用户名: 密码: 验证码:
建筑结构人工智能实验分析环境
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
长期以来,在结构工程领域,为了精确分析各种工程结构的工作性能和反应,人们提出和引入了各种分析理论及方法,并与时俱进地不断改进,使有限元为代表的结构数值模拟分析技术日渐强大。但是,两个显而易见的问题一直在挑战目前的结构分析理论与方法:一是结构分析理论与方法,无论是经验公式还是被广泛应用的有限元分析方法,都是建立在一定的基本假设基础之上,这使得结构的数值模拟结果与结构的实际工作性能与反应之间具有天然的缺欠,在许多复杂工程结构分析中误差太大、甚至失效。二是长期积累的数量巨大的现有试验数据仅用于回归分析或检测数值模拟精度,而这些数据中所包含的大量关于结构工作性能与反应的宝贵信息没有被充分发掘出来并加以利用,无形中造成了巨大浪费。因此,若想避免由基本假设引进的误差,提高结构分析的精度和有效性,则需寻找能够直接从结构的实际工作行为/反应出发,预测新结构工作行为/反应的结构分析方法;而试验数据的充分利用,则需要发展行之有效的从现有试验数据进行知识挖掘的方法。
     (1)为了解决上述问题,本文在实验数据和人工智能方法的“建筑结构人工智能实验分析环境(AIEESA)”的概念基础上,创建了相应的集成分析系统。“建筑结构人工智能实验分析环境”由人工智能技术(AITs)、数据挖掘技术、试验数据、结构构造的数字建模方法、以及一系列匹配结构类似性质和绘制结构行为/反应的匹配准则共同构成。试验数据经过数据挖掘处理,作为适合于AITs运算的数字模式。当一个新/未知结构模型进入“建筑结构人工结构智能实验分析环境”,该模型的行为或反应,如试验表达,能够基于现有的试验数据和现场测量数据绘制出来。在给出“建筑结构人工结构智能实验分析环境”的概念后,本文依次探讨了“建筑结构人工结智能实验分析环境”各个组成部分。
     首先,提出了“建筑结构人工智能实验分析环境”数据库的组织方法:此数据库有三个组成部分:(1)结构行为,在本文中具体指横向荷载作用下砌体墙板的破坏模式与破坏荷载;(2)标准化的结构行为,为了集中反映横向荷载作用下砌体墙板破坏模式的特征,将构造类似的墙板破坏模式主要特征进行归纳提炼并剔除次生裂纹,得到标准化的墙板破坏模式,称为标准化的结构行为;(3)结构的反应,本文中结构反应指各级荷载作用下砌体墙板相应测点的位移值。这样,就构成了知识发现的原始信息源,而且便于将相应的数据挖掘技术引入“建筑结构人工智能实验分析环境”。
     其次,本文研究了“建筑结构人工智能实验分析环境”中的两个数值模式:结构工作行为数值模式以及结构构造状态数值模式。在探讨结构破坏模式的数值描述方法过程中,引入了广义墙板的概念,从而丰富了相似度概念的特有内涵,并给出了一种定量的比较基础模型和新模型破坏模式的方法。在探讨结构构造状态数值模式过程中,提出了结构构造数值模式的两种方法:适于四边简支墙板的细胞自动机模型(CA)和基于有限元分析(FEA)的无量纲化法。后者以FEA分析所得区域位移的无量纲化结果作为数值模式,丰富了“建筑结构人工智能实验分析环境”结构行为建模的物理意义。
     再者,研究了“建筑结构人工智能实验分析环境”的两个匹配准则:类似区域匹配准则和行为匹配准则。本文重点研究了类似区域匹配准则。在Zhou提出的匹配准则基础上提出了三种加权的匹配准则,并对这三种匹配准则在“建筑结构人工智能实验分析环境”中的应用效果进行比较,找出了结构构造条件不同时相应效果最佳的加权匹配准则。
     本文还针对CA数值模型中,新模型的整体性质变异和局部性质及边界约束变异的建模方法进行了探讨。整体性质的变异可通过CA模型通过传递系数取值的变化来反映。建立SVM模型求得最优的传递系数取值范围,该范围一旦确定,则新模型的破坏模式即可通过“建筑结构人工智能实验分析环境”得到。并进一步研究了如何通过CA模型边界条件初始值的变化来反映由于边界条件和较大区域范围内的结构性质变异。
     然后,建立起了三种基于墙板破坏模式预测其相应破坏荷载的神经网络模型, BP, RBF和RA神经网络模型,使得“建筑结构人工智能实验分析环境”具有了预测破坏荷载的功能。
     最后,给出了一系列应用“建筑结构人工智能实验分析环境”预测结构行为的例子,并与相应试验数据进行了对比,验证了所建立起的“建筑结构人工智能实验分析环境”的有效性。
     综上,本文建立的结构分析系统实现了直接从结构的实际工作行为/反应出发,预测新结构工作行为/反应;并且能够实现从现有试验数据挖掘出所蕴含的丰富知识,从而克服了传统结构分析技术的固有缺陷,初步建立起将挖掘出的知识用于新结构行为/反应的预测的“建筑结构人工智能实验分析环境”,为科研人员和结构设计人员提供了有力的结构分析工具。
For a long time, all sorts of analytical theories and methodologies were constantly proposed and improved, aiming at analyzing the performance/behavior and response of structures precisely. These reseach achievements have resulted in increasingly powerful capacities of numerical simulation techniques such as finite element analysis technique. However, two issues have been challengingthe current analytical theories and methodologies. One is that both empirical formula and widely used FEA methods are all established on many a hypothesis, which causes natural errors between numerical simulation and actual behavior/response of structure. In many cases, these hypotheses even lead to the invalidation of numerical simulation when a structure is complex. The other is that a large quantity of experimental data accumulated over a long period of time is only applied in regression analysis and precision estimation of structural numerical simulation; thus, this results in enormous waste of abundant precious information about structural working performances/responses included in these data. Therefore,in order to avoid errors from hypothesis and enhance accuracy of structural analysis, it is needed to develop some new analytical methodologies that could predict structural behavior/response based on structural real behaviors/responses. For a full application of experimental data, more capable knowledge mining techniques should be developed .
     In order to addressthe issues elaborated above, this study proposes a new concept of Artificial Intelligent“Experimental Environment for Structural Analysis (AIEESA)”and esteblishes the corresponding system. The AIEESA consists of AITs, data mining techniques and experimental data, along with numerically modeling methodologies of structural configuration and a series of criteria for matching similarity of structural properties and mapping/predicting structural behavior /response. The experimental data is subjected to a process of data mining and then treated as the numerical modes suitable for AIT functions. When a new/unseen structural model is placed in this AIEESA, the behavior or response of the model, like its experimental expression, could be mapped/predicted based on the existing experimental data or the data from the site measurements. Each part of AIEESA is investigated after concept of AIEESA is illuminated.
     First of all, the data base in AIEESA is built as three parts: (1) Behavior of structure. Behavior of structure refers to failure patterns and failure loads of laterally loaded wall panels in this text; (2) Normalized behavior of structure. The normalization underlines themain features of failure patterns of laterally loadedwall panels with similar configurations and deletes some noise. (3) Structural response. Structural response in this text is the displacement values at the measuring points on experimental wall panels subjective toloading increment. Thus, original information resource of knowledge discovering is constituted in consideration of conveniently data mining.
     Secondly, two numerical modeling techniques in AIEESA are studied in this dissertation: one is the numerical modeling technique of failure pattern and the other is the numerical nodeling technique of structural configuration. A new concept of generalized wall panel is put forward to developthe numerical modeling technique of failure pattern. This concept enriches the special content of the similarity level and provides a quantitative method to compare the failure patterns of both base and new models. For the numerical modeling technique of structiral configuration, a CA modeling technique for masonry panels constrained at four edges and a dimensionless technique based on the conventional FEA are raised. The dimensional technique contributes more physical meaning of the numerical modeling of structural behavior in AIEESA.
     Thirdly, criterion forboth similar zone matching and behavior matching are investgated. Three weighted criteria for similar zone matching are proposed, and a comparison is made between applications effects of three criteria to find out the optimal criterion for panels with different configuration.
     Then, modeling methods of both global property variation and property variation with CA technique are studied. On one hand, global property variation could be described by transition coefficient in CA model. Meanwhile, a SVM model is built up to obtained optimal value of transition coefficient. Once the range of transition coefficient is determined, failure pattern of new model could be predictedd with AIEESA. On the other hand, this study also put forward that varying of initial value in CA model could reflects property variation properly.
     Moreover, three sorts of neutral networks: BP, RBF and RA are established to predict failure loads account of corresponding failure patterns, which enable function to predict failure loadsof AIEESA.
     Finally, a comparison is made between the a series of implementing results of AIEESA and corresponding experimental behavior/response to verify validation of AIEESA.
     In sum, the analytical system AIEESA built up in this study realizes predicting structural behavior/response directly from existing real structural behavior/response; and it also achieves mining out plenty knowledge contained in now existing experimental data. Therefore, the AIEESAnot only overcomes inherent defect of conventional analyzing technologies and methodologies, but alsoprovides a new way to mine out knowledge contained in existing experimental data and apply to analysis of new structures. Consequently, AIEESA provides researchers and engineers an effective structural analysis tool.
引文
[1]虎旭林,魏星,任克亮.岩质边坡可靠性的神经网络估计[J].宁夏大学学报(自然科学版), 2001, 22(3): 290-292.
    [2]沈成武,唐小兵,李建文.神经网络用于刚架结构裂纹识别的反问题[J].武汉交通科技大学学报, 1998, 22(6): 568-570.
    [3]瞿伟廉,陈伟.多层及高层框架结构地震损伤诊断的神经网络方法[J].地震工程与工程振动, 2002, 22(1): 43-48.
    [4]王步宇.结构损伤的小波分形神经网络检测[J].应用力学学报, 2007, 24(1): 58-61.
    [5]孙宗光,高赞明,倪一清.基于神经网络的损伤构件及损伤程度识别[J].工程力学, 2006, 23(2): 18-22.
    [6]麦榕,贺怀建,潘冬子,等.小波神经网络在基桩动测信号处理中的应用[J].水文地质工程地质, 2004, 5(1): 91-95.
    [7]杨晓.神经网络在混凝土强度试验中的应用[J].中外公路, 2004, 24(4): 159-161.
    [8]周满贵,潘国荣.建筑物变形短期预测的神经网络方法[J].测绘工程, 1999, 8(4): 63-66.
    [9]李艳艳,戎贤,乔金丽,等.基于神经网络的混凝土梁斜裂缝宽度预测[J].河北工业大学学报, 2009, 38(4): 91-94.
    [10]王长琼,孙国正.缺陷构件承载能力预测的神经网络方法[J].水利电力机械, 1998, 3(2): 27-29.
    [11]胡夏闽,赵荣飞,蔚承建.基于神经网络的组合梁栓钉连接件抗剪强度预测[J].南京建筑工程学院学报, 1997, 1(40): 8-12.
    [12]董文胜,邓子辰,刘东常,等.基于遗传-神经算法的圆柱壳结构外压稳定性研究[J].西北工业大学学报, 2006, 24(1): 119-123.
    [13]王明年,关宝树.神经网络在地下工程中的应用[J].地下空间, 1995, 15(2): 95-101.
    [14]于先文,胡伍生,王继刚.神经网络在建筑物沉降分析中的应用[J].测绘工程, 2003, 13(4): 48-50.
    [15]吕海波,宁世朝,赵艳林,等. SOM神经网络在膨胀土分类中的应用[J].土工基础, 2006, 20(4): 90-93.
    [16]刘大鹏,周建中,尤晓暐.人工神经网络与遗传算法的结合在土钉支护优化设计中的应用[J].公路, 2006, 5(5): 131-134.
    [17]陶津,贺可强.深基坑工程位移预测的遗传神经网络耦合方法[J].建筑结构, 2006, 36(10): 9-11.
    [18]王效宾,杨平.基于BP人工神经网络的冻土融沉系数预测方法研究[J].森林工程, 2008, 24(5): 18-21.
    [19]钱为民.径向基神经网络在砂土液化评价中的应用[J].地下水, 2005, 28(1): 86-89.
    [20]周先存,常光明,刘仁金.基于多分支神经网络的深基坑变形多点预测[J].合肥工业大学学报(自然科学版), 2008, 31(5): 787-790.
    [21]高凌霞,罗跃纲,杨向军.基于BP人工神经网络的非饱和黄土湿陷系数计算方法[J].大连民族学院学报, 2006, 34(5): 24-35.
    [22]胡立黎,何文安,涂涛.基于神经网络的黄土地区建筑基础选型[J].工业建筑, 2006, 36(1): 720-725.
    [23]薛苏泉,袁广林,吕志涛.基于神经网络的高温下(后)预应力损失分析[J].武汉理工大学学报(交通科学与工程版), 2008, 32(3): 455-457.
    [24] Li J C, Dackermann U, Xu Y L, et al. Damage Identification in Civil Engineering Structures Utilizing PCA-Compressed Residual Frequency Response Functions and Neural Network Ensembles[J]. Structural Control and Health Monitoring, 2011, 18(2): 207~226.
    [25] Pelechano N, Malkawi A. Evacuation Simulation Models: Challenges in Modeling High Rise Building Evacuation with Cellular Automata Approaches[J]. Automation in Construction, 2008, 17(4): 377~385.
    [26] Lee S, Davidson R, Ohnishi N. Fire Following Earthquake-Reviewing the State-of-the-Art of Modeling[J]. Earthquake spectra, 2008, 24(4): 933~967.
    [27] Sepúlveda M, Moreno R, Pizarro G E. Distributed Simulation with Cellular Automata Usingthe Multispin Coding Technique[J]. Journal of Computing in Civil Engineering, 2008, 22(1): 50-57.
    [28]许强,黄润秋.岩石破裂过程的自组织临界特征初探[J].地质灾害与环境保护, 1996, 7(1): 26-30.
    [29]周辉,冯夏庭,谭云亮,等.物理细胞自动机与岩石弹-脆-塑性性质的细观机制研究[J].岩土力学, 2002, 23(6): 679-682.
    [30]周辉,王泳嘉,谭云亮,等.岩体破坏演化的物理细胞自动机(PCA)(Ⅰ)——基本模型[J].岩石力学与工程学报, 2002, 21(4): 475-478.
    [31]周辉,谭云亮,冯夏庭,等.岩体破坏演化的物理细胞自动机(PCA)(Ⅱ)——模拟例证[J].岩石力学与工程学报, 2002, 21(6): 782-786.
    [32]李明田,冯夏庭,周辉.模拟岩石破坏过程的物理细胞演化力学模型[J].岩石力学与工程学报, 2003, 22(10): 1656-1660.
    [33]王士民,冯夏庭,王泳嘉,等.脆性岩石破坏的演化细胞自动机(ECA)研究[J].岩石力学与工程学报, 2005, 24(15): 2634-2639.
    [34]周辉,潘鹏志,冯夏庭.循环载荷作用下岩石单轴压缩破坏过程的平面弹塑性细胞自动机模型[J].岩石力学与工程学报, 2006, 25(2): 3623-3628.
    [35]潘鹏志,周辉,冯夏庭.岩石I类和II类曲线形成机制的弹塑性细胞自动机分析[J].岩石力学与工程学报, 2006,25(2): 3823-3829.
    [36]王士民,朱合华,冯夏庭,等.细观非均匀性对脆性岩石材料宏观破坏形式的影响[J].岩土力学, 2006, 27(2): 225-227.
    [37]周辉,冯夏庭.岩石应力–水力–化学耦合过程研究进展[J].岩石力学与工程学报, 2006, 25(4): 856-864.
    [38]潘鹏志,冯夏庭,周辉.开挖损伤区近场模型THM耦合过程的BMT模拟[J].岩石力学与工程学报, 2007, 26(2): 2533-2540.
    [39]潘鹏志,冯夏庭,申林方,等.裂隙花岗岩各向异性蠕变特性研究[J].岩石力学与工程学报, 2011, 30(1): 37-44.
    [40]吕海波,赵艳林,韦克宇,等.细胞自动机原理及其在混凝土碳化模拟中的应用[J].桂林工学院学报, 2006, 26(2): 192-195.
    [41]周尚志,刘明群,梁斌,等.物理细胞自动机在模拟混凝土破坏过程的应用[J].武汉大学学报(工学版), 2006, 35(9): 35-45.
    [42]安彧,尚涛.古建筑木质结构物理性质变化预测[J].武汉大学学报(工学版), 2008, 41(2): 87-89.
    [43] Zhao D L, Li J, Zhu Y. The Application of a Two-Dimensional Cellular Automata Random Model to the Performance-Based Design of Building Exit[J]. Building and Environment, 2008, 43(4): 518~522.
    [44] Pan P Z, Feng X T. Plane Elastoplastic Cellular Automata Model of Failure Process of Rocks Under Cyclic Loading[J]. Journal of Rock Mechanics and Engineering, 2006, 25(2): 3623~3628.
    [45] Zhao H B. Slope Reliability Analysis Using a Support Vector Machine[J]. Computers and Geotechnics, 2008, 35(3): 459-467.
    [46] He H X, Yan W M. Structural Damage Detection with Wavelet Support Vector Machine: Introduction and Applications[J]. Structural Control and HealthMonitoring, 2007, 14(1): 162-176.
    [47] Yan K Z, Shi C J. Prediction of Elastic Modulus of Normal and High Strength Concrete by Support Vector Machine[J]. Construction and Building Materials, 2010, 24(8): 1479-1485.
    [48] Dong Y F, Li Y M, Lai M, et al. Nonlinear Structural Response Prediction Based on Support Vector Machines[J]. Journal of Sound and Vibration, 2008, 311(3-5): 886-897.
    [49]许传华,房定旺,朱绳武.边坡稳定性分析中工程岩体抗剪强度参数选取的神经网络方法[J].岩石力学与工程学报, 2002, 21(6): 858-862.
    [50]徐敏,陈国良,周心权.高层建筑火灾风险的神经网络评价[J].湘潭矿业学院学报, 2003, 18(3): 69-72.
    [51]赵洋,李树山. BP人工神经网络在结构损伤检测与识别中的应用[J].水科学与工程技术, 2006, 1(1):42 -45.
    [52]陈建功,李昕,张永兴.基于小波神经网络的锚杆-围岩结构系统的识别[J].煤炭学报, 2009, 34(10): 1333-1338.
    [53]冷艳玲,张劲泉,毛燕.混凝土结构钢筋锈蚀率BP神经网络预测模型[J].西部交通科技, 2010, 5(5): 5-15.
    [54]张治强,蔡嗣经,马平波.数据挖掘在岩质边坡稳定性预测中的应用[J].北京科技大学学报, 2003, 25(2): 103-105.
    [55]杨小兵,孔繁胜,李正农.超高层建筑风致响应中的数据挖掘[J].自然灾害学报, 2005, 14(2): 99-102.
    [56] Kicinger R, Arciszewski T, Jong K D. Generative Representations in Structural Engineering[J]. Journal of Structural Engineering, 2005, 3(2): 201-210.
    [57] Chen S R, Wu J. Dynamic Performance Simulation of Long-Span Bridge under Combined Loads of Stochastic Traffic and Wind[J]. Journal of Bridge Engineering, 2010, 15(4): 219-230.
    [58] Biondini F, Nero A. A Cellular Finite Beam Element for Nonlinear Analysis of Concrete Structures under Fire[J]. Journal of Structural Engineering, 2010, 1(2): 223-231.
    [59] Biondini F, Bontempi F, Frangopol D M, et al. Cellular Automata Approach to Durability Analysis of Concrete Structures in Aggressive Environments[J]. Journal of Structure Engineering, 2004, 130(11): 1724-1737.
    [60] Toyoda T, Kita E. Structural Optimization Using Cellular Automata[J]. Inverse Problems in Engineering Mechanics II, 2000, 112(3): 583-590.
    [61] Canyurt O E, Hajela P A. Cellular Framework for Structural Analysis and Optimization[J]. Computer Methods in Applied Mechanics and Engineering,2004, 194(30-33): 3516-3534.
    [62] Leamy M J. Application of Cellular Automata Modeling to Seismic Elastodynamics[J]. International Journal of Solids and Structures, 2008, 45(17): 4835-4849.
    [63] Glabisz W. Cellular Automata in Nonlinear String Vibration[J]. Archives of Civil and Mechanical Engineering, 2010, 10(1): 27~41.
    [64] Biondini F, Frangopol D M. Lifetime Reliability-Based Optimization of Reinforced Concrete Cross-Sections under Corrosion[J]. Structural Safety, 2009, 31(6): 483~489.
    [65] Kita E, Saito H, Tamaki T. Three-Dimensional Structural Design Based on Cellular Automata Simulation[J]. Structural Engineering and Mechanics, 2006, 23(1): 29~42.
    [66] Rongong J A, WordenK.Structural Optimisation Using a Hybrid Cellular Automata (HCA) Algorithm[J]. Applied Mechanics and Materials, 2006, 5(6): 93~100.
    [67] Biondini F, Bontempi F, Frangopol D M. Probabilistic Performance of Concrete Structures in Aggressive Environments[J]. Journal of Structure Engineering, 2003, 18(3):83-92.
    [68] Georgoudas I G, Sirakoulis G C, Andreadis I. Modelling Earthquake Activity Features Uing Cellular Automata[J]. Mathematical and Computer Modelling, 2007, 46(1-2): 124-137.
    [69] Herr CM, Kvan T. Adapting Cellular Automata to Support the Architectural Design Process[J], Automation in Construction, 2007, 16(1): 61-69.
    [70] Pal M, Deswal S. Modeling Pile Capacity Using Support Vector Machines and Generalized Regression[J]. Journal of Geotechnical & Geoenvironmental Engineering, 2008, 134(7):1021-1024.
    [71] Cheng M Y, Roy A F V. Evolutionary Fuzzy Decision Model for Construction Management Using Support Vector Machine[J]. Expert Systems with Applications, 2010, 37(8): 6061-6069.
    [72] Dong Y F, Li Y M, Lai M, et al. Nonlinear Structural Response Prediction Based on Support VectorMachines[J]. Journal of Sound and Vibration, 2008, 311(3-5): 886-897.
    [73] Basudhar A, Missoum S. A Sampling-Based Approach for Probabilistic Design with Random Fields[J]. Computer Methods in Applied Mechanics and Engineering, 1998(47-48): 3647-3655.
    [74] Hong-bo Zhao. Slope Reliability Analysis Using a Support Vector Machine[J]. Computers and Geotechnics. 2008, 35(3): 459-467.
    [75] Basudhar A, Missoum S, Sanchez A H. Limit State Function Identification Using Support Vector Machines for Discontinuous Responses and Disjoint Failure Domains[J]. Probabilistic Engineering Mechanics, 2008, 23(1): 1-11.
    [76] Yan K Z, Shi C J. Prediction of Elastic Modulus of Normal and High Strength Concrete by Support Vector Machine[J]. Construction and Building Materials, 2010, 24(8): 1479-1485.
    [77] Rocco S, Zio E. A Support Vector Machine Integrated System for the Classification of Operation Anomalies in Nuclear Components and Systems[J]. Reliability Engineering & System Safety, 2007, 92(5): 593-600.
    [78] Li Q, Meng Q L, Cai J J, et al. Applying Support Vector Machine to Predict Hourly Cooling Load in the Building[J]. Applied Energy, 2009, 86(10): 2249-2256.
    [79] Tang H S, Xue S T, Chen R. Online weighted LS-SVM for Hysteretic Structural System Identification[J]. Engineering Structures, 2006, 28(12): 1728-1735.
    [80] Shin Y, Kim DW, Kim JY, et al. Application of AdaBoost to the Retaining Wall Method Selection in Construction[J]. J. Comp. in Civ. Engrg. 2009, 23(6): 188-195.
    [81] Carlos H. Caldas, Lucio Soibelman, Jiawei Han. Automated Classification of Construction Project Documents[J]. Journal of Computing in Civil Engineering, 2002, 16(4):234-243.
    [82] Pal M and Deswal S. Modelling Pile Capacity Using Gaussian Process Regression[J]. Computers and Geotechnics, 37(7-8): 942-947.
    [83] Pijush S B. Prediction of Friction Capacity of Driven Piles in Clay Using the Support Vector Machine[J]. Canadian Geotechnical Journal. 2008, 45(2): 288-295.
    [84] Lima C, Coelho A, Zuben F. Hybridizing Mixtures of Experts with Support Vector Machines: Investigation into Nonlinear Dynamic Systems Identification[J]. Information Sciences, 2007, 10(15): 2049-2074.
    [85] Dong Y F, Li Y N, Lai M, et al. Nonlinear Structural Response Prediction Based on Support Vector Machines[J]. Journal of Sound and Vibration, 2008,311(3-5): 886-897.
    [86] Samui P. Support Vector Machine Applied to Settlement of Shallow Foundations on Cohesionless Soils[J]. Computers and Geotechnics, 2008, 35(3): 419-427.
    [87] Lee J J, Kim Y S. Development of Advanced Pattern Recognition Model for Evaluation of Lateral Displacement on Soft Ground Using Support VectorMachine[J]. ASCE Journal of Civil Engineering, 2010,14(2): 173-182.
    [88] Kim D W, Kim J Y, Kang K I. Application of Adaboost to the Retaining Wall Method Selection in Construction[J]. Journal of Computing in Civil Engineering, 2009, 23(3): 188-192.
    [89] Li Z. Using Soft Computing to Analyze Inspection Results for Bridge Evaluation and Management[J]. Journal of Bridge Engineering, 2010, 15(4): 430-438.
    [90] Lute V, Upadhyay A, Singh K K. Support Vector Machine Based Aerodynamic Analysis of Cable Stayed Bridges[J]. Advances in Engineering Software, 2009, 40(9): 830-835.
    [91] Goel A, Pal M. Application of Support Vector Machines in Scour Prediction on Grade-Control Structures[J]. Engineering Applications of Artificial Intelligence, 2009, 22(2): 216-223.
    [92] Pijush S. Slope Stability Analysis: A Support Vector Machine Approach[J]. Environmental Geology, 2008, 255-267.
    [93] Ghosh J K, Bhattacharya D. Knowledge-Based Landslide Susceptibility Zonation System[J]. Journal of Computing in Civil Engineering, 2010, 24(1): 325-334.
    [94] Zhang J, Sato T, Iai S, et al. A Pattern Recognition Technique for Structural Identification Using Observed Vibration Signals: Linear Case Studies[J]. Engineering Structures, 2008, 30(5): 1439-1446.
    [95] Zhang J, Sato T, Iai S, et al. A Pattern Recognition Technique for Structural Identification Using Observed Vibration Signals: Nonlinear Case Studies[J]. Engineering Structures, 2008, 30(5): 1417-1423.
    [96] Zhang J, Sato T, Iai S. Novel Support Vector Regression for Structural System Identification[J]. Structural Control and Health Monitoring, 2007, 14(4): 609-626.
    [97] Zhu Z H, Brilaki I. Machine Vision-Based Concrete Surface Quality Assessment[J]. Journal of Construction Engineering and Management, 2010, 136(2):210-218.
    [98] Lee J J, Kim D K, Chang S K, et al. Application of Support Vector Regression for the Prediction of Concrete Strength[J]. Computers and Concrete, 2007, 4(4): 299-316.
    [99] Kasperkiewicz J, Racz J, Dubrawski A. HPC StrengthPrediction Using Artificial Neural Network[J]. Journal of Computing in Civil Engineering, 1995, 9(4): 279-284.
    [100]Kim J, Kim D K, Feng M Q, et al. Applicationof Neural Networks forEstimation of Concrete Strength[J]. Journal of Material in Civil Engineering, 2004, 16(3): 257-264.
    [101]Georgy M E, Chang, L M, Zhang L. Prediction of Engineering Performance: A Neurofuzzy Approach[J]. Journal of Construction Engineering and Management, 2005, 131(5):548-557.
    [102]Gupta R, Kewalramani M A, Goel A. Prediction of Concrete Strength Using Neural-Expert System[J]. Journal of Material in Civil Engineering, 2006, 18(3): 462-466.
    [103]Joghataie A, Farrokh M. Dynamic Analysis of Nonlinear Frames by Prandtl Neural Networks[J]. Journal of Engineering Mechanics, 2008, 134(11): 961-969.
    [104]Kandil A, Khaled E R, Omar E A. Optimization Research: Enhancing the Robustness of Large-Scale Multiobjective Optimization in Construction[J]. Journal of Construction Engineering and Management, 2010, 136(1):17-25.
    [105]Ceylan H, Gopalakrishnan K, Lytton R L. Neural Networks Modeling of Stress Growth in Asphalt Overlays Due to Load and Thermal Effects during Reflection Cracking[J]. Journal of Materials in Civil Engineering, 2011, 23(3): 221-229.
    [106]M?ller O, Foschi R O, Quiroz L M, et al. Structural Optimization for Performance-Based Design in Earthquake Engineering: Applications of Neural Networks[J]. Structural Safety, 2009, 31(6): 490~499.
    [107]Rajasekaran S, Sakthi C J. Ant Colony Optimisation of Spatial Steel Structures under Static and Earthquake Loading[J]. Civil Engineering and Environmental Systems, 2009, 26(4): 339~354.
    [108]Xu B, Wu Z S. Localized and Decentralized Identification for Large-Scale Structures[J]. Computer Assisted Mechanics and Engineering Sciences, 2007, 14(2): 361~378.
    [109]Mustafa S. Prediction of Compressive Strength of Concretes Containing Metakaolin and Silica Fume by Artificial Neural Networks[J]. Advances in Engineering Software, 2009, 40(5): 350~355.
    [110]Alacali S N, Akba B, Bilge D. Prediction of Lateral Confinement Coefficient in Reinforced Concrete Columns Using Neural Network Simulation[J]. Applied Soft Computing Journal, 2011, 11(2): 2645~2655,
    [111]Bakhary N, Hao H, Andrew J D. Substructuring Technique for Damage Detection Using Statistical Multi-Stage Artificial Neural Network[J]. Advances in Structural Engineering, 2010, 13(4): 619~639.
    [112]Tsompanakis Y, Lagaros N D, Psarropoulos P N, et al. Simulating the SeismicResponse of Embankments Via Artificial Neural Networks[J]. Advances in Engineering Software, 2009, 40(8): 640~651.
    [113]Alireza A A, Asaad F, Akbar A J. A New Approach for Prediction of the Stability of Soil and Rock Slopes[J]. Engineering Computations, 2010, 27(7): 878~893.
    [114]Monjezi M, Sheikhan M, Bahrami A, et al. Predicting Blast-Induced Ground Vibration Using Various Types of Neural Networks[J]. Soil Dynamics and Earthquake Engineering, 2010, 30(11): 1233~1236.
    [115]Hojjat A, Ashif P. A Probabilistic Neural Network for Earthquake Magnitude Prediction[J]. Neural Networks, 2009, 22(7): 1018~1024.
    [116]Luna R, Balakrishnan N, Dagli C H. Postearthquake Recovery of a Water Distribution System: Discrete Event Simulation Using Colored Petri Nets[J]. Journal of Infrastructure Systems[J], 2011, 17(1): 25-33.
    [117]Abdalla J A, Elsanosi A, Abdelwahab A. Modeling and Simulation of Shear Resistance of R/C Beams Using Artificial Neural Network[J]. Journal of the Franklin Institute, 2007, 344(5): 741~756.
    [118]Moller O, Foschi R O, Rubinstein M, et al. Estimating Structural Seismic Vulnerability: An Approach Using Response Neural Networks[J]. Structure and Infrastructure Engineering, 2010, 6(1-2): 63~75.
    [119]Zhu Z H, Brilakis I. Concrete Column Recognition in Images and Videos[J]. Journal of Computing in Civil Engineering, 2010, 24(6): 478-487.
    [120]Goulet J A, Kripakaran P, Smith I. Multimodel Structural Performance Monitoring[J]. Journal of Structure Engineering, 2010, 13 (09):136-147.
    [121]Ko C H, Cheng M Y. Dynamic Prediction of Project Success Using Artificial Intelligence[J]. Journal of Construction Engineering and Management, 2007, 133(4): 316-324.
    [122]Wang J, Ghosn M. Hybrid Data Mining/Genetic Shredding Algorithm for Reliability Assessment of Structural Systems[J]. Journal of Structural Engineering, 2006, 132(5):1451-1460.
    [123]MirandaT, Correia AG, Santos M, et al. New Models for Strength and Deformability Parameter Calculation in Rock Masses Using Data-Mining Techniques[J].International Journal of Geomechanic, 2011, 11(1): 44-58.
    [124]Kao W K, Chen H M, Chou J S. Aseismic Ability Estimation of School BuildingUsing Predictive Data Mining Models[J]. Expert Systems with Applications, 2011, 8(38): 10252-10263.
    [125]Ahmed A, Korres N E, Ploennigs J, et al. Mining Building Performance Data for Energy-Efficient Operation[J]. Advanced Engineering Informatics, 2011,2(25): 341-354.
    [126]Saltan M, Terzi S, Kü?üksille E U. Backcalculation of Pavement Layer Moduli and Poisson’s Ratio Using Data Mining[J]. Expert Systems with Applications, 2011, 3(38): 2600-2608.
    [127]Tinoco J, Correia A G, Cortez P. Application of Data Mining Techniques in the Estimation of the Uniaxial Compressive Strength of Jet Grouting Columns Over Time[J]. Construction and Building Materials, 2011, 3(25): 1257-1262.
    [128]Miranda T, Correia A G, Santos M, et al. New Models for Strength and Deformability Parameter Calculation in Rock Masses Using Data-Mining Techniques[J]. International Journal of Geomechanics, 2011, 11(1): 44-59.
    [129]Joghataie A, Asbmarz M M. Vibration Controller Design for Confined Masonry Walls by Distributed Genetic Algorithms. Journal of Structure Engineering, 2008, 134(2):300-309.
    [130]Sun C Y, Xu J P. Estimation of Time for Wenchuan Earthquake Reconstruction in China[J]. Journal of Construction Engineering and Management, 2011,137(3): 179 -187.
    [131]Goulet J A, Kripakaran P, Smith I. Multimodel Structural Performance Monitoring[J]. Journal of Structure Engineering, 2010, 13 (09): 136-147.
    [132]Lin T K, Chang K C,Chung L L, et al.Active Control with Optical Fiber Sensors and Neural Networks[J]. I: Theoretical Analysis. Journal of Structure Engineering, 2006, 132(4): 1293-1301.
    [133]Domer B, Smith I. An Active Structure that Learns[J]. Journal of Computing in Civil Engineering, 2005, 19(2): 16-23.
    [134]Bagchi A, Humar J, Xu H, et al. Model-Based Damage Identification in a Continuous Bridge Using Vibration Data[J]. Journal of Performance of Constructed Facilities, 2010, 24(2): 148-159.
    [135]Zhu Z H, Brilakis I. Concrete Column Recognition in Images and Videos[J]. Journal of Computing in Civil Engineering, 2010, 24(2): 478-489.
    [136]Lin T K, Chang K C, Chung L L, et al. Active Control with Optical Fiber Sensors and Neural Networks. I: Theoretical Analysis[J]. Journal of Structure Engineering, 2006, 132(4): 1293-1301.
    [137]Strauss A, Frangopol D M, Bergmeister K. Assessment of Existing Structures Based on Identification[J]. Journal of Structure Engineering, 2010, 136(2): 86-98.
    [138]Perera R, Varona F B. Flexural and Shear Design of FRP Plated RC Structures Using a Genetic Algorithm[J]. Journal of Structure Engineering, 2009, 135(11): 1418-1429.
    [139]Yafiq M Y, Zhou G C, Easterbrook D. Analysis of Brickwork Wall Panels Subjected to Lateral Loading Using Correctors[J]. Journal of Masonry International, 2003, 16(2): 75-82.
    [140]Zhou G C, Pan D, Xu X, et al. Innovative ANN Technique for Predicting Failure/Cracking Load of Masonry Wall Panel under Lateral Load[J]. Journal of Computing in Civil Engineering, 2010, 24(4): 377-387.
    [141]Zhou G C, Rafiq Y M, Bugmann G, et al. Cellular Automata Model for Predicting the Failure Pattern of Laterally Loaded Masonry Wall Panels[J]. Journal of Computing in Civil Engineering, 2006, 20(6): 400-409.
    [142]Zhang Y, Zhou G C, Xiong Y, et al.Techniques for Predicting Cracking Pattern of Masonry Wallet Using Artificial Neural Networks and Cellular Automata[J]. Journal of Computing in Civil Engineering, 2010, 24(2): 161-172.
    [143]阚绍德.预测砌体墙板破坏模式的支持向量机方法[D].哈尔滨:哈尔滨工业大学硕士学位论文, 2008: 23-28.
    [144]谢玲燕.应用CA和ANN预测面外均布荷载下砌体墙板破坏荷载[D].哈尔滨:哈尔滨工业大学硕士学位论文, 2005: 43-50.
    [145]Chong V L. The Behavior of Laterally Loaded Masonry Panels with Openings[D]. University of Plymouth, Plymouth, U.K, Ph.D. thesis, 1993: 156-163.
    [146]Lawrence S J. Design of Masonry Panels for Lateral Loading[R]. Some InterimRecommendations. Technical Record No. 460, Experimental Building Station, Chatswood, NSW, 1980: 123-128.
    [147]张瑀.基于实验数据挖掘与细胞自动机的结构分析方法[D].哈尔滨:哈尔滨工业大学博士学位论文, 2009: 25-39.
    [148]Shannon C. A Mathematical Theory of Communication[J]. ACM SIGMOBILE Mobile Computing and Communications, 2001, 5(1): 48-67.
    [149]Darken J, Moody C. Fast Learning in Networks of Locally-Tunned Processing Units[J]. Journal of Neural Computation, 1989, 1(3), 281-294.
    [150]Platt J A. Resource-Allocating Network for Function Interpolation[J]. Journal of Neural Computation, 1992, 3(2): 213-225.
    [151]Guo H, Zhou G C. 7th International DUT-Workshop on Design and Performance of Sustainable and Durable Concrete Pavements[C]. Alcazar de la Reina, Carmona, Spain: Construction and Building Materials, 2010: 202-207.
    [152]翟永梅,崔志刚.单层球面网壳地震荷载下破坏模式的细胞自动机预测[J].力学季刊, 2010, 31(3): 436-442.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700