of a multiple-loop control system for a hybrid active filter. IEEE Trans on Industrial Electronics,2002,19(5):1283-1292
    [100]Dirk Detjen,Joep Jacobs,Rik W De Doncker,et al. A new hybrid filter to dampen resonances and compensate harmonic currents in industrial power systems with power factor correction equipment. IEEE Trans. on power electronics,2001, 16(6):821-827
    [101]Zou, Z.Y.; Jiang, Q.Y.; Cao, Y.J.; Wang, H.F. Normal form analysis of interactions among multiple SVC controllers in power systems, IEE Proceedings-Generation, Transmission and Distribution,2005,152(6):469-474
    [102]Molinas, M.; Jon Are Suul; Undeland, T. Low Voltage Ride Through of Wind Farms With Cage Generators:STATCOM Versus SVC, IEEE Transactions on Power Electronics,2008,23(3):1104-1117
    [103]M. Shahid Khan, M.Reza Iravani. Hybrid Control of a Grid-Interactive Wind Energy Conversion System, IEEE Transactions on Energy conversion.2008, 23(3):895-902
    [104]邱宇,陈学允.用于静止无功补偿器的非线性PID控制器.中国电机工程学报,2002,22(11):41-44
    [105]Yuan X, Merk W, Stemmler H, et al. Stationary frame generalized integrators for current control of active power filters with zero steady state error for current harmonics of concern under unbalanced and distorted operating conditions. IEEE Trans. on IA,2002,38(2):523-532
    [106]苏玉鑫,段宝岩.一种新型非线性PID控制器.控制与决策,2003,18(1):126-128
    [107]赵勇.韩春立,李建华.兼顾降低网损和抑制谐波要求的配电系统优化运行.中国电机工程学报,2003,23(1):6-10
    [108]付青,杨耕,郭希铮.考虑电源电压畸变时的有源电力滤波器控制方法.电工技术学报,2006,21(3):47-51
    [109]姚为正,王群,刘进军等.采用复合控制方式的串联型电力有源滤波器.电工电能新技术,1999,(3):18-22
    [110]王秀丽,李淑慧,陈皓勇等.基于非支配遗传算法及协同进化算法的多目标多区域电网规划.中国电机工程学报,2006,26(12):11-15
    [111]张勇军,任震.无功电压动态控制的分布式协同优化.中国电机工程学报,2004,24(4):34-38
    [112]陆海峰,谭瑞民,瞿文龙.减小死区影响的准单极性PWM调制方法.清华大学学报:自然科学版,2005,45(10):1297-1300
    [113]Chang W K,Grady W M. Minimizing harmonic voltage distortion with multiple current constrained active power line conditioners. IEEE Trans. on Power Delivery,1997,12 (2):837-843
    [114]王冠.电力系统谐波分析的元件模型和系统仿真,浙江大学.硕士学位论文,2003,1-4
    [115]杨建.小波分析在移动电站系统谐波检测中的应用研究,兰州理工大学.硕士学位论文,2009,14-16
    [116]Hsiao-Dong Chiang; Jin-Cheng Wang; Jianzhong Tong; Darling, G. Optimal capacitor placement, replacement and control in large-scale unbalanced distribution systems:modeling and a new formulation, IEEE Transactions on Power Systems,1995.10(1):356-362
    [117]Hirofumi A. Control strategy and site selection of a shunt active power filter damping of harmonic propagation in power distribution systems. IEEE Trans. on Power Delivery,1997,12(1):354-363
    [118]Hirofumi Akagi. Control strategy and site selection of a shunt active power filter damping of harmonic propagation in power distribution systems. IEEE Transactions on Power Delivery,1997,12(1):354-363
    [119]Hong-Chan Chang,Tien-Ting Chang. Optimal installation of three-phase active power line conditioners in unbalanced distribution systems. Electric Power Systems Research 57,2001:163-171
    [120]默哈莫德·夏班,刘皓明,李卫星等.静态安全约束下基于Benders分解算法的可用传输容量计算.中国电机工程学报,2003,23(8):7-11
    [121]Hong Ying Yi,Chang Ying Kwun. Determination of locations and sizes for active power line conditioners to reduce harmonics in power systems. IEEE Trans. on Power Delivery,1996,11 (3):1610-1617
    [122]Grady W M, Samotyj M J, Noyola A H. Minimizing network harmonic voltage distortion with an active power line conditioner. IEEE Trans. on Power Delivery, 1991,6(4):1690-1697

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700